Search results for: plant disease identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9565

Search results for: plant disease identification

415 Synthesis and Characterization of pH-Sensitive Graphene Quantum Dot-Loaded Metal-Organic Frameworks for Targeted Drug Delivery and Fluorescent Imaging

Authors: Sayed Maeen Badshah, Kuen-Song Lin, Abrar Hussain, Jamshid Hussain

Abstract:

Liver cancer is a significant global health issue, ranking fifth in incidence and second in mortality. Effective therapeutic strategies are urgently needed to combat this disease, particularly in regions with high prevalence. This study focuses on developing and characterizing fluorescent organometallic frameworks as distinct drug delivery carriers with potential applications in both the treatment and biological imaging of liver cancer. This work introduces two distinct organometallic frameworks: the cake-shaped GQD@NH₂-MIL-125 and the cross-shaped M8U6/FM8U6. The GQD@NH₂-MIL-125 framework is particularly noteworthy for its high fluorescence, making it an effective tool for biological imaging. X-ray diffraction (XRD) analysis revealed specific diffraction peaks at 6.81ᵒ (011), 9.76ᵒ (002), and 11.69ᵒ (121), with an additional significant peak at 26ᵒ (2θ), corresponding to the carbon material. Morphological analysis using Field Emission Scanning Electron Microscopy (FE-SEM), and Transmission Electron Microscopy (TEM) demonstrated that the framework has a front particle size of 680 nm and a side particle size of 55±5 nm. High-resolution TEM (HR-TEM) images confirmed the successful attachment of graphene quantum dots (GQDs) onto the NH2-MIL-125 framework. Fourier-Transform Infrared (FT-IR) spectroscopy identified crucial functional groups within the GQD@NH₂-MIL-125 structure, including O-Ti-O metal bonds within the 500 to 700 cm⁻¹ range, and N-H and C-N bonds at 1,646 cm⁻¹ and 1,164 cm⁻¹, respectively. BET isotherm analysis further revealed a specific surface area of 338.1 m²/g and an average pore size of 46.86 nm. This framework also demonstrated UV-active properties, as identified by UV-visible light spectra, and its photoluminescence (PL) spectra showed an emission peak around 430 nm when excited at 350 nm, indicating its potential as a fluorescent drug delivery carrier. In parallel, the cross-shaped M8U6/FM8U6 frameworks were synthesized and characterized using X-ray diffraction, which identified distinct peaks at 2θ = 7.4 (111), 8.5 (200), 9.2 (002), 10.8 (002), 12.1 (220), 16.7 (103), and 17.1 (400). FE-SEM, HR-TEM, and TEM analyses revealed particle sizes of 350±50 nm for M8U6 and 200±50 nm for FM8U6. These frameworks, synthesized from terephthalic acid (H₂BDC), displayed notable vibrational bonds, such as C=O at 1,650 cm⁻¹, Fe-O in MIL-88 at 520 cm⁻¹, and Zr-O in UIO-66 at 482 cm⁻¹. BET analysis showed specific surface areas of 740.1 m²/g with a pore size of 22.92 nm for M8U6 and 493.9 m²/g with a pore size of 35.44 nm for FM8U6. Extended X-ray Absorption Fine Structure (EXAFS) spectra confirmed the stability of Ti-O bonds in the frameworks, with bond lengths of 2.026 Å for MIL-125, 1.962 Å for NH₂-MIL-125, and 1.817 Å for GQD@NH₂-MIL-125. These findings highlight the potential of these organometallic frameworks for enhanced liver cancer therapy through precise drug delivery and imaging, representing a significant advancement in nanomaterial applications in biomedical science.

Keywords: liver cancer cells, metal organic frameworks, Doxorubicin (DOX), drug release.

Procedia PDF Downloads 8
414 The Use of Intraarticular Aqueous Sarapin for Treatment of Chronic Knee Pain in Elderly Patients in a Primary Care Setting

Authors: Robert E. Kenney, Richard B. Aguilar, Efrain Antunez, Gregory Schor-Haskin, Rafael Rey, Catie Falcon, Luis Arce

Abstract:

This study sought to explore the effect of Sarapin injections on chronic knee pain (CKP). Many adults suffer from CKP which is most often attributed to osteoarthritis. Current treatment regimens for CKP involve the use NSAIDS medications, injections with steroids/analgesic, platelet rich plasma injections, or orthopedic surgical interventions. Sarapin is a commercially available homeopathic aqueous extract from the pitcher plant. Studies on the use of Sarapin as a treatment for cervical, thoracic, and lumbosacral facet joint nerve blocks have been performed with mixed results. There is little available evidence on the use of Sarapin in CKP. This study examines the effect of a series of 3 weekly injections of aqueous Sarapin in 95 elderly patients with CKP in a primary care setting. Cano Health, a primary care group, identified 95 successive patients with CKP from its multimodal physiotherapy program for chronic pain. Patients underwent evaluation by a clinician, underwent diagnostic Xrays of the knees, and the treatment plan with three weekly Sarapin injections was discussed. A pain and functional limitation survey (a modified Lower Extremity Functional Scale (mLEFS)) was administered prior to initiating treatment (Entry Survey (ES)). Each patient received an intraarticular injection of 2 cc of aqueous Sarapin with 1cc 1% lidocaine during weeks 1, 2 and 3. The mLEFS was administered again at week 4, one week after the third Sarapin injection (Exit Survey (ExS)). Demographics: Mean Age 62 +/- 9.8; 73% female; 89% Hispanic/Latino; mean time between ES and ExS was 27.5 +/-8.2 days. Survey: The mLEFS was based on a published Lower Extremity Functional Scale and each patient rated their pain or functional limitation from 0 (no difficulty) to 5 (severe difficulty) for 10 questions. Answers were summed and compared. Maximum score for severe difficulty would be 50 points. Results: Mean pain/functional scores: ES was 30.3 +/-12.1 and ExS was 19.5 +/- 12.5. This represents a relative improvement of 35.7% (P<0.00001). A total of 81% (77/95) of the patients showed improvement in symptoms at week four as assessed by the mLEFS. There were 11 patients who reported an increase in their survey scores while 7 patients reported no change. When evaluating the cohort that reported improvement, the ES was 30.9 +/-11.4 and ExS was 16.3 +/-9.8 yielding a 47.2% relative improvement (P<0.00001). Injections were well tolerated, and no adverse events were reported. Conclusions: In this cohort of 95 elderly patients with CKP, treatment with 3 weekly injections of Sarapin significantly improved pain and function as assessed by a mLEFS survey. The majority (81%) of patients responded positively to therapy, 12% had worsening symptoms and 7% reported no change. The use of intraarticular injections of Sarapin for CKP was shown to be an effective modality of treatment. Sarapin’s low cost, tolerability, and ease of use make it an attractive alternative to NSAIDS, steroids, PRP or surgical intervention for this common debilitating condition.

Keywords: Sarapin, intraarticular, chronic knee pain, osteoarthritis

Procedia PDF Downloads 89
413 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems

Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo

Abstract:

Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.

Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic

Procedia PDF Downloads 138
412 Investigating the Strategies for Managing On-plot Sanitation Systems’ Faecal Waste in Developing Regions: The Case of Ogun State, Nigeria

Authors: Olasunkanmi Olapeju

Abstract:

A large chunk of global population are not yet connected to water borne faecal management systems that rely on flush mechanisms and sewers networks that are linked with a central treatment plant. Only about 10% of sub-Saharan African countries are connected to central sewage systems. In Nigeria, majority of the population do not only depend on on-plot sanitation systems, a huge chunk do not also have access to safe and improved toilets. Apart from the organizational challenges and technical capacity, the other major factors that account for why faecal waste management is yet unimproved in developing countries are faulty planning frameworks that fail to maintain balance between urbanization dynamics and infrastructures, and misconceptions about what modern sanitation is all about. In most cases, the quest to implement developmental patterns that integrate modern sewers based sanitation systems have huge financial and political costs. Faecal waste management in poor countries largely lacks the needed political attention and budgetary prioritization. Yet, the on-plot sanitation systems being mainly relied upon the need to be managed in a manner that is sustainable and healthy, pending when development would embrace a more sustainable off-site central sewage system. This study is aimed at investigating existing strategies for managing on-plot sanitation systems’ faecal waste in Ogun state, Nigeria, with the aim of recommending sustainable sanitation management systems. The study adopted the convergent parallel variant of the mixed-mode technique, which involves the adoption of both quantitative and qualitative method of data collection. Adopting a four-level multi-stage approach, which is inclusive of all political divisions in the study area, a total of 330 questionnaires were respectively administered in the study area. Moreover, the qualitative data adopted the purposive approach in scoping down to 33 key informants. SPSS software (Version 22.0) was employed for descriptively analysis. The study shows that about 52% of households adopt the non-recovery management (NRM) means of burying their latrines with sand sludge shrinkage with chemicals such as carbides. The dominance of the non-recovery management means seriously constrains the quest for faecal resource recovery. Essentially, the management techniques adopted by households depend largely on the technology of their sanitary containments, emptying means available, the ability of households to pay for the cost of emptying, and the social acceptability of the reusability of faecal waste, which determines faecal resource recoverability. The study suggests that there is a need for municipal authorities in the study area to urgently intervene in the sanitation sector and consider it a key element of the planning process. There is a need for a comprehensive plan that would ensure a seamless transition to the adoption of a modern sanitation management system.

Keywords: faecal, management, planning, waste, sanitation, sustainability

Procedia PDF Downloads 103
411 Differentially Expressed Protein Biomarkers in Early and Advanced Stage Young Triple-Negative Breast Cancer Patients

Authors: Shamim Mushtaq, Moazzam Shahid

Abstract:

Breast cancer (BC) claims the lives of half a million women every year and is the most common cause of death in the developing world. In 2019, it was estimated that BC alone accounts for 15% of all cancer deaths in younger women (aged < 45 years old) with advanced-stage lung metastasis. According to the World Health Organization & International Union against Cancer, in Asia, a high number of cancer-related deaths will be observed in 2020, whereas the burden will be reduced in Western countries due to awareness about the disease, better health facilities and advanced treatments. In the last 15 years, it has been reported that the incidence of BC has increased by 1.1% among Asian compared to the US population from 2003 to 2012. To date, several BC biological subtypes have been reported so far, which are associated with different treatment responses. The heterogeneity and diversity of BC reflected these different subtypes, including Luminal A (23.7% prevalence) and B (38.8% prevalence) that have pathological estrogen receptor (ER+)-positive tumors, the human epidermal growth factor receptor 2 (HER2) (11.2% prevalence) and triple-negative breast cancer (TNBC) (25% prevalence). According to Shaukat Khanum Memorial Cancer Hospital and Research Centre – Pakistan, ten years of data showed that among 636 BC patients, 30.5% had TNBC who were <40 years of age, which is an extremely alarming situation. Therefore, there is a dire need to explore and develop therapeutic targets for the treatment of early TNBC. Since the last decade, unfortunately, there has been little success in understanding the complexity of TNBC and in discovering new biological therapeutic targets. However, conventional chemotherapy is the only choice of treatment for TNBC patients. Many investigators revealed advances in multi-omics (multiple "omes", e.g., genome, proteome, transcriptome, epigenome, and microbiome) which were later identified as actionable targets and increased prevalence in TNBC patients. However, various drugs have been identified so far which are related to a particular diagnostic and prognostic biomarker. For example, Epidermal growth factor receptor ( EGFR or ErbB-1), HER-2/neu (ErbB-2), HER-3 (ErbB-3), and HER-4 (ErbB-4). Protein Transglin-2 (TAGLN 2 ) and Profilins-1 (Pfn-1 ) are the ubiquitously expressed large family of proteins present in all eukaryotes, enabling actin cytoskeletal reorganization. It is known that the oncogenic transformation of cells is accompanied by alteration in the actin cytoskeleton. There are causal connections between altered expression of actin cytoskeletal regulators and cancer progression. Our case-control study identified TAGLN-2 and Pfn-1 proteins in TNBC blood by mass spectrometry. Both TAGLN-2 and Pfn-1 proteins are differentially expressed in early and advanced stages of TNBS patients, which could be potential predictors or therapeutic targets for TNBC.

Keywords: TNBC, blood biomarkers, mass spectrometry, qPCR, ELISA

Procedia PDF Downloads 43
410 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
409 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model

Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero

Abstract:

Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.

Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods

Procedia PDF Downloads 23
408 Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I

Authors: Drago Bratkovic, Curtis Gravance, David Ketteridge, Ravi Krishnan, Michael Imperiale

Abstract:

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2).

Keywords: MPS I, pentosan polysulfate sodium, clinical study, 2MWT, QoL

Procedia PDF Downloads 111
407 Mental Health on Three Continents: A Comparison of Mental Health Disorders in the Usa, India and Brazil

Authors: Henry Venter, Murali Thyloth, Alceu Casseb

Abstract:

Historically, mental and substance use disorders were not a global health priority. Since the 1993 World Development Report, the importance of the contribution of mental health and substance abuse on the relative global burden associated with disease morbidity has been recognized with 300 million people worldwide suffering from depression alone. This led to an international effort to improve the mental health of populations around the world. Despite these efforts some countries remain at the top of the list of countries with the highest rate of mental illness. Important research questions were asked: Would there be commonalities regarding mental health between these countries; would there be common factors leading to the high prevalence of mental illness; and how prepared are these countries with mental health delivery? Findings from this research can aid organizations and institutions preparing mental health service providers to focus training and preparation to address specific needs revealed by the study. Methods: Researchers decided to compare three distinctly different countries at the top of the list of countries with the highest rate of mental illness, the USA, India and Brazil, situated on three different continents with different economies and lifestyles. Data were collected using archival research methodology, reviewing records and findings of international and national health and mental health studies to subtract and compare data and findings. Results: The findings indicated that India is the most depressed country in the world, followed by the USA (and China) with Brazil in Latin America with the greatest number of depressed individuals. By 2020 roughly 20% of India, acountry of over one billion citizens, will suffer from some form of mental illnees, yet there are less than 4,000 experts available. In the USA 164.8 million people were substance abusers and an estimate of 47.6 million adults, 18 or older, had any mental illness in 2018. That means that about one in five adults in the USA experiences some form of mental illness each year, but only 41% of those affected received mental health care or services in the past year. Brazil has the greatest number of depressed individuals, in Latin America. Adults living in Sao Paulo megacity has prevalence of mental disorders at greater levels than similar surveys conducted in other areas of the world with more than one million adults with serious impairment levels. Discussion: The results show that, despite the vast socioeconomic differences between the three countries, there are correlations regarding mental health prevalence and difficulty to provide adequate services including a lack of awareness of how serious mental illness is, stigma for seeking mental illness, with comorbidity a common phenomenon, and a lack of partnership between different levels of service providers, which weakens mental health service delivery. The findings also indicate that mental health training institutions have a monumental task to prepare personnel to address the future mental health needs in each of the countries compared, which will constitute the next phase of the research.

Keywords: mental health epidemiology, mental health disorder, mental health prevalence, mental health treatment

Procedia PDF Downloads 111
406 Effectiveness of Simulation Resuscitation Training to Improve Self-Efficacy of Physicians and Nurses at Aga Khan University Hospital in Advanced Cardiac Life Support Courses Quasi-Experimental Study Design

Authors: Salima R. Rajwani, Tazeen Ali, Rubina Barolia, Yasmin Parpio, Nasreen Alwani, Salima B. Virani

Abstract:

Introduction: Nurses and physicians have a critical role in initiating lifesaving interventions during cardiac arrest. It is important that timely delivery of high quality Cardio Pulmonary Resuscitation (CPR) with advanced resuscitation skills and management of cardiac arrhythmias is a key dimension of code during cardiac arrest. It will decrease the chances of patient survival if the healthcare professionals are unable to initiate CPR timely. Moreover, traditional training will not prepare physicians and nurses at a competent level and their knowledge level declines over a period of time. In this regard, simulation training has been proven to be effective in promoting resuscitation skills. Simulation teaching learning strategy improves knowledge level, and skills performance during resuscitation through experiential learning without compromising patient safety in real clinical situations. The purpose of the study is to evaluate the effectiveness of simulation training in Advanced Cardiac Life Support Courses by using the selfefficacy tool. Methods: The study design is a quantitative research design and non-randomized quasi-experimental study design. The study examined the effectiveness of simulation through self-efficacy in two instructional methods; one is Medium Fidelity Simulation (MFS) and second is Traditional Training Method (TTM). The sample size was 220. Data was compiled by using the SPSS tool. The standardized simulation based training increases self-efficacy, knowledge, and skills and improves the management of patients in actual resuscitation. Results: 153 students participated in study; CG: n = 77 and EG: n = 77. The comparison was done between arms in pre and post-test. (F value was 1.69, p value is <0.195 and df was 1). There was no significant difference between arms in the pre and post-test. The interaction between arms was observed and there was no significant difference in interaction between arms in the pre and post-test. (F value was 0.298, p value is <0.586 and df is 1. However, the results showed self-efficacy scores were significantly higher within experimental group in post-test in advanced cardiac life support resuscitation courses as compared to Traditional Training Method (TTM) and had overall (p <0.0001) and F value was 143.316 (mean score was 45.01 and SD was 9.29) verses pre-test result showed (mean score was 31.15 and SD was 12.76) as compared to TTM in post-test (mean score was 29.68 and SD was 14.12) verses pre-test result showed (mean score was 42.33 and SD was 11.39). Conclusion: The standardized simulation-based training was conducted in the safe learning environment in Advanced Cardiac Life Suport Courses and physicians and nurses benefited from self-confidence, early identification of life-threatening scenarios, early initiation of CPR, and provides high-quality CPR, timely administration of medication and defibrillation, appropriate airway management, rhythm analysis and interpretation, and Return of Spontaneous Circulation (ROSC), team dynamics, debriefing, and teaching and learning strategies that will improve the patient survival in actual resuscitation.

Keywords: advanced cardiac life support, cardio pulmonary resuscitation, return of spontaneous circulation, simulation

Procedia PDF Downloads 80
405 Assessment of Potential Chemical Exposure to Betamethasone Valerate and Clobetasol Propionate in Pharmaceutical Manufacturing Laboratories

Authors: Nadeen Felemban, Hamsa Banjer, Rabaah Jaafari

Abstract:

One of the most common hazards in the pharmaceutical industry is the chemical hazard, which can cause harm or develop occupational health diseases/illnesses due to chronic exposures to hazardous substances. Therefore, a chemical agent management system is required, including hazard identification, risk assessment, controls for specific hazards and inspections, to keep your workplace healthy and safe. However, routine management monitoring is also required to verify the effectiveness of the control measures. Moreover, Betamethasone Valerate and Clobetasol Propionate are some of the APIs (Active Pharmaceutical Ingredients) with highly hazardous classification-Occupational Hazard Category (OHC 4), which requires a full containment (ECA-D) during handling to avoid chemical exposure. According to Safety Data Sheet, those chemicals are reproductive toxicants (reprotoxicant H360D), which may affect female workers’ health and cause fatal damage to an unborn child, or impair fertility. In this study, qualitative (chemical Risk assessment-qCRA) was conducted to assess the chemical exposure during handling of Betamethasone Valerate and Clobetasol Propionate in pharmaceutical laboratories. The outcomes of qCRA identified that there is a risk of potential chemical exposure (risk rating 8 Amber risk). Therefore, immediate actions were taken to ensure interim controls (according to the Hierarchy of controls) are in place and in use to minimize the risk of chemical exposure. No open handlings should be done out of the Steroid Glove Box Isolator (SGB) with the required Personal Protective Equipment (PPEs). The PPEs include coverall, nitrile hand gloves, safety shoes and powered air-purifying respirators (PAPR). Furthermore, a quantitative assessment (personal air sampling) was conducted to verify the effectiveness of the engineering controls (SGB Isolator) and to confirm if there is chemical exposure, as indicated earlier by qCRA. Three personal air samples were collected using an air sampling pump and filter (IOM2 filters, 25mm glass fiber media). The collected samples were analyzed by HPLC in the BV lab, and the measured concentrations were reported in (ug/m3) with reference to Occupation Exposure Limits, 8hr OELs (8hr TWA) for each analytic. The analytical results are needed in 8hr TWA (8hr Time-weighted Average) to be analyzed using Bayesian statistics (IHDataAnalyst). The results of the Bayesian Likelihood Graph indicate (category 0), which means Exposures are de "minimus," trivial, or non-existent Employees have little to no exposure. Also, these results indicate that the 3 samplings are representative samplings with very low variations (SD=0.0014). In conclusion, the engineering controls were effective in protecting the operators from such exposure. However, routine chemical monitoring is required every 3 years unless there is a change in the processor type of chemicals. Also, frequent management monitoring (daily, weekly, and monthly) is required to ensure the control measures are in place and in use. Furthermore, a Similar Exposure Group (SEG) was identified in this activity and included in the annual health surveillance for health monitoring.

Keywords: occupational health and safety, risk assessment, chemical exposure, hierarchy of control, reproductive

Procedia PDF Downloads 172
404 Development of a Conceptual Framework for Supply Chain Management Strategies Maximizing Resilience in Volatile Business Environments: A Case of Ventilator Challenge UK

Authors: Elena Selezneva

Abstract:

Over the last two decades, an unprecedented growth in uncertainty and volatility in all aspects of the business environment has caused major global supply chain disruptions and malfunctions. The effects of one failed company in a supply chain can ripple up and down the chain, causing a number of entities or an entire supply chain to collapse. The complicating factor is that an increasingly unstable and unpredictable business environment fuels the growing complexity of global supply chain networks. That makes supply chain operations extremely unpredictable and hard to manage with the established methods and strategies. It has caused the premature demise of many companies around the globe as they could not withstand or adapt to the storm of change. Solutions to this problem are not easy to come by. There is a lack of new empirically tested theories and practically viable supply chain resilience strategies. The mainstream organizational approach to managing supply chain resilience is rooted in well-established theories developed in the 1960-1980s. However, their effectiveness is questionable in currently extremely volatile business environments. The systems thinking approach offers an alternative view of supply chain resilience. Still, it is very much in the development stage. The aim of this explorative research is to investigate supply chain management strategies that are successful in taming complexity in volatile business environments and creating resilience in supply chains. The design of this research methodology was guided by an interpretivist paradigm. A literature review informed the selection of the systems thinking approach to supply chain resilience. Therefore, an explorative single case study of Ventilator Challenge UK was selected as a case study for its extremely resilient performance of its supply chain during a period of national crisis. Ventilator Challenge UK is intensive care ventilators supply project for the NHS. It ran for 3.5 months and finished in 2020. The participants moved on with their lives, and most of them are not employed by the same organizations anymore. Therefore, the study data includes documents, historical interviews, live interviews with participants, and social media postings. The data analysis was accomplished in two stages. First, data were thematically analyzed. In the second stage, pattern matching and pattern identification were used to identify themes that formed the findings of the research. The findings from the Ventilator Challenge UK case study supply management practices demonstrated all the features of an adaptive dynamic system. They cover all the elements of supply chain and employ an entire arsenal of adaptive dynamic system strategies enabling supply chain resilience. Also, it is not a simple sum of parts and strategies. Bonding elements and connections between the components of a supply chain and its environment enabled the amplification of resilience in the form of systemic emergence. Enablers are categorized into three subsystems: supply chain central strategy, supply chain operations, and supply chain communications. Together, these subsystems and their interconnections form the resilient supply chain system framework conceptualized by the author.

Keywords: enablers of supply chain resilience, supply chain resilience strategies, systemic approach in supply chain management, resilient supply chain system framework, ventilator challenge UK

Procedia PDF Downloads 81
403 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 123
402 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 404
401 Antimicrobial Resistance of Acinetobacter baumannii in Veterinary Settings: A One Health Perspective from Punjab, Pakistan

Authors: Minhas Alam, Muhammad Hidayat Rasool, Mohsin Khurshid, Bilal Aslam

Abstract:

The genus Acinetobacter has emerged as a significant concern in hospital-acquired infections, particularly due to the versatility of Acinetobacter baumannii in causing nosocomial infections. The organism's remarkable metabolic adaptability allows it to thrive in various environments, including the environment, animals, and humans. However, the extent of antimicrobial resistance in Acinetobacter species from veterinary settings, especially in developing countries like Pakistan, remains unclear. This study aimed to isolate and characterize Acinetobacter spp. from veterinary settings in Punjab, Pakistan. A total of 2,230 specimens were collected, including 1,960 samples from veterinary settings (nasal and rectal swabs from dairy and beef cattle), 200 from the environment, and 70 from human clinical settings. Isolates were identified using routine microbiological procedures and confirmed by polymerase chain reaction (PCR). Antimicrobial susceptibility was determined by the disc diffusion method, and minimum inhibitory concentration (MIC) was measured by the micro broth dilution method. Molecular techniques, such as PCR and DNA sequencing, were used to screen for antimicrobial-resistant determinants. Genetic diversity was assessed using standard techniques. The results showed that the overall prevalence of A. baumannii in cattle was 6.63% (65/980). However, among cattle, a higher prevalence of A. baumannii was observed in dairy cattle, 7.38% (54/731), followed by beef cattle, 4.41% (11/249). Out of 65 A. baumannii isolates, the carbapenem resistance was found in 18 strains, i.e. 27.7%. The prevalence of A. baumannii in nasopharyngeal swabs was higher, i.e., 87.7% (57/65), as compared to rectal swabs, 12.3% (8/65). Class D β-lactamases genes blaOXA-23 and blaOXA-51 were present in all the CRAB from cattle. Among carbapenem-resistant isolates, 94.4% (17/18) were positive for class B β-lactamases gene blaIMP, whereas the blaNDM-1 gene was detected in only one isolate of A. baumannii. Among 70 clinical isolates of A. baumannii, 58/70 (82.9%) were positive for the blaOXA-23-like gene, and 87.1% (61/70) were CRAB isolates. Among all clinical isolates of A. baumannii, blaOXA-51-like gene was present. Hence, the co-existence of blaOXA-23 and blaOXA-51 was found in 82.85% of clinical isolates. From the environmental settings, a total of 18 A. baumannii isolates were recovered; among these, 38.88% (7/18) strains showed carbapenem resistance. All environmental isolates of A. baumannii harbored class D β-lactamases genes, i.e., blaOXA-51 and blaOXA-23 were detected in 38.9% (7/18) isolates. Hence, the co-existence of blaOXA-23 and blaOXA-51 was found in 38.88% of isolates. From environmental settings, 18 A. baumannii isolates were recovered, with 38.88% showing carbapenem resistance. All environmental isolates harbored blaOXA-51 and blaOXA-23 genes, with co-existence in 38.88% of isolates. MLST results showed ten different sequence types (ST) in clinical isolates, with ST 589 being the most common in carbapenem-resistant isolates. In veterinary isolates, ST2 was most common in CRAB isolates from cattle. Immediate control measures are needed to prevent the transmission of CRAB isolates among animals, the environment, and humans. Further studies are warranted to understand the mechanisms of antibiotic resistance spread and implement effective disease control programs.

Keywords: Acinetobacter baumannii, carbapenemases, drug resistance, MSLT

Procedia PDF Downloads 70
400 Natural Fibers Design Attributes

Authors: Brayan S. Pabón, R. Ricardo Moreno, Edith Gonzalez

Abstract:

Inside the wide Colombian natural fiber set is the banana stem leaf, known as Calceta de Plátano, which is a material present in several regions of the country and is a fiber extracted from the pseudo stem of the banana plant (Musa paradisiaca) as a regular maintenance process. Colombia had a production of 2.8 million tons in 2007 and 2008 corresponding to 8.2% of the international production, number that is growing. This material was selected to be studied because it is not being used by farmers due to it being perceived as a waste from the banana harvest and a propagation pest agent inside the planting. In addition, the Calceta does not have industrial applications in Colombia since there is not enough concrete knowledge that informs us about the properties of the material and the possible applications it could have. Based on this situation the industrial design is used as a link between the properties of the material and the need to transform it into industrial products for the market. Therefore, the project identifies potential design attributes that the banana stem leaf can have for product development. The methodology was divided into 2 main chapters: Methodology for the material recognition: -Data Collection, inquiring the craftsmen experience and bibliography. -Knowledge in practice, with controlled experiments and validation tests. -Creation of design attributes and material profile according to the knowledge developed. Moreover, the Design methodology: -Application fields selection, exploring the use of the attributes and the relation with product functions. -Evaluating the possible fields and selection of the optimum application. -Design Process with sketching, ideation, and product development. Different protocols were elaborated to qualitatively determine some material properties of the Calceta, and if they could be designated as design attributes. Once defined, performed and analyzed the validation protocols, 25 design attributes were identified and classified into 4 attribute categories (Environmental, Functional, Aesthetics and Technical) forming the material profile. Then, 15 application fields were defined based on the relation between functions of product and the use of the Calceta attributes. Those fields were evaluated to measure how much are being used the functional attributes. After fields evaluation, a final field was defined , influenced by traditional use of the fiber for packing food. As final result, two products were designed for this application field. The first one is the Multiple Container, which works to contain small or large-thin pieces of food, like potatoes chips or small sausages; it allows the consumption of food with sauces or dressings. The second is the Chorizo container, specifically designed for this food due to the long shape and the consumption mode. Natural fiber research allows the generation of a solider and a more complete knowledge about natural fibers. In addition, the research is a way to strengthen the identity through the investigation of the proper and autochthonous, allowing the use of national resources in a sustainable and creative way. Using divergent thinking and the design as a tool, this investigation can achieve advances in the natural fiber handling.

Keywords: banana stem leaf, Calceta de Plátano, design attributes, natural fibers, product design

Procedia PDF Downloads 259
399 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador

Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez

Abstract:

The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.

Keywords: collection points, Jatropha curcas, linear programming, supply chain

Procedia PDF Downloads 433
398 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity

Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido

Abstract:

Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.

Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens

Procedia PDF Downloads 288
397 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery

Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek

Abstract:

Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.

Keywords: liposomes, siRNA, pH-sensitive, molecular switch

Procedia PDF Downloads 204
396 Implementing the WHO Air Quality Guideline for PM2.5 Worldwide can Prevent Millions of Premature Deaths Per Year

Authors: Despina Giannadaki, Jos Lelieveld, Andrea Pozzer, John Evans

Abstract:

Outdoor air pollution by fine particles ranks among the top ten global health risk factors that can lead to premature mortality. Epidemiological cohort studies, mainly conducted in United States and Europe, have shown that the long-term exposure to PM2.5 (particles with an aerodynamic diameter less than 2.5μm) is associated with increased mortality from cardiovascular, respiratory diseases and lung cancer. Fine particulates can cause health impacts even at very low concentrations. Previously, no concentration level has been defined below which health damage can be fully prevented. The World Health Organization ambient air quality guidelines suggest an annual mean PM2.5 concentration limit of 10μg/m3. Populations in large parts of the world, especially in East and Southeast Asia, and in the Middle East, are exposed to high levels of fine particulate pollution that by far exceeds the World Health Organization guidelines. The aim of this work is to evaluate the implementation of recent air quality standards for PM2.5 in the EU, the US and other countries worldwide and estimate what measures will be needed to substantially reduce premature mortality. We investigated premature mortality attributed to fine particulate matter (PM2.5) under adults ≥ 30yrs and children < 5yrs, applying a high-resolution global atmospheric chemistry model combined with epidemiological concentration-response functions. The latter are based on the methodology of the Global Burden of Disease for 2010, assuming a ‘safe’ annual mean PM2.5 threshold of 7.3μg/m3. We estimate the global premature mortality by PM2.5 at 3.15 million/year in 2010. China is the leading country with about 1.33 million, followed by India with 575 thousand and Pakistan with 105 thousand. For the European Union (EU) we estimate 173 thousand and the United States (US) 52 thousand in 2010. Based on sensitivity calculations we tested the gains from PM2.5 control by applying the air quality guidelines (AQG) and standards of the World Health Organization (WHO), the EU, the US and other countries. To estimate potential reductions in mortality rates we take into consideration the deaths that cannot be avoided after the implementation of PM2.5 upper limits, due to the contribution of natural sources to total PM2.5 and therefore to mortality (mainly airborne desert dust). The annual mean EU limit of 25μg/m3 would reduce global premature mortality by 18%, while within the EU the effect is negligible, indicating that the standard is largely met and that stricter limits are needed. The new US standard of 12μg/m3 would reduce premature mortality by 46% worldwide, 4% in the US and 20% in the EU. Implementing the AQG by the WHO of 10μg/m3 would reduce global premature mortality by 54%, 76% in China and 59% in India. In the EU and US, the mortality would be reduced by 36% and 14%, respectively. Hence, following the WHO guideline will prevent 1.7 million premature deaths per year. Sensitivity calculations indicate that even small changes at the lower PM2.5 standards can have major impacts on global mortality rates.

Keywords: air quality guidelines, outdoor air pollution, particulate matter, premature mortality

Procedia PDF Downloads 310
395 Study of Silent Myocardial Ischemia in Type 2 Diabeic Males: Egyptian Experience

Authors: Ali Kassem, Yhea Kishik, Ali Hassan, Mohamed Abdelwahab

Abstract:

Introduction: Accelerated coronary and peripheral vascular atherosclerosis is one of the most common and chronic complications of diabetes mellitus. A recent aspect of coronary artery disease in this condition is its silent nature. The aim of the work: Detection of the prevalence of silent myocardial ischemia (SMI) in Upper Egypt type 2 diabetic males and to select male diabetic population who should be screened for SMI. Patients and methods: 100 type 2 diabetic male patients with a negative history of angina or anginal equivalent symptoms and 30 healthy control were included. Full medical history and thorough clinical examination were done for all participants. Fasting and post prandial blood glucose level, lipid profile, (HbA1c), microalbuminuria, and C-reactive protein were done for all participants Resting ECG, trans-thoracic echocardiography, treadmill exercise ECG, myocardial perfusion imaging were done for all participants and patients positive for one or more NITs were subjected for coronary angiography. Results Twenty nine patients (29%) were positive for one or more NITs in the patients group compared to only one case (3.3%) in the controls. After coronary angiography, 20 patients were positive for significant coronary artery stenosis in the patients group, while it was refused to be done by the patient in the controls. There were statistical significant difference between the two groups regarding, hypertension, dyslipidemia and obesity, family history of DM and IHD with higher levels of microalbuminuria, C-reactive protein, total lipids in patient group versus controls According to coronary angiography, patients were subdivided into two subgroups, 20 positive for SMI (positive for coronary angiography) and 80 negative for SMI (negative for coronary angiography). No statistical difference regarding family history of DM and type of diabetic therapy was found between the two subgroups. Yet, smoking, hypertension, obesity, dyslipidemia and family history of IHD were significantly higher in diabetics positive versus those negative for SMI. 90% of patients in subgroup positive for SMI had two or more cardiac risk factors while only two patients had one cardiac risk factor (10%). Uncontrolled DM was detected more in patients positive for SMI. Diabetic complications were more prevalent in patients positive for SMI versus those negative for SMI. Most of the patients positive for SMI have DM more than 5 years duration. Resting ECG and resting Echo detected only 6 and 11 cases, respectively, of the 20 positive cases in group positive for SMI compared to treadmill exercise ECG and myocardial perfusion imaging that detected 16 and 18 cases respectively, Conclusion: Type 2 diabetic male patients should be screened for detection of SMI when aged above 50 years old, diabetes duration is more than 5 years, presence of two or more cardiac risk factors and/or patients suffering from one or more of the chronic diabetic complications. CRP, is an important parameter for selection of type 2 diabetic male patients who should be screened for SMI. Non invasive cardiac tests are reliable for screening of SMI in these patients in our locality.

Keywords: C-reactive protein, Silent myocardial ischemia, Stress tests, type 2 DM

Procedia PDF Downloads 385
394 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.

Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components

Procedia PDF Downloads 608
393 Achieving Sustainable Agriculture with Treated Municipal Wastewater

Authors: Reshu Yadav, Himanshu Joshi, S. K. Tripathi

Abstract:

Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector.

Keywords: greenhouse gases, nutrients, water footprint, wastewater irrigation

Procedia PDF Downloads 320
392 Improved Approach to the Treatment of Resistant Breast Cancer

Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova

Abstract:

Background: Breast cancer (BC) is still one of the urgent oncology problems. The essential obstacle to the full anti-tumor therapy implementation is drug resistance development. Taking into account the fact that chemotherapy is main antitumor treatment in BC patients, the important task is to improve treatment results. Certain success in overcoming this situation has been associated with the use of methods of extracorporeal blood treatment (ECBT), plasmapheresis. Materials and Methods: We examined 129 women with resistant BC stages 3-4, aged between 56 to 62 years who had previously received 2 courses of CAF chemotherapy. All patients additionally underwent 2 courses of CAF chemotherapy but against the background ECBT with ultrasonic exposure. We studied the following parameters: 1. The highlights of peripheral blood before and after therapy. 2. The state of cellular immunity and identification of activation markers CD23 +, CD25 +, CD38 +, CD95 + on lymphocytes was performed using monoclonal antibodies. Evaluation of humoral immunity was determined by the level of main classes of immunoglobulins IgG, IgA, IgM in serum. 3. The degree of tumor regression was assessed by WHO recommended 4 gradations. (complete - 100%, partial - more than 50% of initial size, process stabilization–regression is less than 50% of initial size and tumor advance progressing). 4. Medical pathomorphism in the tumor was determined by Lavnikova. 5. The study of immediate and remote results, up to 3 years and more. Results and Discussion: After performing extracorporeal blood treatment anemia occurred in 38.9%, leukopenia in 36.8%, thrombocytopenia in 34.6%, hypolymphemia in 26.8%. Studies of immunoglobulin fractions in blood serum were able to establish a certain relationship between the classes of immunoglobulin A, G, M and their functions. The results showed that after treatment the values of main immunoglobulins in patients’ serum approximated to normal. Analysis of expression of activation markers CD25 + cells bearing receptors for IL-2 (IL-2Rα chain) and CD95 + lymphocytes that were mediated physiological apoptosis showed the tendency to increase, which apparently was due to activation of cellular immunity cytokines allocated by ultrasonic treatment. To carry out ECBT on the background of ultrasonic treatment improved the parameters of the immune system, which were expressed in stimulation of cellular immunity and correcting imbalances in humoral immunity. The key indicator of conducted treatment efficiency is the immediate result measured by the degree of tumor regression. After ECBT performance the complete regression was 10.3%, partial response - 55.5%, process stabilization - 34.5%, tumor advance progressing no observed. Morphological investigations of tumor determined therapeutic pathomorphism grade 2 in 15%, in 25% - grade 3 and therapeutic pathomorphism grade 4 in 60% of patients. One of the main criteria for the effect of conducted treatment is to study the remission terms in the postoperative period (up to 3 years or more). The remission terms up to 3 years with ECBT was 34.5%, 5-year survival was 54%. Carried out research suggests that a comprehensive study of immunological and clinical course of breast cancer allows the differentiated approach to the choice of methods for effective treatment.

Keywords: breast cancer, immunoglobulins, extracorporeal blood treatment, chemotherapy

Procedia PDF Downloads 274
391 Aerofloral Studies and Allergenicity Potentials of Dominant Atmospheric Pollen Types at Some Locations in Northwestern Nigeria

Authors: Olugbenga S. Alebiosu, Olusola H. Adekanmbi, Oluwatoyin T. Ogundipe

Abstract:

Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders such as asthma, allergic rhinitis and atopic dermatitis among hypersensitive individuals. An aeropalynological study was conducted within a one year sampling period with a view to investigating the monthly depositional rate of atmospheric pollen and spores; influence of the immediate vegetation on airborne pollen distribution; allergenic potentials of dominant atmospheric pollen types at selected study locations in Bauchi and Taraba states, Northwestern Nigeria. A tauber-like pollen trap was employed in aerosampling with the sampler positioned at a height of 5 feet above the ground, followed by a monthly collection of the recipient solution for the sampling period. The collected samples were subjected to acetolysis treatment, examined microscopically with the identification of pollen grains and spores using reference materials and published photomicrographs. Plants within the surrounding vegetation were enumerated. Crude protein contents extracted from pollen types found to be commonly dominant at both study locations; Senna siamea, Terminalia cattapa, Panicum maximum and Zea mays were used to sensitize Musmusculus. Histopathological studies of bronchi and lung sections from certain dead M.musculus in the test groups was conducted. Blood samples were collected from the pre-orbital vein of M.musculus and processed for serological and haematological (differential and total white blood cell counts) studies. ELISA was used in determining the levels of serological parameters: IgE and cytokines (TNF-, IL-5, and IL-13). Statistical significance was observed in the correlation between the levels of serological and haematological parameters elicited by each test group, differences between the levels of serological and haematological parameters elicited by each test group and those of the control, as well as at varying sensitization periods. The results from this study revealed dominant airborne pollen types across the study locations; Syzygiumguineense, Tridaxprocumbens, Elaeisguineensis, Mimosa sp., Borreria sp., Terminalia sp., Senna sp. and Poaceae. Nephrolepis sp., Pteris sp. and a trilete fern also produced spores. This study also revealed that some of the airborne pollen types were produced by local plants at the study locations. Bronchi sections of M.musculus after first and second sensitizations, as well as lung section after first sensitization with Senna siamea, showed areas of necrosis. Statistical significance was recorded in the correlation between the levels of some serological and haematological parameters produced by each test group and those of the control, as well as at certain sensitization periods. The study revealed some candidate pollen allergens at the study locations allergy sufferers and also established a complexity of interaction between immune cells, IgE and cytokines at varied periods of mice sensitization and forming a paradigm of human immune response to different pollen allergens. However, it is expedient that further studies should be conducted on these candidate pollen allergens for their allergenicity potential in humans within their immediate environment.

Keywords: airborne, hypersensitive, mus musculus, pollen allergens, respiratory, tauber-like

Procedia PDF Downloads 134
390 Rapid, Automated Characterization of Microplastics Using Laser Direct Infrared Imaging and Spectroscopy

Authors: Andreas Kerstan, Darren Robey, Wesam Alvan, David Troiani

Abstract:

Over the last 3.5 years, Quantum Cascade Lasers (QCL) technology has become increasingly important in infrared (IR) microscopy. The advantages over fourier transform infrared (FTIR) are that large areas of a few square centimeters can be measured in minutes and that the light intensive QCL makes it possible to obtain spectra with excellent S/N, even with just one scan. A firmly established solution of the laser direct infrared imaging (LDIR) 8700 is the analysis of microplastics. The presence of microplastics in the environment, drinking water, and food chains is gaining significant public interest. To study their presence, rapid and reliable characterization of microplastic particles is essential. Significant technical hurdles in microplastic analysis stem from the sheer number of particles to be analyzed in each sample. Total particle counts of several thousand are common in environmental samples, while well-treated bottled drinking water may contain relatively few. While visual microscopy has been used extensively, it is prone to operator error and bias and is limited to particles larger than 300 µm. As a result, vibrational spectroscopic techniques such as Raman and FTIR microscopy have become more popular, however, they are time-consuming. There is a demand for rapid and highly automated techniques to measure particle count size and provide high-quality polymer identification. Analysis directly on the filter that often forms the last stage in sample preparation is highly desirable as, by removing a sample preparation step it can both improve laboratory efficiency and decrease opportunities for error. Recent advances in infrared micro-spectroscopy combining a QCL with scanning optics have created a new paradigm, LDIR. It offers improved speed of analysis as well as high levels of automation. Its mode of operation, however, requires an IR reflective background, and this has, to date, limited the ability to perform direct “on-filter” analysis. This study explores the potential to combine the filter with an infrared reflective surface filter. By combining an IR reflective material or coating on a filter membrane with advanced image analysis and detection algorithms, it is demonstrated that such filters can indeed be used in this way. Vibrational spectroscopic techniques play a vital role in the investigation and understanding of microplastics in the environment and food chain. While vibrational spectroscopy is widely deployed, improvements and novel innovations in these techniques that can increase the speed of analysis and ease of use can provide pathways to higher testing rates and, hence, improved understanding of the impacts of microplastics in the environment. Due to its capability to measure large areas in minutes, its speed, degree of automation and excellent S/N, the LDIR could also implemented for various other samples like food adulteration, coatings, laminates, fabrics, textiles and tissues. This presentation will highlight a few of them and focus on the benefits of the LDIR vs classical techniques.

Keywords: QCL, automation, microplastics, tissues, infrared, speed

Procedia PDF Downloads 66
389 The Impact of a Simulated Teaching Intervention on Preservice Teachers’ Sense of Professional Identity

Authors: Jade V. Rushby, Tony Loughland, Tracy L. Durksen, Hoa Nguyen, Robert M. Klassen

Abstract:

This paper reports a study investigating the development and implementation of an online multi-session ‘scenario-based learning’ (SBL) program administered to preservice teachers in Australia. The transition from initial teacher education to the teaching profession can present numerous cognitive and psychological challenges for early career teachers. Therefore, the identification of additional supports, such as scenario-based learning, that can supplement existing teacher education programs may help preservice teachers to feel more confident and prepared for the realities and complexities of teaching. Scenario-based learning is grounded in situated learning theory which holds that learning is most powerful when it is embedded within its authentic context. SBL exposes participants to complex and realistic workplace situations in a supportive environment and has been used extensively to help prepare students in other professions, such as legal and medical education. However, comparatively limited attention has been paid to investigating the effects of SBL in teacher education. In the present study, the SBL intervention provided participants with the opportunity to virtually engage with school-based scenarios, reflect on how they might respond to a series of plausible response options, and receive real-time feedback from experienced educators. The development process involved several stages, including collaboration with experienced educators to determine the scenario content based on ‘critical incidents’ they had encountered during their teaching careers, the establishment of the scoring key, the development of the expert feedback, and an extensive review process to refine the program content. The 4-part SBL program focused on areas that can be challenging in the beginning stages of a teaching career, including managing student behaviour and workload, differentiating the curriculum, and building relationships with colleagues, parents, and the community. Results from prior studies implemented by the research group using a similar 4-part format have shown a statistically significant increase in preservice teachers’ self-efficacy and classroom readiness from the pre-test to the final post-test. In the current research, professional teaching identity - incorporating self-efficacy, motivation, self-image, satisfaction, and commitment to teaching - was measured over six weeks at multiple time points: before, during, and after the 4-part scenario-based learning program. Analyses included latent growth curve modelling to assess the trajectory of change in the outcome variables throughout the intervention. The paper outlines (1) the theoretical underpinnings of SBL, (2) the development of the SBL program and methodology, and (3) the results from the study, including the impact of the SBL program on aspects of participating preservice teachers’ professional identity. The study shows how SBL interventions can be implemented alongside the initial teacher education curriculum to help prepare preservice teachers for the transition from student to teacher.

Keywords: classroom simulations, e-learning, initial teacher education, preservice teachers, professional learning, professional teaching identity, scenario-based learning, teacher development

Procedia PDF Downloads 71
388 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 157
387 A Biophysical Study of the Dynamic Properties of Glucagon Granules in α Cells by Imaging-Derived Mean Square Displacement and Single Particle Tracking Approaches

Authors: Samuele Ghignoli, Valentina de Lorenzi, Gianmarco Ferri, Stefano Luin, Francesco Cardarelli

Abstract:

Insulin and glucagon are the two essential hormones for maintaining proper blood glucose homeostasis, which is disrupted in Diabetes. A constantly growing research interest has been focused on the study of the subcellular structures involved in hormone secretion, namely insulin- and glucagon-containing granules, and on the mechanisms regulating their behaviour. Yet, while several successful attempts were reported describing the dynamic properties of insulin granules, little is known about their counterparts in α cells, the glucagon-containing granules. To fill this gap, we used αTC1 clone 9 cells as a model of α cells and ZIGIR as a fluorescent Zinc chelator for granule labelling. We started by using spatiotemporal fluorescence correlation spectroscopy in the form of imaging-derived mean square displacement (iMSD) analysis. This afforded quantitative information on the average dynamical and structural properties of glucagon granules having insulin granules as a benchmark. Interestingly, the iMSD sensitivity to average granule size allowed us to confirm that glucagon granules are smaller than insulin ones (~1.4 folds, further validated by STORM imaging). To investigate possible heterogeneities in granule dynamic properties, we moved from correlation spectroscopy to single particle tracking (SPT). We developed a MATLAB script to localize and track single granules with high spatial resolution. This enabled us to classify the glucagon granules, based on their dynamic properties, as ‘blocked’ (i.e., trajectories corresponding to immobile granules), ‘confined/diffusive’ (i.e., trajectories corresponding to slowly moving granules in a defined region of the cell), or ‘drifted’ (i.e., trajectories corresponding to fast-moving granules). In cell-culturing control conditions, results show this average distribution: 32.9 ± 9.3% blocked, 59.6 ± 9.3% conf/diff, and 7.4 ± 3.2% drifted. This benchmarking provided us with a foundation for investigating selected experimental conditions of interest, such as the glucagon-granule relationship with the cytoskeleton. For instance, if Nocodazole (10 μM) is used for microtubule depolymerization, the percentage of drifted motion collapses to 3.5 ± 1.7% while immobile granules increase to 56.0 ± 10.7% (remaining 40.4 ± 10.2% of conf/diff). This result confirms the clear link between glucagon-granule motion and cytoskeleton structures, a first step towards understanding the intracellular behaviour of this subcellular compartment. The information collected might now serve to support future investigations on glucagon granules in physiology and disease. Acknowledgment: This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 866127, project CAPTUR3D).

Keywords: glucagon granules, single particle tracking, correlation spectroscopy, ZIGIR

Procedia PDF Downloads 106
386 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals

Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner

Abstract:

Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Keywords: exercise, BDNF, schizophrenia, time-points

Procedia PDF Downloads 252