Search results for: physiological signals
1053 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1611052 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2101051 Azadirachta indica Derived Protein Encapsulated Novel Guar Gum Nanocapsules against Colon Cancer
Authors: Suman Chaudhary, Rupinder K. Kanwar, Jagat R. Kanwar
Abstract:
Azadirachta indica, also known as Neem belonging to the mahogany family is actively gaining interest in the era of modern day medicine due to its extensive applications in homeopathic medicine such as Ayurveda and Unani. More than 140 phytochemicals have been extracted from neem leaves, seed, bark and flowers for agro-medicinal applications. Among the various components, neem leaf protein (NLP) is currently the most investigated active ingredient, due to its immunomodulatory activities against tumor growth. However, these therapeutic ingredients of neem are susceptible to degradation and cannot withstand the drastic pH changes under physiological environment, and therefore, there is an urgent need of an alternative strategy such as a nano-delivery system to exploit its medicinal benefits. This study hypothesizes that guar gum (GG) derived biodegradable nano-carrier based encapsulation of NLP will improve its stability, specificity and sensitivity, thus facilitating targeted anti-cancer therapeutics. GG is a galactomannan derived from the endosperm of the guar beans seeds. Synthesis of guar nanocapsules (NCs) was performed using nanoprecipitation technique where the GG was encapsulated with NLP. Preliminary experiments conducted to characterize the NCs confirmed spherical morphology with a narrow size distribution of 30-40 nm. Differential scanning colorimetric analysis (DSC) validated the stability of these NCs even at a temperature range of 50-60°C which was well within the physiological and storage conditions. Thermogravimetric (TGA) analysis indicated high decomposition temperature of these NCs ranging upto 350°C. Additionally, Fourier Transform Infrared spectroscopy (FTIR) and the SDS-PAGE data acquired confirmed the successful encapsulation of NLP in the NCs. The anti-cancerous therapeutic property of this NC was tested on colon cancer cells (caco-2) as they are one of the most prevalent form of cancer. These NCs (both NLP loaded and void) were also tested on human intestinal epithelial cells (FHs 74) cells to evaluate their effect on normal cells. Cytotoxicity evaluation of the NCs in the cell lines confirmed that the IC50 for NLP in FHs 74 cells was ~2 fold higher than in caco-2 cells, indicating that this nanoformulation system possessed biocompatible anti-cancerous properties Immunoconfocal microscopy analysis confirmed the time dependent internalization of the NCs within 6h. Recent findings performed using Annexin V and PI staining indicated a significant increase (p ≤ 0.001) in the early and late apoptotic cell population when treated with the NCs signifying the role of NLP in inducing apoptosis in caco-2 cells. This was further validated using Western blot, Polymerase chain reaction (PCR) and Fluorescence activated cell sorter (FACS) aided protein expressional analysis which presented a downregulation of survivin, an anti-apoptotic cell marker and upregulation of Bax/Bcl-2 ratio (pro-apoptotic indicator). Further, both the NLP NC and unencapsulated NLP treatment destabilized the mitochondrial membrane potential subsequently facilitating the release of the pro-apoptotic caspase cascade initiator, cytochrome-c. Future studies will be focused towards granting specificity to these NCs towards cancer cells, along with a comprehensive analysis of the anti-cancer potential of this naturally occurring compound in different cancer and in vivo animal models, will validate the clinical application of this unprecedented protein therapeutic.Keywords: anti-tumor, guar gum, nanocapsules, neem leaf protein
Procedia PDF Downloads 1771050 Spectrofluorimetric Investigation of Copper (II), Cobalt (II), Calcium (II), and Ferric (III) Influence on the Ciprofloxacin Binding to Bovine Serum Albumin
Authors: Ahmed K. Youssef, Shawkat M. B. Aly
Abstract:
The interaction between ciprofloxacin and bovine serum albumin (BSA) was investigated by UV-Visible absorption and fluorescence spectroscopy. The influence of Cu²⁺ Ca²⁺, Co²⁺, and Fe³⁺ on the Cip-BSA interaction was investigated. The quenching of the BSA fluorescence emission in presence of ciprofloxacin as well as the influence of metal ions on the interaction was analyzed using the Stern-Volmer equation. The Stern-Volmer quenching constant, Kₛᵥ was calculated in presence and absence of the metal ions at the physiological pH of 7.4 using phosphate buffer. The experimental results showed that interaction mainly static in nature and quenching rate constant is decreased in presence of the studied metal ions with exception of Cu²⁺ ions. The decrease observed in the Kₛᵥ values in presence of Co²⁺, Ca²⁺, and Fe³⁺ can be understood on basis of competition between these metal and Cip when both of them existed in the BSA solution. Cu²⁺ induces interaction between Cip and BSA at faster quenching rates as inferred from the observed increase in the Kₛᵥ value. This allowed us to propose that copper (II) ions are directly involved in the process of Cip binding to BSA. The binding constant for Cip on BSA was determined and the metal ions effect on it was examined as well and their values were in line with the Kₛᵥ values.Keywords: bovine serum albumin, ciprofloxacin, fluorescence, metal ions effect
Procedia PDF Downloads 3921049 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction
Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia
Abstract:
Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4
Procedia PDF Downloads 1031048 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System
Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong
Abstract:
Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.Keywords: OFDM, Mach Zehnder bias voltage, switching voltage, radio-over-fiber, RF gain
Procedia PDF Downloads 4771047 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error
Authors: R. Sabre, W. Horrigue, J. C. Simon
Abstract:
This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.Keywords: spectral density, stable processes, aliasing, periodogram
Procedia PDF Downloads 1381046 Multi-Band Frequency Conversion Scheme with Multi-Phase Shift Based on Optical Frequency Comb
Authors: Tao Lin, Shanghong Zhao, Yufu Yin, Zihang Zhu, Wei Jiang, Xuan Li, Qiurong Zheng
Abstract:
A simple operated, stable and compact multi-band frequency conversion and multi-phase shift is proposed to satisfy the demands of multi-band communication and radar phase array system. The dual polarization quadrature phase shift keying (DP-QPSK) modulator is employed to support the LO sideband and the optical frequency comb simultaneously. Meanwhile, the fiber is also used to introduce different phase shifts to different sidebands. The simulation result shows that by controlling the DC bias voltages and a C band microwave signal with frequency of 4.5 GHz can be simultaneously converted into other signals that cover from C band to K band with multiple phases. It also verifies that the multi-band and multi-phase frequency conversion system can be stably performed based on current manufacturing art and can well cope with the DC drifting. It should be noted that the phase shift of the converted signal also partly depends of the length of the optical fiber.Keywords: microwave photonics, multi-band frequency conversion, multi-phase shift, conversion efficiency
Procedia PDF Downloads 2541045 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 4511044 Large-Scale Electroencephalogram Biometrics through Contrastive Learning
Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes
Abstract:
EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification
Procedia PDF Downloads 1571043 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning
Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi
Abstract:
In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh
Procedia PDF Downloads 1461042 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 3861041 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms
Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen
Abstract:
This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control
Procedia PDF Downloads 2291040 Wavelet Based Signal Processing for Fault Location in Airplane Cable
Authors: Reza Rezaeipour Honarmandzad
Abstract:
Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal
Procedia PDF Downloads 5241039 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions
Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude
Abstract:
Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata
Procedia PDF Downloads 1891038 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 891037 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification
Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui
Abstract:
The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor
Procedia PDF Downloads 1431036 Geographic Information System for Simulating Air Traffic By Applying Different Multi-Radar Positioning Techniques
Authors: Amara Rafik, Mostefa Belhadj Aissa
Abstract:
Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.Keywords: ATM, GIS, radar data, simulation
Procedia PDF Downloads 1181035 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions
Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori
Abstract:
Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.Keywords: Glycine max (L.), cluster analysis, PCA, vigor
Procedia PDF Downloads 2571034 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning
Procedia PDF Downloads 1321033 Evaluation of the Effects of Lead on Some Physiological and Hormonal Biomarkeurs among Workers
Authors: Mansouri Ouarda, Adbdennour Cherif, Boukarma Ziad
Abstract:
Environmental and biological monitoring are used for the evaluation of exposure to industrial chemicals, and provide a tool for assessing workers’ exposure to chemicals. The organs or tissues where the first biological effects can be observed with increasing amounts of lead toxicity. This study aims at evaluating the effect of the metal element-trace; lead, on the sex hormones in male workers, exposed to this metal on the level of the manufacturing plant of lead accumulators. The results indicate a significant reduction of the testosterone concentration in exposed workers compared to the control. However, the rate of LH was strongly increased at the individuals exposed to Pb. A significant difference concerning the rate of FSH, the hormone Prolactin and cortisol was recorded. The indicators of the lead poisoning indicate a very highly significant increase in the value of Pbs which vary between (142-796 µg/L) among which 50% of the workers present a high lead poisoning and the value of PPZ which vary between (43-554µg/L). The biochemical parameters show a significant increase in the rate of the créatinine, the urea and the acid urique. The hepatic results show no significant differentiation in the rate of TGO and TGP between both groups of study. However the rates of the enzyme phosphatase alkaline, triglyceride, and cholesterol a significant difference were registered.Keywords: hormons, parameters, physilogical, Pbs, PPZ
Procedia PDF Downloads 3771032 Acoustic Characteristics of Ḫijaiyaḫ Letters Pronunciation by Indonesian Native Speaker
Authors: Romi Hardiyansyah, Raden Sugeng Joko Sarwono, Agus Samsi
Abstract:
Indonesian people have a mother language but not Arabic. Meanwhile, they must be able to pronounce the Arabic because Islam is the biggest religion in Indonesia. Arabic is composed by ḫijaiyaḫ letters which has its own pronunciation. Sound production process in humans can be divided into three physiological processes, namely: the formation of airflow from the lungs, the change in airflow from the lungs into the sound, and articulation (the modulation/sound setting into a specific sound). Ḫijaiyaḫ letters has its own articulation, some of which seem strange for most people in Indonesia. Those letters come out from the middle and upper throat so that the letters has its own acoustic characteristics. Acoustic characteristics of voice can be observed by source-filter approach that has parameters: pitch, formant, and formant bandwidth. Pitch is the basic tone in every human being. Formant is the resonance frequency of the human voice. Formant bandwidth is the time-width of a formant. After recording the sound from 21 subjects, data is processed by software Praat version 5.3.39. The analysis showed that each pronunciation, syakal (vowel changer), and the place of discharge letters has the same timbre which are determined by third and fourth formant.Keywords: ḫijaiyaḫ, articulation, pitch, formant, formant bandwidth, timbre
Procedia PDF Downloads 3961031 Focusing of Technology Monitoring Activities Using Indicators
Authors: Günther Schuh, Christina König, Toni Drescher
Abstract:
One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring
Procedia PDF Downloads 4721030 Artificial Generation of Visual Evoked Potential to Enhance Visual Ability
Authors: A. Vani, M. N. Mamatha
Abstract:
Visual signal processing in human beings occurs in the occipital lobe of the brain. The signals that are generated in the brain are universal for all the human beings and they are called Visual Evoked Potential (VEP). Generally, the visually impaired people lose sight because of severe damage to only the eyes natural photo sensors, but the occipital lobe will still be functioning. In this paper, a technique of artificially generating VEP is proposed to enhance the visual ability of the subject. The system uses the electrical photoreceptors to capture image, process the image, to detect and recognize the subject or object. This voltage is further processed and can transmit wirelessly to a BIOMEMS implanted into occipital lobe of the patient’s brain. The proposed BIOMEMS consists of array of electrodes that generate the neuron potential which is similar to VEP of normal people. Thus, the neurons get the visual data from the BioMEMS which helps in generating partial vision or sight for the visually challenged patient.Keywords: BioMEMS, neuro-prosthetic, openvibe, visual evoked potential
Procedia PDF Downloads 3151029 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length
Procedia PDF Downloads 1781028 Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current
Authors: Hyungil Chae
Abstract:
This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device).Keywords: chopper stabilization, Hall-effect sensor, pulse width modulation, spinning current
Procedia PDF Downloads 4841027 The Effects of Gender and Socioeconomic Status on Academic Motivation: The Case of Lithuania
Authors: Ausra Turcinskaite-Balciuniene, Jonas Balciunas, Gediminas Merkys
Abstract:
The problematic of gender and socioeconomic status biased differences in academic motivation patterns is discussed. Gender identity is understood according to symbolic interactionism perspective: as a result of reflected appraisals, social comparisons, self-attributions, and identifications, shaped by social environment and family context. The effects of socioeconomic status on academic motivation are conceptualized according to Bourdieu’s habitus concept, reflecting the role of unconscious and internalized cultural signals, proper to low and high socioeconomic status family contexts. Since families differ by various socioeconomic features, the hypothesis about possible impact of parents’ socioeconomic status on their children’s academic motivation interfering with gender socialization effects is held. The survey, aiming to seize gender differences in academic motivation and self-recorded improvement-oriented efforts as a result of socialization processes operating in the families of low and high socioeconomic status, was designed. The results of Lithuanian higher education students’ survey are presented and discussed.Keywords: academic motivation, gender, socialization, socioeconomic status
Procedia PDF Downloads 3961026 A Supply Chain Traceability Improvement Using RFID
Authors: Yaser Miaji, Mohammad Sabbagh
Abstract:
Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries.Keywords: supply chain, RFID, tractability, radio frequency identification
Procedia PDF Downloads 4891025 Evaluation of Tumor Microenvironment Using Molecular Imaging
Authors: Fakhrosadat Sajjadian, Ramin Ghasemi Shayan
Abstract:
The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components.Keywords: molecular, imaging, TME, medicine
Procedia PDF Downloads 461024 Co-Seismic Gravity Gradient Changes of the 2006–2007 Great Earthquakes in the Central Kuril Islands from GRACE Observations
Authors: Armin Rahimi
Abstract:
In this study, we reveal co-seismic signals of two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of the gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore that preseismic activity can be better illustrated. We show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from − 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from − 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.Keywords: GRACE observation, gravitational gradient changes, Kuril island earthquakes, PSGRN/PSCMP
Procedia PDF Downloads 276