Search results for: protein structure classification
10900 Kinetics and Specificity of Drosophila melanogaster Molybdo-Flavoenzymes towards Their Substrates
Authors: Khaled S. Al Salhen
Abstract:
Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) catalyze the oxidation of many different N-heterocyclic compounds as well as aliphatic and aromatic aldehydes to their corresponding lactam and carboxylic acids respectively. The present study examines the oxidation of dimethylamino-cinnamaldehyde (DMAC), vanillin and phenanthridine by AO and xanthine by XOR from Drosophila cytosol. Therefore, the results obtained in the present study showed the DMAC, vanillin and phenanthridine substrates used were found to be good substrates of Drosophila AO and xanthine is the preferred substrate for Drosophila XOR. Km values of AO substrates were observed with DMAC (50±5.4 µM), phenanthridine (80±9.1 µM) and vanillin (303±11.7 µM) respectively for Drosophila cytosol. The Km values for DMAC and phenanthridine were ~6 and ~4 fold lower than that for vanillin as a substrate. The Km for XOR with xanthine using NAD+ as an electron acceptor was 27±4.1 µM. Relatively low Vmax values were obtained with phenanthridine (1.78±0.38 nmol/min/mg protein) and DMAC (1.80±0.35 nmol/min/mg protein). The highest Vmax was obtained from Drosophila cytosol with vanillin (7.58±2.11 nmol/min/mg protein). It is concluded these results that AO and XOR in Drosophila were able to catalyse the biotransformation of numerous substrates of the well-characterised mammalian AO and XOR. The kinetic parameters have indicated that the activity of AO of Drosophila may be a significant factor the oxidation of aromatic aldehyde compounds.Keywords: aldehyde oxidase, xanthine oxidoreductase, dimethylamino-cinnamaldehyde, vanillin, phenanthridine, Drosophila melanogaster
Procedia PDF Downloads 44010899 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes
Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush
Abstract:
Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing
Procedia PDF Downloads 22310898 An Integrated Label Propagation Network for Structural Condition Assessment
Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong
Abstract:
Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation
Procedia PDF Downloads 9710897 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 36710896 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging
Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul
Abstract:
Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.Keywords: mung bean, near infrared, germinatability, hard seed
Procedia PDF Downloads 30510895 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 35110894 Comparative Study Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine
Procedia PDF Downloads 41010893 Application of Fuzzy Clustering on Classification Agile Supply Chain
Authors: Hamidreza Fallah Lajimi , Elham Karami, Fatemeh Ali nasab, Mostafa Mahdavikia
Abstract:
Being responsive is an increasingly important skill for firms in today’s global economy; thus firms must be agile. Naturally, it follows that an organization’s agility depends on its supply chain being agile. However, achieving supply chain agility is a function of other abilities within the organization. This paper analyses results from a survey of 71 Iran manufacturing companies in order to identify some of the factors for agile organizations in managing their supply chains. Then we classification this company in four cluster with fuzzy c-mean technique and with four validations functional determine automatically the optimal number of clusters.Keywords: agile supply chain, clustering, fuzzy clustering
Procedia PDF Downloads 47510892 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 13410891 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 1710890 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 26310889 Integration of Edible Insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria: Teachers’ Perception
Authors: Ali Christian Chinedu, Asogwa Vincent Chidindu, Ejiofor Toochukwu Eleazar, Okadi Ashagwu Ojang
Abstract:
The increasing rate of Boko Haram insurgency, farmer-herder clashes, and kidnapping in Nigeria has resulted in food shortages and high cost of protein sources like beef and fish. This challenge could be curbed with the production of edible insects, which contain several nutritional benefits like calories, protein, fat, vitamins, and minerals, depending on their species, metamorphic stage, and diet. Unfortunately, the benefits and competencies in producing, preserving, and marketing edible insects are still unknown to the public, including prospective farmers in Nigeria. Hence, this study determined teachers’ perception of integrating edible insects into the Animal Husbandry Curriculum in Senior Secondary Schools in Nigeria to equip the future generation with the relevant competencies for alternative sustainable protein supply. The study was carried out in Enugu State, Nigeria. The participants for the study comprised 162 agricultural science teachers. A questionnaire titled: Edible Insects Integration in Animal Husbandry Curriculum Questionnaire (EIIAHCQ) was used to collect data using a descriptive survey research design. We conducted data collection with the help of six research assistants. The study identified 11 objectives, 11 contents, 10 teaching methods, and 9 evaluation methods that could be integrated into the existing curriculum of animal husbandry in Nigeria. Among others, the Ministry of Education should integrate the finding of this study into the curriculum of Animal Husbandry in Nigeria to enhance the protein supply and curb food insecurity now and in the future.Keywords: animal husbandry curriculum, edible insects, entomophagy, integration, secondary school, Nigeria
Procedia PDF Downloads 9210888 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy
Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott
Abstract:
HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint
Procedia PDF Downloads 8810887 Amyloid Deposition in Granuloma of Tuberculosis Patients: A Pilot Study
Authors: Shreya Ghosh, Akansha Garg, Chayanika Kala, Ashwani Kumar Thakur
Abstract:
Background: Granuloma formation is one of the characteristic features of tuberculosis. Besides, chronic inflammation underlying tuberculosis is often indicated by an increase in the concentration of serum amyloid A (SAA) protein. The connection between tuberculosis and SAA-driven secondary amyloidosis is well documented. However, SAA-derived amyloid deposition start sites are not well understood in tuberculosis and other chronic inflammatory conditions. It was hypothesized that granuloma could be a potential site for an amyloid deposition because both SAA protein and proteases that cleave SAA into aggregation-prone fragments are reported to be present in the granuloma. Here the authors have shown the presence of SAA-derived amyloid deposits in the granuloma of tuberculosis patients. Methodology: Over a period of two years, tuberculosis patients were screened, and biopsies were collected from the affected organs of the patients. The gold standard, Congo red dye staining, was used to identify amyloid deposits in the tissue sections of tuberculosis patients containing granulomatous structure. Results: 11 out of 150 FFPE biopsy specimens of tuberculosis patients showed eosinophilic hyaline-rich deposits surrounding granuloma. Upon Congo red staining, these deposits exhibited characteristic apple-green birefringence under polarized light, confirming amyloid deposits. Further, upon immunohistochemical staining with anti-SAA, the amyloid enriched areas showed positive immunoreactivity. Conclusion: In this pilot study, we have shown that granuloma can be a potential site for serum amyloid A-derived amyloid formation in tuberculosis patients. Moreover, the presence of amyloid gave significant cues that granuloma might be a probable amyloid deposition start in tuberculosis patients. This study will set a stage to expand the clinical and fundamental research in the understanding of amyloid formation in granuloma underlying tuberculosis and chronic inflammatory conditions.Keywords: amyloid, granuloma, periphery, serum amyloid A, tuberculosis
Procedia PDF Downloads 19510886 Combination of Topology and Rough Set for Analysis of Power System Control
Authors: M. Kamel El-Sayed
Abstract:
In this research, we have linked the concept of rough set and topological structure to the creation of a new topological structure that assists in the analysis of the information systems of some electrical engineering issues. We used non-specific information whose boundaries do not have an empty set in the top topological structure is rough set. It is characterized by the fact that it does not contain a large number of elements and facilitates the establishment of rules. We used this structure in reducing the specifications of electrical information systems. We have provided a detailed example of this method illustrating the steps used. This method opens the door to obtaining multiple topologies, each of which uses one of the non-defined groups (rough set) in the overall information system.Keywords: electrical engineering, information system, rough set, rough topology, topology
Procedia PDF Downloads 45410885 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 33210884 Sustainable Rehabilation of Ancient Structure
Authors: Ram Narayan Khare, Aradhna Shrivastava, Adhyatma Khare
Abstract:
This paper focuses on the damage that has been occurred in the Ancient structures due to various factors such as rainfall, climate, insects, lifespan and also most important lack of technologies in the era of its construction. The structure is of lime surkhi masonry and is made a century ago. It has crossed its durability but is of historical importance for the area, that is the reason why it needs utmost importance for its Rehabilitation. The paper deals with the damage that has been occurred in the structure and how to repair and renovate the same keeping in mind that the material deviation could not take place because it shows how in ancient era structures are made of. The building has used lime surkhi mortar along with wood apple as fibrous material for providing adhesiveness in masonry binding. The paper helps in sustainable retrofitting of the structure without changing the integrity of the structure. This helps in maintaining the originality of structure in present era and also help in providing information to the upcoming generation how ancient civil construction has been carried out that withstand even more than a century.Keywords: Lime Surkhi masonry, rehabilitation, sustainable development, historical building
Procedia PDF Downloads 3710883 Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk
Authors: A. Deswal, N. S. Deora, H. N. Mishra
Abstract:
The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyse spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), discriminant factorial analysis (DFA) and soft independent modelling by class analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable counts showed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20 hours and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.Keywords: electronic-nose, bacteriological, shelf-life, classification
Procedia PDF Downloads 25810882 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information
Authors: Babar Khan, Wang Zhijie
Abstract:
Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel
Procedia PDF Downloads 48510881 Urban and Rural Population Pyramids in Georgia Since 1950’s
Authors: Shorena Tsiklauri, Avtandil Sulaberidze, Nino Gomelauri
Abstract:
In the years followed independence, an economic crisis and some conflicts led to the displacement of many people inside Georgia. The growing poverty, unemployment, low income and its unequal distribution limited access to basic social service have had a clear direct impact on Georgian population dynamics and its age-sex structure. Factors influencing the changing population age structure and urbanization include mortality, fertility, migration and expansion of urban. In this paper presents the main factors of changing the distribution by urban and rural areas. How different are the urban and rural age and sex structures? Does Georgia have the same age-sex structure among their urban and rural populations since 1950s?Keywords: age and sex structure of population, georgia, migration, urban-rural population
Procedia PDF Downloads 41010880 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts
Authors: Reza Shakoori
Abstract:
This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.Keywords: Arabic, chain code normalization, OCR systems, image processing
Procedia PDF Downloads 40410879 The Role of Piceatannol in Counteracting Glyceraldehyde-3-Phosphate Dehydrogenase Aggregation and Nuclear Translocation
Authors: Joanna Gerszon, Aleksandra Rodacka
Abstract:
In the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, protein and peptide aggregation processes play a vital role in contributing to the formation of intracellular and extracellular protein deposits. One of the major components of these deposits is the oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Therefore, the purpose of this research was to answer the question whether piceatannol, a stilbene derivative, counteracts and/or slows down oxidative stress-induced GAPDH aggregation. The study also aimed to determine if this natural occurring compound prevents unfavorable nuclear translocation of GAPDH in hippocampal cells. The isothermal titration calorimetry (ITC) analysis indicated that one molecule of GAPDH can bind up to 8 molecules of piceatannol (7.3 ± 0.9). As a consequence of piceatannol binding to the enzyme, the loss of activity was observed. Parallel with GAPDH inactivation the changes in zeta potential, and loss of free thiol groups were noted. Nevertheless, the ligand-protein binding does not influence the secondary structure of the GAPDH. Precise molecular docking analysis of the interactions inside the active center allowed to presume that these effects are due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Molecular docking also showed that simultaneously 11 molecules of ligand can be bound to dehydrogenase. Taking into consideration obtained data, the influence of piceatannol on level of GAPDH aggregation induced by excessive oxidative stress was examined. The applied methods (thioflavin-T binding-dependent fluorescence as well as microscopy methods - transmission electron microscopy, Congo Red staining) revealed that piceatannol significantly diminishes level of GAPDH aggregation. Finally, studies involving cellular model (Western blot analyses of nuclear and cytosolic fractions and confocal microscopy) indicated that piceatannol-GAPDH binding prevents GAPDH from nuclear translocation induced by excessive oxidative stress in hippocampal cells. In consequence, it counteracts cell apoptosis. These studies demonstrate that by binding with GAPDH, piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation as well as it prevents hippocampal cells from apoptosis by retaining GAPDH in the cytoplasm. All these findings provide a new insight into the role of piceatannol interaction with GAPDH and present a potential therapeutic strategy for some neurological disorders related to GAPDH aggregation. This work was supported by the by National Science Centre, Poland (grant number 2017/25/N/NZ1/02849).Keywords: glyceraldehyde-3-phosphate dehydrogenase, neurodegenerative disease, neuroprotection, piceatannol, protein aggregation
Procedia PDF Downloads 16710878 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong
Abstract:
This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 21910877 2D Structured Non-Cyclic Fuzzy Graphs
Authors: T. Pathinathan, M. Peter
Abstract:
Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.Keywords: double layered fuzzy graph, double layered non–cyclic fuzzy graph, order, degree and size
Procedia PDF Downloads 40010876 Analysis on Thermococcus achaeans with Frequent Pattern Mining
Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon
Abstract:
After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree
Procedia PDF Downloads 29010875 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds
Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain
Abstract:
World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.Keywords: buffalo, FSHR gene, bioinformatics, production
Procedia PDF Downloads 53210874 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 49010873 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay
Authors: Zhen Cao, Yu Zhu, Junxue Fu
Abstract:
Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration
Procedia PDF Downloads 10310872 The Evaluation of Substitution of Acacia villosa in Ruminants Ration
Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat
Abstract:
Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.Keywords: Acacia villosa, digestibility, gas production, secondary compounds
Procedia PDF Downloads 16410871 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 125