Search results for: Privacy Preserving Data Publication (PPDP)
25111 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar
Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi
Abstract:
With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study introduces a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.Keywords: structural integrity, highways, pavement evaluation, asphalt concrete pavement
Procedia PDF Downloads 7725110 Steps towards the Development of National Health Data Standards in Developing Countries
Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray
Abstract:
The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia
Procedia PDF Downloads 34525109 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN
Procedia PDF Downloads 15925108 Sampling Two-Channel Nonseparable Wavelets and Its Applications in Multispectral Image Fusion
Authors: Bin Liu, Weijie Liu, Bin Sun, Yihui Luo
Abstract:
In order to solve the problem of lower spatial resolution and block effect in the fusion method based on separable wavelet transform in the resulting fusion image, a new sampling mode based on multi-resolution analysis of two-channel non separable wavelet transform, whose dilation matrix is [1,1;1,-1], is presented and a multispectral image fusion method based on this kind of sampling mode is proposed. Filter banks related to this kind of wavelet are constructed, and multiresolution decomposition of the intensity of the MS and panchromatic image are performed in the sampled mode using the constructed filter bank. The low- and high-frequency coefficients are fused by different fusion rules. The experiment results show that this method has good visual effect. The fusion performance has been noted to outperform the IHS fusion method, as well as, the fusion methods based on DWT, IHS-DWT, IHS-Contourlet transform, and IHS-Curvelet transform in preserving both spectral quality and high spatial resolution information. Furthermore, when compared with the fusion method based on nonsubsampled two-channel non separable wavelet, the proposed method has been observed to have higher spatial resolution and good global spectral information.Keywords: image fusion, two-channel sampled nonseparable wavelets, multispectral image, panchromatic image
Procedia PDF Downloads 44525107 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 43925106 Monitoring Land Cover/Land Use Change in Rupandehi District by Optimising Remotely Sensed Image
Authors: Hritik Bhattarai
Abstract:
Land use and land cover play a crucial role in preserving and managing Earth's natural resources. Various factors, such as economic, demographic, social, cultural, technological, and environmental processes, contribute to changes in land use and land cover (LULC). Rupandehi District is significantly influenced by a combination of driving forces, including its geographical location, rapid population growth, economic opportunities, globalization, tourism activities, and political events. Urbanization and urban growth in the region have been occurring in an unplanned manner, with internal migration and natural population growth being the primary contributors. Internal migration, particularly from neighboring districts in the higher and lower Himalayan regions, has been high, leading to increased population growth and density. This study utilizes geospatial technology, specifically geographic information system (GIS), to analyze and illustrate the land cover and land use changes in the Rupandehi district for the years 2009 and 2019, using freely available Landsat images. The identified land cover categories include built-up area, cropland, Das-Gaja, forest, grassland, other woodland, riverbed, and water. The statistical analysis of the data over the 10-year period (2009-2019) reveals significant percentage changes in LULC. Notably, Das-Gaja shows a minimal change of 99.9%, while water and forest exhibit increases of 34.5% and 98.6%, respectively. Riverbed and built-up areas experience changes of 95.3% and 39.6%, respectively. Cropland and grassland, however, show concerning decreases of 102.6% and 140.0%, respectively. Other woodland also indicates a change of 50.6%. The most noteworthy trends are the substantial increase in water areas and built-up areas, leading to the degradation of agricultural and open spaces. This emphasizes the urgent need for effective urban planning activities to ensure the development of a sustainable city. While Das-Gaja seems unaffected, the decreasing trends in cropland and grassland, accompanied by the increasing built-up areas, are unsatisfactory. It is imperative for relevant authorities to be aware of these trends and implement proactive measures for sustainable urban development.Keywords: land use and land cover, geospatial, urbanization, geographic information system, sustainable urban development
Procedia PDF Downloads 6325105 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse
Procedia PDF Downloads 41625104 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74825103 Automated Testing to Detect Instance Data Loss in Android Applications
Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.Keywords: Android, automated testing, activity, data loss
Procedia PDF Downloads 23825102 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 42625101 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 28325100 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 3625099 Museums and Corporate Social Responsibility: Environmental Impact and Strategies in Corporate Social Responsibility Policies
Authors: Nicola Urbino
Abstract:
The definition of corporate social responsibility policies is a central topic in contemporary museology, as the role of museums in developing social, cultural, and environmental impact strategies has become increasingly prominent. An overarching perspective in this domain can be provided by the publication of the primary tool for impact verification and reporting in the CSR field: the Social Report. The presentation, based on an international and national theoretical and regulatory assessment, focuses on the operational significance of structured social reporting for Italian museums. The study involves analyzing over 25 Social Reports from leading Italian museums over the past 5 years to assess their CSR practices, examining both the strengths and weaknesses, in order to offer a comprehensive overview of the phenomenon of social responsibility in the national context. Moreover, a benchmark will be done between the legislative framework and guidelines and the effective implementation of CSR policies and practices. That said, the contribution aims at analyzing the strategies of the main Italian museums regarding their environmental impact on the territory. Through the analysis of the Social Balance Sheets published by a group of museums from the north to the south of Italy, it will highlight the relations that museums have established over the years with the territory and the environment, their sensitivity to climate change, and the strategies proposed to mitigate their environmental impact. Starting from a general analysis, the paper will help to highlight best practices and management models to be followed for sustainable growth, analyzing best practice, case studies and strategies applied to the museological field.Keywords: museums, social report, sustainable development, footprint
Procedia PDF Downloads 3425098 Representation Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction
Procedia PDF Downloads 43525097 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 21325096 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 6225095 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 14825094 Lexico-semantic and Morphosyntactic Analyses of Student-generated Paraphrased Academic Texts
Authors: Hazel P. Atilano
Abstract:
In this age of AI-assisted teaching and learning, there seems to be a dearth of research literature on the linguistic analysis of English as a Second Language (ESL) student-generated paraphrased academic texts. This study sought to examine the lexico-semantic, morphosyntactic features of paraphrased academic texts generated by ESL students. Employing a descriptive qualitative design, specifically linguistic analysis, the study involved a total of 85 students from senior high school, college, and graduate school enrolled in research courses. Data collection consisted of a 60-minute real-time, on-site paraphrasing practice exercise using excerpts from discipline-specific literature reviews of 150 to 200 words. A focus group discussion (FGD) was conducted to probe into the challenges experienced by the participants. The writing exercise yielded a total of 516 paraphrase pairs. A total of 176 paraphrase units (PUs) and 340 non-paraphrase pairs (NPPs) were detected. Findings from the linguistic analysis of PUs reveal that the modifications made to the original texts are predominantly syntax-based (Diathesis Alterations and Coordination Changes) and a combination of Miscellaneous Changes (Change of Order, Change of Format, and Addition/Deletion). Results of the analysis of paraphrase extremes (PE) show that Identical Structures resulting from the use of synonymous substitutions, with no significant change in the structural features of the original, is the most frequently occurring instance of PE. The analysis of paraphrase errors reveals that synonymous substitutions resulting in identical structures are the most frequently occurring error that leads to PE. Another type of paraphrasing error involves semantic and content loss resulting from the deletion or addition of meaning-altering content. Three major themes emerged from the FGD: (1) The Challenge of Preserving Semantic Content and Fidelity; (2) The Best Words in the Best Order: Grappling with the Lexico-semantic and Morphosyntactic Demands of Paraphrasing; and (3) Contending with Limited Vocabulary, Poor Comprehension, and Lack of Practice. A pedagogical paradigm was designed based on the major findings of the study for a sustainable instructional intervention.Keywords: academic text, lexico-semantic analysis, linguistic analysis, morphosyntactic analysis, paraphrasing
Procedia PDF Downloads 7025093 Efficient GIS Based Public Health System for Disease Prevention
Authors: K. M. G. T. R. Waidyarathna, S. M. Vidanagamachchi
Abstract:
Public Health System exists in Sri Lanka has a satisfactory complete information flow when compared to other systems in developing countries. The availability of a good health information system contributed immensely to achieve health indices that are in line with the developed countries like US and UK. The health information flow at the moment is completely paper based. In Sri Lanka, the fields like banking, accounting and engineering have incorporated information and communication technology to the same extent that can be observed in any other country. The field of medicine has behind those fields throughout the world mainly due to its complexity, issues like privacy, confidentially and lack of people with knowledge in both fields of Information Technology (IT) and Medicine. Sri Lanka’s situation is much worse and the gap is rapidly increasing with huge IT initiatives by private-public partnerships in all other countries. The major goal of the framework is to support minimizing the spreading diseases. To achieve that a web based framework should be implemented for this application domain with web mapping. The aim of this GIS based public health system is a secure, flexible, easy to maintain environment for creating and maintaining public health records and easy to interact with relevant parties.Keywords: DHIS2, GIS, public health, Sri Lanka
Procedia PDF Downloads 57125092 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 39125091 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification
Procedia PDF Downloads 52025090 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 38125089 Trusting the Big Data Analytics Process from the Perspective of Different Stakeholders
Authors: Sven Gehrke, Johannes Ruhland
Abstract:
Data is the oil of our time, without them progress would come to a hold [1]. On the other hand, the mistrust of data mining is increasing [2]. The paper at hand shows different aspects of the concept of trust and describes the information asymmetry of the typical stakeholders of a data mining project using the CRISP-DM phase model. Based on the identified influencing factors in relation to trust, problematic aspects of the current approach are verified using various interviews with the stakeholders. The results of the interviews confirm the theoretically identified weak points of the phase model with regard to trust and show potential research areas.Keywords: trust, data mining, CRISP DM, stakeholder management
Procedia PDF Downloads 9725088 Wireless Transmission of Big Data Using Novel Secure Algorithm
Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha
Abstract:
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance
Procedia PDF Downloads 49425087 Digital Health During a Pandemic: Critical Analysis of the COVID-19 Contact Tracing Apps
Authors: Mohanad Elemary, Imose Itua, Rajeswari B. Matam
Abstract:
Virologists and public health experts have been predicting potential pandemics from coronaviruses for decades. The viruses which caused the SARS and MERS pandemics and the Nipah virus led to many lost lives, but still, the COVID-19 pandemic caused by the SARS-CoV2 virus surprised many scientific communities, experts, and governments with its ease of transmission and its pathogenicity. Governments of various countries reacted by locking down entire populations to their homes to combat the devastation caused by the virus, which led to a loss of livelihood and economic hardship to many individuals and organizations. To revive national economies and support their citizens in resuming their lives, governments focused on the development and use of contact tracing apps as a digital way to track and trace exposure. Google and Apple introduced the Exposure Notification Systems (ENS) framework. Independent organizations and countries also developed different frameworks for contact tracing apps. The efficiency, popularity, and adoption rate of these various apps have been different across countries. In this paper, we present a critical analysis of the different contact tracing apps with respect to their efficiency, adoption rate and general perception, and the governmental strategies and policies, which led to the development of the applications. When it comes to the European countries, each of them followed an individualistic approach to the same problem resulting in different realizations of a similarly functioning application with differing results of use and acceptance. The study conducted an extensive review of existing literature, policies, and reports across multiple disciplines, from which a framework was developed and then validated through interviews with six key stakeholders in the field, including founders and executives in digital health startups and corporates as well as experts from international organizations like The World Health Organization. A framework of best practices and tactics is the result of this research. The framework looks at three main questions regarding the contact tracing apps; how to develop them, how to deploy them, and how to regulate them. The findings are based on the best practices applied by governments across multiple countries, the mistakes they made, and the best practices applied in similar situations in the business world. The findings include multiple strategies when it comes to the development milestone regarding establishing frameworks for cooperation with the private sector and how to design the features and user experience of the app for a transparent, effective, and rapidly adaptable app. For the deployment section, several tactics were discussed regarding communication messages, marketing campaigns, persuasive psychology, and the initial deployment scale strategies. The paper also discusses the data privacy dilemma and how to build for a more sustainable system of health-related data processing and utilization. This is done through principles-based regulations specific for health data to allow for its avail for the public good. This framework offers insights into strategies and tactics that could be implemented as protocols for future public health crises and emergencies whether global or regional.Keywords: contact tracing apps, COVID-19, digital health applications, exposure notification system
Procedia PDF Downloads 14225086 Insecticidal Effects of Plant Extract-Based Formulations on the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)
Authors: Reza Sadeghi, Maryam Nazarahari
Abstract:
Considering the effectiveness of botanical pesticides in pest management, these compounds have garnered attention as a sustainable approach to reducing pest-induced damage in agriculture while preserving the environment. Botanical pesticides enable farmers to cultivate higher-quality crops by minimizing the use of chemical pesticides. In this study, plant extracts obtained using n-hexane as a solvent from two botanical sources, thyme and eucalyptus, were evaluated under laboratory conditions for their effectiveness in controlling the cotton bollworm (Helicoverpa armigera). The mortality rate of bollworm larvae was assessed across various concentrations of the hexane-based formulations. The results revealed that the hexane-based formulations of thyme and eucalyptus extracts significantly reduced the population of bollworm larvae after 24 hours of exposure. Thyme extract, in particular, demonstrated high effectiveness as a botanical pesticide, suggesting its potential as an efficient alternative to chemical pesticides in pest management. These findings underscore that botanical pesticides can mitigate the environmental consequences of chemical pesticides and provide innovative solutions for sustainable agriculture by leveraging the active compounds present in plant extracts.Keywords: cotton bollworm, thyme, eucalyptus, extract formulation, , toxicity
Procedia PDF Downloads 1925085 One Step Further: Pull-Process-Push Data Processing
Authors: Romeo Botes, Imelda Smit
Abstract:
In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list
Procedia PDF Downloads 24825084 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 48425083 Impact of Stack Caches: Locality Awareness and Cost Effectiveness
Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang
Abstract:
Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.Keywords: hit rate, locality of program, stack cache, stack data
Procedia PDF Downloads 30625082 Anti-Bubble Painting Booth for Wood Coating Resins
Authors: Abasali Masoumi, Amir Gholamian Bozorgi
Abstract:
To have the best quality in wood products such as tabletops and inlay-woods, applying two principles are required: aesthetic and protection against the destructive agent. Artists spent a lot of time creating a masterwork project and also for better demonstrating beautiful appearance and preserving it for hundred years. So they need good material and appropriate method to finish it. As usual, wood painters use polyester or epoxy resins. These finishes need a special skill to use and then give a fantastic paint film and clearness. If we let resins dry in exposure to environmental agents such as unstable temperature, dust and etc., no doubt it becomes cloudy, crack, blister and much wood dust and air bubbles in it. We have designed a special wood coating booth (IR-Patent No: 70429) for wood-coating resins (polyester and epoxy), and this booth provides an adjustable space to control factors that is necessary to have a good finish in the end. Anti-bubble painting booth has the ability to remove bubbles from resin, precludes the cracking process and causes the resin to be the best. With this booth drying time of resin is reduced from 24 hours to 6 hours by fixing the optimum temperature, and it is very good for saving time. This booth is environment-friendly and never lets the poisonous vapors and other VOC (Volatile organic components) enter to workplace atmosphere because they are very harmful to humans.Keywords: wood coating, epoxy resin, polyester resin, wood finishes
Procedia PDF Downloads 234