Search results for: hydrologic modeling system
11274 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 59211273 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 14311272 Model Based Improvement of Ultrasound Assisted Transport of Cohesive Dry Powders
Authors: Paul Dunst, Ing. Tobias Hemsel, Ing. Habil. Walter Sextro
Abstract:
The use of fine powders with high cohesive and adhesive properties leads to challenges during transport, mixing and dosing in industrial processes, which have not been satisfactorily solved so far. Due to the increased contact forces at the transporting parts (e. g. pipe-wall and transport screws), conventional transport systems and also vibratory conveyors reach their limits. Often, flowability increasing additives that need to be removed again in later process steps are the only option to achieve wanted transport results. A rather new ultrasound-assisted powder transport system showed to overcome some of the issues by manipulating the effective friction between powder and transport pipe. Within this contribution, the transport mechanism will be introduced shortly, together with preliminary transport results. As the tangential force of the transport pipe and the powder is the main influencing factor within the transport process, a test stand for measuring tangential forces of a powder-wall contact in the presence of an ultrasonic vibration orthogonal to the contact plane was built. Measurements for a sample powder show that the effective tangential force can already be significantly reduced at very low ultrasonic amplitude. As a result of the measurements, an empirical model for the relationship of tangential force, contact parameters and ultrasonic excitation is presented. This model was used to adjust the driving parameters of the powder transport system, resulting in better performance.Keywords: powder transport, ultrasound, friction, friction manipulation, vibratory conveyor
Procedia PDF Downloads 15211271 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases
Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo
Abstract:
The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis
Procedia PDF Downloads 22211270 Managing Food Waste Behaviour in Saudi Arabia: Investigating the Role of Social Marketing
Authors: Suliman Al Balawi
Abstract:
Food waste is a significant problem in the Kingdom of Saudi Arabia (KSA). About SR13 billion worth of food is wasted per year in the KSA. From moral, social, and economic perspectives, it is essential to reduce the wastage of food. Although studies have identified the amount of food waste in the KSA, there is a lack of research on why people in the KSA waste food; thus, it is difficult to design efficient intervention programs to reduce food waste. This research investigates the key factors that influence the food waste behavior of the people of the KSA. A food waste behavior model is proposed in this study that has moral disengagement at the center of the model. Following a literature survey, it is hypothesised that religiosity, hedonic value, frugality, and trait cynicism are the antecedents of moral disengagement that are likely to impact the food waste behavior of the people of the KSA. The study further posits that an intervention strategy in the form of a social marketing campaign that focuses on lowering the level of moral disengagement could reduce the food waste behavior of the people of the KSA. This study will apply a pre-test/post-test experimental design (control group). A random sampling method will be used to select participants from the (employees of a chosen firm) in the KSA. The social marketing campaign will be run for six months through the Corporate Social Responsibility Department of the Company, and to analyse the experimental data, structural equation modeling (SEM) will be used. The outcomes of the study will demonstrate the effectiveness of a social marketing campaign for improving the food waste behavior of the people of the KSA and will ultimately lay the foundation for designing efficient intervention programs in the future. This study will contribute to the knowledge on food waste behavior by testing a newly proposed food waste behavior model in the KSA.Keywords: food waste, social marketing, Saudi Arabia, moral disengagement
Procedia PDF Downloads 18211269 Mechanisms to Combat Maritime Terrorism in the Law of the Kingdom of Saudi Arabia and International Law
Authors: Khaleed Alsufyyan
Abstract:
This doctoral research has been successfully approved by a specialist upgrade panel, and it presents the proposition that the KSA policy for combating maritime terrorism is inadequate and current governance frameworks, including laws, are insufficiently developed to respond effectively and fairly to maritime terrorism. It will examine the legal system in the KSA in terms of effectiveness fairness, as well as investigate this proposition to determine what factors have contributed to such a deficiency. The main focus of this research will draw upon the policies, laws, and practices of the KSA, as well as UK and international laws and policies, to assess whether it is feasible to apply them in the context of the KSA. This thesis will recommend strategies regarding maritime terrorism to enrich the legal and policy frameworks and address the current and future dynamics of maritime terrorism adequately. To derive suitable improvements, UK policies, laws, and practices will be considered for policy transfer purposes. As for studies focused on the KSA, since the KSA is a Muslim state, it will be important to assess the impact of Islamic Law or Sharia Law subject to the doctrines of fairness and effectiveness to comprehend how the KSA’s legal system operates and determine the boundaries it sets for the response to maritime terrorism. This thesis will propose that more reforms are needed to effectively and fairly deal with maritime terrorism based on the prevailing understanding of Sharia law. The research will address the international perspectives on the problem of maritime terrorism and international cooperation of the KSA regarding maritime terrorism and consider the need for further developments.Keywords: maritime terrorism, maritime security, combat maritime terrorism in the KSA, protecting maritime transport against terrorism
Procedia PDF Downloads 8711268 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study
Authors: Javier Navarro Garcia, Narciso Vazquez Carretero
Abstract:
Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics
Procedia PDF Downloads 13711267 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection
Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis
Abstract:
This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller
Procedia PDF Downloads 12711266 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia
Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri
Abstract:
Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model
Procedia PDF Downloads 31311265 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor
Authors: Panupong Makvichian
Abstract:
Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor
Procedia PDF Downloads 19811264 Microbiome Role in Tumor Environment
Authors: Chro Kavian
Abstract:
The studies conducted show that cancer is a disease caused by populations of microbes, a notion gaining traction as the interaction between the human microbiome and the tumor microenvironment (TME) increasingly shows how environment and microbes dictate the progress and treatment of neoplastic diseases. A person’s human microbiome is defined as a collection of bacteria, fungi, viruses, and other microorganisms whose structure and composition influence biological processes like immune system modulation and nutrient metabolism, which, in turn, affect how susceptible a person is to neoplastic diseases, and response to different therapies. Recent reports demonstrated the influence specific microbiome bacterial populations have on the TME, thereby altering tumoral behaviors and the TME’s contributing factors that impact patients' lives. In addition, gut microbes and their SCFA products are important determinants of the inflammatory landscape of tumors and augment anti-tumor immunity, which can influence immunotherapy outcomes. Studies have also found that dysbiosis, or microbial imbalance, correlates with biological processes such as cancer progression, metastasis, and therapy resistance, leading scientists to explore the use of microbiome deficiencies as adjunctive approaches to chemotherapy and other, more traditional treatments. Nonetheless, mental health practitioners struggling to comprehend the existent gap between cancer patients with pronounced resolutive capabilities and the profound clinical impact Microbiome-targeted cancer therapy has been proven to possess.Keywords: microbiome, cancer, tumor, immune system
Procedia PDF Downloads 1911263 Design of Microwave Building Block by Using Numerical Search Algorithm
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers.Keywords: microwave component, microstrip and stripline, bend, power division, the numerical search algorithm.
Procedia PDF Downloads 37911262 Kids and COVID-19: They are Winning with Their Immunity
Authors: Husham Bayazed, Fatimah Yousif
Abstract:
Purpose of Presentation: The infant immune system has a reputation for being weak and underdeveloped when compared to the adult immune system, but the comparison isn’t quite fair. At the start, as the COVID-19 pandemic drags on and evolves, many Pediatricians and kids' parents have been left with renewed questions about the consequences and sequel of infection on children and the steps to be taken if their child has the symptoms of COVID-19 or tests positive. Recent Findings Literature reviews and recent studies revealed that children are better than adults at controlling SARS-CoV-2. There was conflicting evidence on age-related differences in ACE2 expression in the nose and lungs. But scientists who measured the ‘viral load’ in children's upper airways have seen no clear difference between children and adults. Moreover, the hypothesis is that kids might be more exposed to other coronaviruses common cold, with a production of ready protective antibodies to lock on to the pandemic coronavirus. But the evidence suggests that adults also have this immunity too. Strikingly, these ‘cross-reactive’ antibodies don’t offer any special protection. Summary One of the few silver linings of the Covid-19 pandemic is that children are relatively spared. The kid's Innate Immunity is hardly the whole story, the innate immune response against SARS-CoV-2 infection is early initiative calm with low immunological tone to prevent an overactive immunity and with rapidly repair damage to the lungs in contrast to stormy waves in adults. Therefore, Kids are at much lower risk of Covid-19 infection, and they are still winning the battle against Covid-19 with their innate immunity.Keywords: Covid-19, kids, ACE2 receptors, immunity
Procedia PDF Downloads 9711261 Influence of Travel Time Reliability on Elderly Drivers Crash Severity
Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig
Abstract:
Although older drivers (defined as those of age 65 and above) are less involved with speeding, alcohol use as well as night driving, they are more vulnerable to severe crashes. The major contributing factors for severe crashes include frailty and medical complications. Several studies have evaluated the contributing factors on severity of crashes. However, few studies have established the impact of travel time reliability (TTR) on road safety. In particular, the impact of TTR on senior adults who face several challenges including hearing difficulties, decreasing of the processing skills and cognitive problems in driving is not well established. Therefore, this study focuses on determining possible impacts of TTR on the traffic safety with focus on elderly drivers. Historical travel speed data from freeway links in the study area were used to calculate travel time and the associated TTR metrics that is, planning time index, the buffer index, the standard deviation of the travel time and the probability of congestion. Four-year information on crashes occurring on these freeway links was acquired. The binary logit model estimated using the Markov Chain Monte Carlo (MCMC) sampling technique was used to evaluate variables that could be influencing elderly crash severity. Preliminary results of the analysis suggest that TTR is statistically significant in affecting the severity of a crash involving an elderly driver. The result suggests that one unit increase in the probability of congestion reduces the likelihood of the elderly severe crash by nearly 22%. These findings will enhance the understanding of TTR and its impact on the elderly crash severity.Keywords: highway safety, travel time reliability, elderly drivers, traffic modeling
Procedia PDF Downloads 49311260 Environmental Metabolic Rift and Tourism Development: A Look at the Impact of the Malawi Tourism Industry Development Pattern
Authors: Lameck Zetu Khonje, Mulala Danny Simatele
Abstract:
The tourism industry in Malawi has grown tremendously during the past twenty-five years. This growth is attributed to the change in the political system which opened doors to international tourist and investment opportunities in the country which previously was under a strict repressive one-party political system. This research paper focuses on the developments that took place in the accommodation sector during the same period and the impact that it has partly caused on an environmental metabolic rift in the country which is now vulnerable to climate change-related catastrophes. Respondents from the government departments and the hotel sector were recruited for in-depth interviews. These interviews were conducted between July and November 2015 and follow up interviews were conducted between September and December 2017. Both results indicated there were minimal efforts pursued from the public sector to cartel capitalistic development tendencies in the accommodation sector. The results from the hotel revealed there were considerable efforts pursued driven by operating cost-cutting motive. Applying systems thinking the paper recommends that the policing machinery needs improvement to ensure that the industry also focuses on environmental wellbeing instead of profit maximization. This paper contributes to the body of knowledge on tourism development and climate change.Keywords: accommodation sector, climate change, metabolic rift, Malawi, tourism industry
Procedia PDF Downloads 14011259 Tectono-Thermal Evolution of Ningwu-Jingle Basin in North China Craton: Constraints from Apatite (U–Th-Sm)/He and Fission Track Thermochronology
Authors: Zhibin Lei, Minghui Yang
Abstract:
Ningwu-Jingle basin is a structural syncline which has undergone a complex tectono-thermal history since Cretaceous. It stretches along the strike of the northern Lvliang Mountains which are the most important mountains in the middle and west of North China Craton. The Mesozoic units make up of the core of Ningwu-Jingle Basin, with pre-Mesozoic units making up of its flanks. The available low-temperature thermochronology implies that Ningwu-Jingle Basin has experienced two stages of uplifting: 94±7Ma to 111±8Ma (Albian to Cenomanian) and 62±4 to 75±5Ma (Danian to Maastrichtian). In order to constrain its tectono-thermal history in the Cenozoic, both apatite (U-Th-Sm)/He and fission track dating analysis are applied on 3 Middle Jurassic and 3 Upper Triassic sandstone samples. The central fission track ages range from 74.4±8.8Ma to 66.0±8.0Ma (Campanian to Maastrichtian) which matches well with previous data. The central He ages range from 20.1±1.2Ma to 49.1±3.0Ma (Ypresian to Burdigalian). Inverse thermal modeling is established based on both apatite fission track data and (U-Th-Sm)/He data. The thermal history obtained reveals that all 6 sandstone samples cross the high-temperature limit of fission track partial annealing zone by the uppermost Cretaceous and that of He partial retention zone by the uppermost Eocene to the early Oligocene. The result indicates that the middle and west of North China Craton is not stable in the Cenozoic.Keywords: apatite fission track thermochronology, apatite (u–th)/he thermochronology, Ningwu-Jingle basin, North China craton, tectono-thermal history
Procedia PDF Downloads 26211258 NGOs from the Promotion of Civic Participation to Public Problems Solving: Case Study Urmia, Iran
Authors: Amin Banae Babazadeh
Abstract:
In the contemporary world, NGOs are considered as important tool for motivating the community. So they committed their true mission and the promotion of civic participation and strengthen social identities. Functional characteristics of non-governmental organizations are the element to leverage the centers of political and social development of powerful governments since they are concrete and familiar with the problems of society and the operational strategies which would facilitate this process of mutual trust between the people and organizations. NGOs on the one hand offer reasonable solutions in line with approved organizations as agents to match between the facts and reality of society and on the other hand changes to a tool to have true political, social and economic behavior. However, the NGOs are active in the formulation of national relations and policy formulation in an organized and disciplined based on three main factors, i.e., resources, policies, and institutions. Organizations are not restricted to state administration in centralized system bodies and this process in the democratic system limits the accumulation of desires and expectations and at the end reaches to the desired place. Hence, this research will attempt to emphasis on field research (questionnaire) and according to the development evolution and role of NGOs analyze the effects of this center on youth. Therefore, the hypothesis is that there is a direct relationship between the Enlightenment and the effectiveness of policy towards NGOs and solving social damages.Keywords: civic participation, community vulnerability, insightful, NGO, urmia
Procedia PDF Downloads 24111257 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 20211256 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce
Authors: Jiao Sun, Li Pan, Shijun Liu
Abstract:
Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.Keywords: collaborative filtering, recommendation, data normalization, mapreduce
Procedia PDF Downloads 21711255 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 12511254 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 6411253 Analysis of Adaptive Facade Systems and Evaluation of Their Applicability in Turkey
Authors: Selin Öztürk Demirkiran
Abstract:
Approaches towards sustainability and energy efficiency are significant topics of our era. These approaches need to be addressed across various fields and are relevant to multiple disciplines. Building facades, as the first surface encountering external weather conditions, should be considered and analyzed within this context. Current seasonal changes due to global warming and the influence on climates have highlighted the necessity for building systems to adapt to these changes, emphasizing the need for long-lasting solutions. Therefore, this study aims to examine adaptive system applications using examples from similar climatic regions and buildings of different functions, classifying them according to adaptive system criteria. It also aims to explore and evaluate the current stage of such systems in Turkey and the potential for their implementation. In this study, six building examples with different functions, including two examples for each adaptive type, were analyzed from regions with climates similar to those in Turkey, with detailed examination sheets prepared. The purpose of this study is to contribute to ongoing developments by presenting findings on current concepts and analyses and proposing a distinct approach for the characterization of these elements at the scale of Turkey. From this perspective, there is a considerable amount of literature on adaptive facade designs, and while application examples exist, adaptive approaches have been developed and partially implemented. It is expected that innovative solutions in this field will find a place in Turkey in the near future, following the increasing number of examples globally.Keywords: adaptive facade, smart building facades, facade innovation, sustainability.
Procedia PDF Downloads 2111252 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 41011251 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 15411250 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 21711249 Interaction between Space Syntax and Agent-Based Approaches for Vehicle Volume Modelling
Authors: Chuan Yang, Jing Bie, Panagiotis Psimoulis, Zhong Wang
Abstract:
Modelling and understanding vehicle volume distribution over the urban network are essential for urban design and transport planning. The space syntax approach was widely applied as the main conceptual and methodological framework for contemporary vehicle volume models with the help of the statistical method of multiple regression analysis (MRA). However, the MRA model with space syntax variables shows a limitation in vehicle volume predicting in accounting for the crossed effect of the urban configurational characters and socio-economic factors. The aim of this paper is to construct models by interacting with the combined impact of the street network structure and socio-economic factors. In this paper, we present a multilevel linear (ML) and an agent-based (AB) vehicle volume model at an urban scale interacting with space syntax theoretical framework. The ML model allowed random effects of urban configurational characteristics in different urban contexts. And the AB model was developed with the incorporation of transformed space syntax components of the MRA models into the agents’ spatial behaviour. Three models were implemented in the same urban environment. The ML model exhibit superiority over the original MRA model in identifying the relative impacts of the configurational characters and macro-scale socio-economic factors that shape vehicle movement distribution over the city. Compared with the ML model, the suggested AB model represented the ability to estimate vehicle volume in the urban network considering the combined effects of configurational characters and land-use patterns at the street segment level.Keywords: space syntax, vehicle volume modeling, multilevel model, agent-based model
Procedia PDF Downloads 14511248 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment
Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu
Abstract:
Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.Keywords: circular construction, construction and demolition waste, material recycling, optimization modeling
Procedia PDF Downloads 5711247 A Review on the Challenge and Need of Goat Semen Production and Artificial Insemination in Nepal
Authors: Pankaj K. Jha, Ajeet K. Jha, Pravin Mishra
Abstract:
Goat raising is a popular livestock sub-commodity of mixed farming system in Nepal. Besides food and nutritional security, it has an important role in the economy of many peoples. Goat breeding through AI is commonly practiced worldwide. It is a very basic tool to speed up genetic improvement and increase productivity. For the goat genetic improvement program, the government of Nepal has imported some specialized exotic goat breeds and semen. Some progress has been made in the initiation of selective breeding within the local breeds and practice of AI with imported semen. Importance of AI in goats has drawn more attention among goat farmers. However, importing semen is not a permanent solution at national level; rather, it is more important to develop and establish its own frozen semen production technique. Semen quality and its relationship with fertility are said to be a major concern in animal production, hence accurate measurement of semen fertilizing potential is of great importance. The survivability of sperm cells depends on semen quality. Survivability of sperm cells is assessed through visual and microscopic evaluation of spermatozoal progressive motility and morphology. In Nepal, there is lack of scientific information on seminal attributes of buck semen, its dilution, cooling and freezing technique under management conditions of Nepal. Therefore, the objective of this review was to provide brief information about breeding system, semen production and artificial insemination in Nepalese goat.Keywords: artificial insemination, goat, Nepal, semen
Procedia PDF Downloads 21211246 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM
Authors: Lana Migla
Abstract:
Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.Keywords: energy performance, PCM containers, solar thermal cooling, storage tank
Procedia PDF Downloads 14011245 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 99