Search results for: physiological functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3332

Search results for: physiological functions

2462 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin

Procedia PDF Downloads 103
2461 Monetary Evaluation of Dispatching Decisions in Consideration of Choice of Transport

Authors: Marcel Schneider, Nils Nießen

Abstract:

Microscopic simulation programs enable the description of the two processes of railway operation and the previous timetabling. Occupation conflicts are often solved based on defined train priorities on both process levels. These conflict resolutions produce knock-on delays for the involved trains. The sum of knock-on delays is commonly used to evaluate the quality of railway operations. It is either compared to an acceptable level-of-service or the delays are evaluated economically by linearly monetary functions. It is impossible to properly evaluate dispatching decisions without a well-founded objective function. This paper presents a new approach for evaluation of dispatching decisions. It uses models of choice of transport and considers the behaviour of the end-costumers. These models evaluate the knock-on delays in more detail than linearly monetary functions and consider other competing modes of transport. The new approach pursues the coupling of a microscopic model of railway operation with the macroscopic model of choice of transport. First it will be implemented for the railway operations process, but it can also be used for timetabling. The evaluation considers the possibility to change over to other transport modes by the end-costumers. The new approach first looks at the rail-mounted and road transport, but it can also be extended to air transport. The split of the end-costumers is described by the modal-split. The reactions by the end-costumers have an effect on the revenues of the railway undertakings. Various travel purposes has different pavement reserves and tolerances towards delays. Longer journey times affect besides revenue changes also additional costs. The costs depend either on time or track and arise from circulation of workers and vehicles. Only the variable values are summarised in the contribution margin, which is the base for the monetary evaluation of the delays. The contribution margin is calculated for different resolution decisions of the same conflict. The conflict resolution is improved until the monetary loss becomes minimised. The iterative process therefore determines an optimum conflict resolution by observing the change of the contribution margin. Furthermore, a monetary value of each dispatching decision can also be determined.

Keywords: choice of transport, knock-on delays, monetary evaluation, railway operations

Procedia PDF Downloads 311
2460 Recent Advancement in Dendrimer Based Nanotechnology for the Treatment of Brain Tumor

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Brain tumor is metastatic neoplasm of central nervous system, in most of cases it is life threatening disease with low survival rate. Despite of enormous efforts in the development of therapeutics and diagnostic tools, the treatment of brain tumors and gliomas remain a considerable challenge in the area of neuro-oncology. The most reason behind of this the presence of physiological barriers including blood brain barrier and blood brain tumor barrier, lead to insufficient reach ability of therapeutic agents at the site of tumor, result of inadequate destruction of gliomas. So there is an indeed need empowerment of brain tumor imaging for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional different generations of dendrimer offer an improved effort for potentiate drug delivery at the site of brain tumor and gliomas. So this article emphasizes the innovative dendrimer approaches in tumor targeting, tumor imaging and delivery of therapeutic agent.

Keywords: blood brain barrier, dendrimer, gliomas, nanotechnology

Procedia PDF Downloads 545
2459 Objective and Subjective Preconditions for Entrepreneurship: From the Point of View of Enterprise Risk Management

Authors: Maria Luskova, Maria Hudakova, Katarina Buganova

Abstract:

Established objective and subjective preconditions for entrepreneurship, forming the business organically related whole, are the necessary condition of successful entrepreneurial activities. Objective preconditions for entrepreneurship are developed by the market economy that should stimulate entrepreneurship by allowing the use of economic opportunities for all those who want to do business in respective field while providing guarantees to all owners and creating a stable business environment for entrepreneurs. Subjective preconditions of entrepreneurship are formed primarily by personal characteristics of the entrepreneur. These are his properties, abilities, skills, physiological, and psychological preconditions which may be inherited, inborn or sequentially developed and obtained during his life on the basis of education and influences of surrounding environment. The paper is dealing with issues of objective and subjective preconditions for entrepreneurship and provides their analysis in view of the current situation in Slovakia. It presents risks of the business environment in Slovakia that the Slovak managers considered the most significant in 2014 and defines the dominant attributes of the entrepreneur in the current business environment in Slovakia.

Keywords: entrepreneurship, innovations, opportunity, risk, uncertainty

Procedia PDF Downloads 501
2458 Using Wearable Technology to Monitor Workers’ Stress for Construction Safety: A Conceptual Framework

Authors: Namhun Lee, Seong Jin Kim

Abstract:

The construction industry represents one of the largest industries in the United States, yet it continues to face several occupational health and safety challenges. Many workers on construction sites are suffering from extended exposure to stressful situations such as poor and hazardous work environments and task complexity. Stress can be commonly defined as a feeling of emotional or physical tension, which can easily impact construction safety and result in a higher rate of job-related injuries in the construction industry. Physiological signals transmitted from wearable biosensors can be used to detect excessive stress. Therefore, workers’ stress should be detected and mitigated to prevent any type of serious incident or accident proactively. By doing this, construction productivity, as well as job satisfaction, would also be improved in the construction industry. To establish a foundation in this field of research, a conceptual framework for using wearable technology for construction safety has been developed for continuous and automatic monitoring of worker’s stress. The conceptual framework will serve as a foothold in future studies on the application of wearable technology for construction safety.

Keywords: construction safety, occupational stress, stress monitoring, wearable biosensors

Procedia PDF Downloads 138
2457 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 61
2456 Effect of Recreational Soccer on Health Indices and Diseases Prevention

Authors: Avinash Kharel

Abstract:

Recreational soccer (RS) as a medium of small-sided soccer game (SSG) has an immense positive effect on physical health, mental health and wellbeing. The RS has reflected both acute responses and long-term effects of training on sedentary, trained and clinical population on any age, gender or health status. The enjoyable mode of training elicits greater adherence by optimising intrinsic motivation while offering health benefits that match those achieved by treadmill and cycle ergometer programmes both as continuous and interval forms of training. Additionally, recreational soccer is effective and efficient regimens with highlighted social, motivational and competitive components overcoming the barriers such as cost-efficiency, time-efficiency, assess to facilities and intrinsic motivation. Further, it can be applied as an effective broad-spectrum non-pharmacological treatment of lifestyle diseases producing a positive physiological response in healthy subjects, patients and elderly people regardless of age, gender or training experience.

Keywords: recreational soccer, health benefits, diseases prevention, physiology

Procedia PDF Downloads 71
2455 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 17
2454 Metabolic Regulation of Rhizobacteria for Cool-Season Grass Tolerance to Heat Stress

Authors: Kashif Jaeel, Bingru Huang

Abstract:

Stress-induced accumulation of ethylene exacerbates drought damages in plants, and suppressing stress induction of ethylene may promote plant tolerance to heat stress. The objective of this study was to investigate the effects of endophytic bacteria (Paraburkholderia aspalathi) with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzymes in suppressing ethylene production on plant tolerance to heat stress and underlying physiological mechanisms of P. aspalathi-regulation in creeping bentgrass (Agrostis stolonifera). A novel strain of P. aspalathi, ‘WSF23’, with ACC deaminase activity was used to inoculate the roots of plants (cv. ‘Penncross’) subjected to heat stress in controlled-environment chambers. Inoculation with WSF23 bacteria resulted in improved shoot and root growth during heat stress. The differential changes in metabolite regulation due to the bacterial inoculation could contribute to ACC deamination bacteria-improved heat tolerance in cool-season grass species.

Keywords: rhizobacteria, grass, heat, plant metabolism, soil bacteria

Procedia PDF Downloads 50
2453 Quasi-Federal Structure of India: Fault-Lines Exposed in COVID-19 Pandemic

Authors: Shatakshi Garg

Abstract:

As the world continues to grapple with the COVID-19 pandemic, India, one of the most populous democratic federal developing nation, continues to report the highest active cases and deaths, as well as struggle to let its health infrastructure not succumb to the exponentially growing requirements of hospital beds, ventilators, oxygen to save thousands of lives daily at risk. In this context, the paper outlines the handling of the COVID-19 pandemic since it first hit India in January 2020 – the policy decisions taken by the Union and the State governments from the larger perspective of its federal structure. The Constitution of India adopted in 1950 enshrined the federal relations between the Union and the State governments by way of the constitutional division of revenue-raising and expenditure responsibilities. By way of the 72nd and 73rd Amendments in the Constitution, powers and functions were devolved further to the third tier, namely the local governments, with the intention of further strengthening the federal structure of the country. However, with time, several constitutional amendments have shifted the scales in favour of the union government. The paper briefly traces some of these major amendments as well as some policy decisions which made the federal relations asymmetrical. As a result, data on key fiscal parameters helps establish how the union government gained upper hand at the expense of weak state governments, reducing the local governments to mere constitutional bodies without adequate funds and fiscal autonomy to carry out the assigned functions. This quasi-federal structure of India with the union government amassing the majority of power in terms of ‘funds, functions and functionaries’ exposed the perils of weakening sub-national governments post COVID-19 pandemic. With a complex quasi-federal structure and a heterogeneous population of over 1.3 billion, the announcement of a sudden nationwide lockdown by the union government was followed by a plight of migrants struggling to reach homes safely in the absence of adequate arrangements for travel and safety-net made by the union government. With limited autonomy enjoyed by the states, they were mostly dictated by the union government on most aspects of handling the pandemic, including protocols for lockdown, re-opening post lockdown, and vaccination drive. The paper suggests that certain policy decisions like demonetization, the introduction of GST, etc., taken by the incumbent government since 2014 when they first came to power, have further weakened the states and local governments, which have amounted to catastrophic losses, both economic and human. The role of the executive, legislature and judiciary are explored to establish how all these three arms of the government have worked simultaneously to further weaken and expose the fault-lines of the federal structure of India, which has lent the nation incapacitated to handle this pandemic. The paper then suggests the urgency of re-looking at the federal structure of the country and undertaking measures that strengthen the sub-national governments and restore the federal spirit as was enshrined in the constitution to avoid mammoth human and economic losses from a pandemic of this sort.

Keywords: COVID-19 pandemic, India, federal structure, economic losses

Procedia PDF Downloads 157
2452 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor

Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan

Abstract:

The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.

Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management

Procedia PDF Downloads 228
2451 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume

Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri

Abstract:

Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.

Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties

Procedia PDF Downloads 152
2450 Use of WhatsApp Messenger for Optimal Healthcare Operational Communication during the COVID-19 Pandemic

Authors: Josiah O. Carter, Charlotte Hayden, Elizabeth Arthurs

Abstract:

Background: During the COVID-19 pandemic, hospital management policies have changed frequently and rapidly. This has created novel challenges in keeping the workforce abreast of these changes to enable them to deliver safe and effective care. Traditional communication methods, e.g. email, do not keep pace with the rapidly changing environment in the hospital, resulting in inaccurate, irrelevant, or outdated information being communicated, resulting in inefficiencies in patient care. Methods: The creation of a WhatsApp messaging group within the medical division at the Bristol Royal Infirmary has enabled senior clinicians and the hospital management team to update the medical workforce in real-time. It has two primary functions: (1) To enable dissemination of a concise, important operational summary. This comprises information on bed status and infection control procedural changes. It is fed directly from a daily critical incident briefing (2) To facilitate a monthly scheduled question and answer (Q&A) session for junior doctors to clarify issues with clinical directors, rota, and management staff. Additional ad-hoc updates are sent out for time-critical information; otherwise, it mainly functions as a broadcast-only group to prevent important information from being lost amongst other communication. All junior doctors within the medical division were invited to join the group. At present, the group comprises 131 participants, of which 10 are administrative staff (rota coordinators, management staff & clinical directors); the remaining 121 are junior clinicians working within the medical division. An electronic survey via Microsoft forms was sent out to junior doctors via the WhatsApp group and via email to assess its utilisation and effectiveness with the aim of quality improvements. Results: Of the 121 group participants, 19 completed the questionnaire (response rate 15.7%). Of these, 16/19 (84.2%) used it regularly, and 12/19 (63.2%) rated it as the most useful source for reliable updates relating to the hospital response to the COVID-19 pandemic, whereas only 2/19 (10.5%) found the trust intranet and the trust COVID-19 operational email update most useful. Respondents rated the WhatsApp group more useful as an information source (mean score 7.7/10) than as a means of providing feedback to management staff (mean score 6.3/10). Qualitative feedback suggested information around ward closures and changes to COVID cohorting, along with updates on staffing issues, were most useful. Respondents also noted the Q&A sessions were an efficient way of relaying feedback about management decisions but that it would be preferable if these sessions could be delivered more frequently. Discussion: During the current global COVID-19 pandemic, there is an increased need for rapid dissemination of critical information within NHS trusts; this includes communication between junior doctors, managers, and senior clinicians. The versatility of WhatsApp permits a variety of functions allowing for regular updates, the dissemination of time-critical information, and enables conversing and feedback. The project has demonstrated that reserved and well-managed use of a WhatsApp group is a welcome, efficient and practical means of communication between the senior management team and the junior medical workforce.

Keywords: communication, COVID-19, hospital management, WhatsApp

Procedia PDF Downloads 98
2449 Shift Work and Its Consequences

Authors: Parastoo Vasli

Abstract:

In today's society, more and more people work during ‘non-standard’ working hours, including shift and night work, which are perceived danger factors for health, safety, and social prosperity. Appropriate preventive and protective measures are needed to reduce side effects and ensure that the worker can adapt sufficiently. Of the many health effects associated with shift work, sleep disorders are the most widely recognized. The most troubling acute symptoms are difficulty falling asleep, short sleep, and drowsiness during working hours that last for days on end. The outcomes checked on plainly exhibit that shift work is related to expanded mental, social, and physiological drowsiness. Apparently, the effects are due to circadian and hemostatic compounds (sleep loss). Drowsiness is especially evident during night shifts and may lead to drowsiness in real workplace accidents. In some occupations, this is clearly a risk that could endanger human lives and has enormous financial outcomes. These dangers clearly affect a large number of people and should be of great importance to society. In particular, safety on night shifts is consistently reduced.

Keywords: shift work, night work, safety, health, drowsiness

Procedia PDF Downloads 206
2448 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment

Authors: Pranjal Srivastava, Piyali Sengupta

Abstract:

The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.

Keywords: drilling riser, marine, analytical model, fragility

Procedia PDF Downloads 129
2447 An Investigation the Effectiveness of Emotion Regulation Training on the Reduction of Cognitive-Emotion Regulation Problem in Patients with Multiple Sclerosis

Authors: Mahboobeh Sadeghi, Zahra Izadi Khah, Mansour Hakim Javadi, Masoud Gholamali Lavasani

Abstract:

Background: Since there is a relation between psychological and physiological factors, the aim of this study was to examine the effect of Emotion Regulation training on cognitive emotion regulation problem in patients with Multiple Sclerosis(MS) Method: In a randomized clinical trial thirty patients diagnosed with Multiple Sclerosis referred to state welfare organization were selected. The sample group was randomized into either an experimental group or a nonintervention control group. The subjects participated in 75-minute treatment sessions held three times a week for 4weeks (12 sessions). All 30 individuals were administered with Cognitive Emotion Regulation questionnaire (CERQ). Participants completed the questionnaire in pretest and post-test. Data obtained from the questionnaire was analyzed using Mancova. Results: Emotion Regulation significantly decreased the Cognitive Emotion Regulation problems patients with Multiple sclerosis (p < 0.001). Conclusions: Emotion Regulation can be used for the treatment of cognitive-emotion regulation problem in Multiple sclerosis.

Keywords: Multiple Sclerosis, cognitive-emotion regulation, emotion regulation, MS

Procedia PDF Downloads 442
2446 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: data interpolation, rational ball curve, hermite condition, continuity

Procedia PDF Downloads 413
2445 Neuroanatomical Specificity in Reporting & Diagnosing Neurolinguistic Disorders: A Functional & Ethical Primer

Authors: Ruairi J. McMillan

Abstract:

Introduction: This critical analysis aims to ascertain how well neuroanatomical aetiologies are communicated within 20 case reports of aphasia. Neuroanatomical visualisations based on dissected brain specimens were produced and combined with white matter tract and vascular taxonomies of function in order to address the most consistently underreported features found within the aphasic case study reports. Together, these approaches are intended to integrate aphasiological knowledge from the past 20 years with aphasiological diagnostics, and to act as prototypal resources for both researchers and clinical professionals. The medico-legal precedent for aphasia diagnostics under Canadian, US and UK case law and the neuroimaging/neurological diagnostics relative to the functional capacity of aphasic patients are discussed in relation to the major findings of the literary analysis, neuroimaging protocols in clinical use today, and the neuroanatomical aetiologies of different aphasias. Basic Methodology: Literature searches of relevant scientific databases (e.g, OVID medline) were carried out using search terms such as aphasia case study (year) & stroke induced aphasia case study. A series of 7 diagnostic reporting criteria were formulated, and the resulting case studies were scored / 7 alongside clinical stroke criteria. In order to focus on the diagnostic assessment of the patient’s condition, only the case report proper (not the discussion) was used to quantify results. Statistical testing established if specific reporting criteria were associated with higher overall scores and potentially inferable increases in quality of reporting. Statistical testing of whether criteria scores were associated with an unclear/adjusted diagnosis were also tested, as well as the probability of a given criterion deviating from an expected estimate. Major Findings: The quantitative analysis of neuroanatomically driven diagnostics in case studies of aphasia revealed particularly low scores in the connection of neuroanatomical functions to aphasiological assessment (10%), and in the inclusion of white matter tracts within neuroimaging or assessment diagnostics (30%). Case studies which included clinical mention of white matter tracts within the report itself were distributed among higher scoring cases, as were case studies which (as clinically indicated) related the affected vascular region to the brain parenchyma of the language network. Concluding Statement: These findings indicate that certain neuroanatomical functions are integrated less often within the patient report than others, despite a precedent for well-integrated neuroanatomical aphasiology also being found among the case studies sampled, and despite these functions being clinically essential in diagnostic neuroimaging and aphasiological assessment. Therefore, ultimately the integration and specificity of aetiological neuroanatomy may contribute positively to the capacity and autonomy of aphasic patients as well as their clinicians. The integration of a full aetiological neuroanatomy within the reporting of aphasias may improve patient outcomes and sustain autonomy in the event of medico-ethical investigation.

Keywords: aphasia, language network, functional neuroanatomy, aphasiological diagnostics, medico-legal ethics

Procedia PDF Downloads 50
2444 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change

Authors: Ali Razmi, Saeed Golian

Abstract:

Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.

Keywords: climate change, climate variables, copula, joint probability

Procedia PDF Downloads 340
2443 Mott Transition in the VO2/LSCO Heterojunction

Authors: Yi Hu, Chun-Chi Lin, Shau-En Yeh, Shin Lee

Abstract:

In this study, p–n heterojunctions with La0.5Sr0.5CoO3 (LSCO) and W-doped VO2 thin films were fabricated by the radio frequency (r.f.) magnetron sputtering technique and sol-gel process, respectively. The thickness of VO2 and LSCO thin films are about 40 nm and 400 nm, respectively. Good crystalline match between LSCO and VO2 films was observed from the SEM. The built-in voltages for the junction are about 1.1 V and 2.3 V for the sample in the metallic and insulating state, respectively. The sample can undergo the current induced MIT during applying field when the sample was heated at 40 and 50ºC. This is in agreement with the value obtained from the difference in the work functions of LSCO and VO2. The band structure of the heterojunction was proposed based on the results of analysis.

Keywords: hetrojection, Mott transition, switching , VO2

Procedia PDF Downloads 572
2442 FISCEAPP: FIsh Skin Color Evaluation APPlication

Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez

Abstract:

Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.

Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation

Procedia PDF Downloads 244
2441 Hepatocyte-Intrinsic NF-κB Signaling Is Essential to Control a Systemic Viral Infection

Authors: Sukumar Namineni, Tracy O'Connor, Ulrich Kalinke, Percy Knolle, Mathias Heikenwaelder

Abstract:

The liver is one of the pivotal organs in vertebrate animals, serving a multitude of functions such as metabolism, detoxification and protein synthesis and including a predominant role in innate immunity. The innate immune mechanisms pertaining to liver in controlling viral infections have largely been attributed to the Kupffer cells, the locally resident macrophages. However, all the cells of liver are equipped with innate immune functions including, in particular, the hepatocytes. Hence, our aim in this study was to elucidate the innate immune contribution of hepatocytes in viral clearance using mice lacking Ikkβ specifically in the hepatocytes, termed IkkβΔᴴᵉᵖ mice. Blockade of Ikkβ activation in IkkβΔᴴᵉᵖ mice affects the downstream signaling of canonical NF-κB signaling by preventing the nuclear translocation of NF-κB, an important step required for the initiation of innate immune responses. Interestingly, infection of IkkβΔᴴᵉᵖ mice with lymphocytic choriomeningitis virus (LCMV) led to strongly increased hepatic viral titers – mainly confined in clusters of infected hepatocytes. This was due to reduced interferon stimulated gene (ISG) expression during the onset of infection and a reduced CD8+ T-cell-mediated response. Decreased ISG production correlated with increased liver LCMV protein and LCMV in isolated hepatocytes from IkkβΔᴴᵉᵖ mice. A similar phenotype was found in LCMV-infected mice lacking interferon signaling in hepatocytes (IFNARΔᴴᵉᵖ) suggesting a link between NFkB and interferon signaling in hepatocytes. We also observed a failure of interferon-mediated inhibition of HBV replication in HepaRG cells treated with NF-kB inhibitors corroborating our initial findings with LCMV infections. Collectively, these results clearly highlight a previously unknown and influential role of hepatocytes in the induction of innate immune responses leading to viral clearance during a systemic viral infection with LCMV-WE.

Keywords: CD8+ T cell responses, innate immune mechanisms in the liver, interferon signaling, interferon stimulated genes, NF-kB signaling, viral clearance

Procedia PDF Downloads 176
2440 Effect of Fertilization and Combined Inoculation with Azospirillum brasilense and Pseudomonas fluorescens on Rhizosphere Microbial Communities of Avena sativa (Oats) and Secale Cereale (Rye) Grown as Cover Crops

Authors: Jhovana Silvia Escobar Ortega, Ines Eugenia Garcia De Salamone

Abstract:

Cover crops are an agri-technological alternative to improve all properties of soils. Cover crops such as oats and rye could be used to reduce erosion and favor system sustainability when they are grown in the same agricultural cycle of the soybean crop. This crop is very profitable but its low contribution of easily decomposable residues, due to its low C/N ratio, leaves the soil exposed to erosive action and raises the need to reduce its monoculture. Furthermore, inoculation with the plant growth promoting rhizobacteria contributes to the implementation, development and production of several cereal crops. However, there is little information on its effects on forage crops which are often used as cover crops to improve soil quality. In order to evaluate the effect of combined inoculation with Azospirillum brasilense and Pseudomonas fluorescens on rhizosphere microbial communities, field experiments were conducted in the west of Buenos Aires province, Argentina, with a split-split plot randomized complete block factorial design with three replicates. The factors were: type of cover crop, inoculation and fertilization. In the main plot two levels of fertilization 0 and 7 40-0-5 (NPKS) were established at sowing. Rye (Secale cereale cultivar Quehué) and oats (Avena sativa var Aurora.) were sown in the subplots. In the sub-subplots two inoculation treatments are applied without and with application of a combined inoculant with A. brasilense and P. fluorescens. Due to the growth of cover crops has to be stopped usually with the herbicide glyphosate, rhizosphere soil of 0-20 and 20-40 cm layers was sampled at three sampling times which were: before glyphosate application (BG), a month after glyphosate application (AG) and at soybean harvest (SH). Community level of physiological profiles (CLPP) and Shannon index of microbial diversity (H) were obtained by multivariate analysis of Principal Components. Also, the most probable number (MPN) of nitrifiers and cellulolytics were determined using selective liquid media for each functional group. The CLPP of rhizosphere microbial communities showed significant differences between sampling times. There was not interaction between sampling times and both, types of cover crops and inoculation. Rhizosphere microbial communities of samples obtained BG had different CLPP with respect to the samples obtained in the sampling times AG and SH. Fertilizer and depth of sampling also caused changes in the CLPP. The H diversity index of rhizosphere microbial communities of rye in the sampling time BG were higher than those associated with oats. The MPN of both microbial functional types was lower in the deeper layer since these microorganisms are mostly aerobic. The MPN of nitrifiers decreased in rhizosphere of both cover crops only AG. At the sampling time BG, the NMP of both microbial types were larger than those obtained for AG and SH. This may mean that the glyphosate application could cause fairly permanent changes in these microbial communities which can be considered bio-indicators of soil quality. Inoculation and fertilizer inputs could be included to improve management of these cover crops because they can have a significant positive effect on the sustainability of the agro-ecosystem.

Keywords: community level of physiological profiles, microbial diversity, plant growth promoting rhizobacteria, rhizosphere microbial communities, soil quality, system sustainability

Procedia PDF Downloads 382
2439 Application of Self-Efficacy Theory in Counseling Deaf and Hard of Hearing Students

Authors: Nancy A. Delich, Stephen D. Roberts

Abstract:

This case study explores using self-efficacy theory in counseling deaf and hard of hearing students in one California school district. Self-efficacy is described as the confidence a student has for performing a set of skills required to succeed at a specific task. When students need to learn a skill, self-efficacy can be a major factor in influencing behavioral change. Self-efficacy is domain specific, meaning that students can have high confidence in their abilities to accomplish a task in one domain, while at the same time having low confidence in their abilities to accomplish another task in a different domain. The communication isolation experienced by deaf and hard of hearing children and adolescents can negatively impact their belief about their ability to navigate life challenges. There is a need to address issues that impact deaf and hard of hearing students’ social-emotional development. Failure to address these needs may result in depression, suicidal ideation, and anxiety among other mental health concerns. Self-efficacy training can be used to address these socio-emotional developmental issues with this population. Four sources of experiences are applied during an intervention: (a) enactive mastery experience, (b) vicarious experience, (c) verbal persuasion, and (d) physiological and affective states. This case study describes the use of self-efficacy training with a coed group of 12 deaf and hard of hearing high school students who experienced bullying at school. Beginning with enactive mastery experience, the counselor introduced the topic of bullying to the group. The counselor educated the students about the different types of bullying while teaching them the terminology, signs and their meanings. The most effective way to increase self-efficacy is through extensive practice. To better understand these concepts, the students practiced through role-playing with the goal of developing self-advocacy skills. Vicarious experience is the perception that students have about their capabilities. Viewing other students advocating for themselves, cognitively rehearsing what actions they will and will not take, and teaching each other how to stand up against bullying can strengthen their belief in successfully overcoming bullying. The third source of self-efficacy beliefs is verbal persuasion. It occurs when others express belief in the capabilities of the student. Didactic training and pedagogic materials on bullying were employed as part of the group counseling sessions. The fourth source of self-efficacy appraisals is physiological and affective states. Students expect positive emotions to be associated with successful skilled performance. When students practice new skills, the counselor can apply several strategies to enhance self-efficacy while reducing and controlling emotional and physical states. The intervention plan incorporated all four sources of self-efficacy training during several interactive group sessions regarding bullying. There was an increased understanding around the issues of bullying, resulting in the students’ belief of their ability to perform protective behaviors and deter future occurrences. The outcome of the intervention plan resulted in a reduction of reported bullying incidents. In conclusion, self-efficacy training can be an effective counseling and teaching strategy in addressing and enhancing the social-emotional functioning with deaf and hard of hearing adolescents.

Keywords: counseling, self-efficacy, bullying, social-emotional development, mental health, deaf and hard of hearing students

Procedia PDF Downloads 335
2438 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces

Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto

Abstract:

In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel

Procedia PDF Downloads 307
2437 Analyzing the Politico-Religious Order of The 'Islamic State'

Authors: Galit Truman Zinman

Abstract:

The 'Islamic State' (IS) is one of the most successful jihadist groups in the modern history. The 'Islamic State' strives to realize the idea of erasing the borders between Muslim countries and establishing a wide Islamic caliphate. The 'Islamic State' is based on religious unity and opposition to existing political order. In this paper, the main argument is that the 'Islamic State' is characterized by two significant tendencies of state-building: preservation and change. The methodology of this study is based on the process tracing method and the analysis of primary sources: decisions, announcements and speeches of religious leaders of the Islamic State, slogans, rituals and symbols, audio and video clips produced by the Al-Hayat Media Center, films distributed on YouTube, as well as the content analysis of Dabiq`s articles (IS official Journal) and nasheeds (jihadi songs). The major findings of this study indicate that in practice the 'Islamic State' uses the same socio-political functions typical to the modern state (preservation), but introduces a different religious-ideological content (change). On the one hand, there is a preservation of the principles of existing modern state. Even with the rejection of secularization, globalization, and nationalism, there is an establishment of typical modern nation-state patterns. It is still a state entity, which has an ideological infrastructure, territory, population, governance and a monopoly on the use of violence, security services, justice system, tax collection, etc. All these functions characterize the modern state, and despite the desire of the 'Islamic State' to create a new kind of state, it reminds patterns of the typical modern nation-state. As for the religious-ideological content of the new state, here we can see a tendency of great change. The 'Islamic State' aims to create an Islamic caliphate which would allow the establishment of religious law and order, under a big commitment to return civilization to a seventh-century environment. The 'Islamic State' favors the fight against Western culture and its liberal ideology. It supports the struggle for global jihad against the unbelievers. Today, despite the territorial 'contraction' and the undermining of the organization's governance in Iraq and Syria, the 'Islamic State' continues to maintain its brand among jihadist activists around the world.

Keywords: Islamic State, Islamic caliphate, modern nation-state, religious law and order

Procedia PDF Downloads 170
2436 Applications of Polyvagal Theory for Trauma in Clinical Practice: Auricular Acupuncture and Herbology

Authors: Aurora Sheehy, Caitlin Prince

Abstract:

Within current orthodox medical protocols, trauma and mental health issues are deemed to reside within the realm of cognitive or psychological therapists and are marginalised in these areas, in part due to limited drugs option available, mostly manipulating neurotransmitters or sedating patients to reduce symptoms. By contrast, this research presents examples from the clinical practice of how trauma can be assessed and treated physiologically. Adverse Childhood Experiences (ACEs) are a tally of different types of abuse and neglect. It has been used as a measurable and reliable predictor of the likelihood of the development of autoimmune disease. It is a direct way to demonstrate reliably the health impact of traumatic life experiences. A second assessment tool is Allostatic Load, which refers to the cumulative effects that chronic stress has on mental and physical health. It records the decline of an individual’s physiological capacity to cope with their experience. It uses a specific grouping of serum testing and physical measures. It includes an assessment of neuroendocrine, cardiovascular, immune and metabolic systems. Allostatic load demonstrates the health impact that trauma has throughout the body. It forms part of an initial intake assessment in clinical practice and could also be used in research to evaluate treatment. Examining medicinal plants for their physiological, neurological and somatic effects through the lens of Polyvagal theory offers new opportunities for trauma treatments. In situations where Polyvagal theory recommends activities and exercises to enable parasympathetic activation, many herbs that affect Effector Memory T (TEM) cells also enact these responses. Traditional or Indigenous European herbs show the potential to support the polyvagal tone, through multiple mechanisms. As the ventral vagal nerve reaches almost every major organ, plants that have actions on these tissues can be understood via their polyvagal actions, such as monoterpenes as agents to improve respiratory vagal tone, cyanogenic glycosides to reset polyvagal tone, volatile oils rich in phenyl methyl esters improve both sympathetic and parasympathetic tone, bitters activate gut function and can strongly promote parasympathetic regulation. Auricular Acupuncture uses a system of somatotopic mapping of the auricular surface overlaid with an image of an inverted foetus with each body organ and system featured. Given that the concha of the auricle is the only place on the body where the Vagus Nerve neurons reach the surface of the skin, several investigators have evaluated non-invasive, transcutaneous electrical nerve stimulation (TENS) at auricular points. Drawn from an interdisciplinary evidence base and developed through clinical practice, these assessment and treatment tools are examples of practitioners in the field innovating out of necessity for the best outcomes for patients. This paper draws on case studies to direct future research.

Keywords: polyvagal, auricular acupuncture, trauma, herbs

Procedia PDF Downloads 66
2435 Expression of ACSS2 Genes in Peripheral Blood Mononuclear Cells of Patients with Alzheimer’s Disease

Authors: Ali Bayram, Burak Uz, Remzi Yiğiter

Abstract:

The impairment of lipid metabolism in the central nervous system has been suggested as a critical factor of Alzheimer’s disease (AD) pathogenesis. Homo sapiens acyl-coenyme A synthetase short-chain family member 2 (ACSS2) gene encodes the enzyme acetyl-Coenzyme A synthetase (AMP forming; AceCS) providing acetyl-coenzyme A (Ac-CoA) for various physiological processes, such as cholesterol and fatty acid synthesis, as well as the citric acid cycle. We investigated ACSS2, transcript variant 1 (ACSS2*1), mRNA levels in the peripheral blood mononuclear cells (PBMC) of patients with AD and compared them with the controls. The study group comprised 50 patients with the diagnosis of AD who have applied to Gaziantep University Faculty of Medicine, and Department of Neurology. 49 healthy individuals without any neurodegenerative disease are included as controls. ACSS2 mRNA expression in PBMC of AD/control patients was 0.495 (95% confidence interval: 0.410-0.598), p= .000000001902). Further studies are needed to better clarify this association.

Keywords: Alzheimer’s disease, ACSS2 Genes, mRNA expression, RT-PCR

Procedia PDF Downloads 367
2434 Demonic Possession and Health Care Complications: Concept and Remedy from Islamic Point-of-View

Authors: Khalid Ishola Bello

Abstract:

Many religions and cultures believe in the existence of invisible beings who co-exist with man on earth. Muslims, for example, believe in malaikah (Angel) and jinn (demon), who have their source of creation from light and flame, respectively. Jinn, according to Islamic texts, possesses unique characteristics which give them an advantage over the man. Invisibility, transforming into or taking possession of another being are parts of advantages jinn have above man. Hence, jinn can attack man and truncate his well-being by causing malfunction of his physiological and psychological realms, which may go beyond physical health care. It is on this background that this paper aims to articulate the possibility of a demonic attack on human health and the care processes recommended by Islam to heal and restore well-being of the victim. Through analysis of the inductive, deductive, and historical approaches, the process of ruqyah (healing method based on recitation of the Qur’an) and hijamah (cupping) therapies shall be analyzed. The finding shows the efficacy of Islamic remedies to demonic possession, which usually complicates health challenges in the care of man. This alternative approach is therefore recommended for holistic health care since physical health care cannot fix spiritual health challenges.

Keywords: wellbeing, healthcare, demonic possession, cupping, jinn

Procedia PDF Downloads 49
2433 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique

Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello

Abstract:

The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.

Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation

Procedia PDF Downloads 181