Search results for: mixed effects models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18712

Search results for: mixed effects models

17842 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations

Procedia PDF Downloads 146
17841 The Role of Virtual Group Anonymity in the Generation, Selection, and Refinement of Ideas

Authors: Jonali Baruah, Keesha Green

Abstract:

This experimental study examines the effects of anonymity in video meeting groups across the stages of innovation (idea generation, selection, and refinement) on various measures of creativity. A sample of 92 undergraduate students participated in small groups of three to four members to complete creativity, decision-making, and idea-refinement task in either anonymous or identified conditions. The study followed two anonymity (anonymous and identified) X 3 stages of innovation (idea generation, idea selection, and idea refinement) in a mixed factorial design. Results revealed that the anonymous groups produced ideas of the highest average quality in the refinement phase of innovation. The results of this study enhanced our understanding of the productivity and creativity of groups in computer-mediated communication.

Keywords: creativity, anonymity, idea-generation, idea-refinement, innovation

Procedia PDF Downloads 137
17840 Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment

Authors: Yakui Bai, Chen Sun, Ke Wang

Abstract:

An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging.

Keywords: failure behavior, low alloy steel, steam generator forging, stress corrosion cracking

Procedia PDF Downloads 125
17839 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280
17838 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: wind fragility, glass window, high rise building, wind disaster

Procedia PDF Downloads 257
17837 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data

Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca

Abstract:

In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.

Keywords: citizen science, data quality filtering, species distribution models, trait profiles

Procedia PDF Downloads 203
17836 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance

Authors: Flora Babongo, Valerie Chavez

Abstract:

Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.

Keywords: causal inference, DAGs, BAMLSS, financial index

Procedia PDF Downloads 151
17835 RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model

Authors: Jamil Ahmed

Abstract:

Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system.

Keywords: authorization, access control model, role based access control, attribute based access control

Procedia PDF Downloads 159
17834 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 278
17833 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises

Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao

Abstract:

Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.

Keywords: opinion formation, Deffuant model, opinion mutation, consensus making

Procedia PDF Downloads 177
17832 Integrating Life Skills Education for Mental Health and Academic Benefits of Adolescents in Schools in Schools

Authors: Sarwat Sultan, Muhammad Saleem, Frasat Kanwal

Abstract:

Adolescence is a transition period of life that brings physical and psychological changes and always results in several challenges for an adolescent. An adolescent must learn life skills for a healthy transition from adolescence period to adulthood. Therefore this study was planned to examine the effects of life skill education on adolescents' mental health and academic benefits. A random sample of 720 school students aged between 13-17 years was categorized into two groups; experimental (n=360) and control (n=360). Life skill education was given to the students of the intervention group with repeated assessments of mental health and academic benefits at pre-intervention (T1) and post-intervention (T2) for both groups. Both groups were compared on scores of mental health and academic benefits across two times T1 and T2 by employing a mixed between-within-subjects analysis of variance. Findings showed the main effect of time suggesting the largest changes in mental health and academic benefits over time. Interaction effects between time and both groups were also found significant indicating the largest changes across time between both groups. Results of between-group comparisons showed significant values for Wilks’ Lambda and partial eta squared for students of the intervention group who scored higher on mental health and academic benefits after receiving life skills training than the students of the control group. Results of the present study determined the efficacy of life skill education and have implications for both teachers and psychotherapists to improve the students’ mental health and academic performance.

Keywords: academic benefits, life skills, mental health, adolescents

Procedia PDF Downloads 56
17831 Gastronomy: The Preferred Digital Business Models and Impacts in Business Economics within Hospitality, Tourism, and Catering Sectors through Online Commerce

Authors: John Oupa Hlatshwayo

Abstract:

Background: There seem to be preferred digital business models with varying impacts within hospitality, tourism and catering sub-sectors explored through online commerce, as all are ingrained in the business economics domain. Aim: A study aims to establish if such phenomena (Digital Business Models) exist and to what extent if any, within the hospitality, tourism and catering industries, respectively. Setting: This is a qualitative study conducted by exploring several (Four) institutions globally through Case Studies. Method: This research explored explanatory case studies to answer questions about ‘how’ or ’why’ with little control by a researcher over the occurrence of events. It is qualitative research, deductive, and inductive methods. Hence, a comprehensive approach to analyzing qualitative data was attainable through immersion by reading to understand the information. Findings: The results corroborated the notion that digital business models are applicable, by and large, in business economics. Thus, three sectors wherein enterprises operate in the business economics sphere have been narrowed down i.e. hospitality, tourism and catering, are also referred to as triangular polygons due to the atypical nature of being ‘stand-alone’, yet ‘sub-sectors’, but there are confounding factors to consider. Conclusion: The significance of digital business models and digital transformation shows an inevitable merger between business and technology within Hospitality, Tourism, and Catering. Contribution: Such symbiotic relationship of business and technology, persistent evolution of clients’ interface with end-products, forever changing market, current adaptation as well as adjustment to ‘new world order’ by enterprises must be embraced constantly without fail by Business Practitioners, Academics, Business Students, Organizations and Governments.

Keywords: digital business models, hospitality, tourism, catering, business economics

Procedia PDF Downloads 17
17830 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
17829 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
17828 Disassociating Preferences from Evaluations Towards Pseudo Drink Brands

Authors: Micah Amd

Abstract:

Preferences towards unfamiliar drink brands can be predictably influenced following correlations of subliminally-presented brands (CS) with positively valenced attributes (US). Alternatively, evaluations towards subliminally-presented CS may be more variable, suggesting that CS-evoked evaluations may disassociate from CS-associated preferences following subliminal CS-US conditioning. We assessed this hypothesis over three experiments (Ex1, Ex2, Ex3). Across each experiment, participants first provided preferences and evaluations towards meaningless trigrams (CS) as a baseline, followed by conditioning and a final round of preference and evaluation measurements. During conditioning, four pairs of subliminal and supraliminal/visible CS were respectively correlated with four US categories varying along aggregate valence (e.g., 100% positive, 80% positive, 40% positive, 0% positive – for Ex1 and Ex2). Across Ex1 and Ex2, presentation durations for subliminal CS were 34 and 17 milliseconds, respectively. Across Ex3, aggregate valences of the four US categories were altered (75% positive, 55% positive, 45% positive, 25% positive). Valence across US categories was manipulated to address a supplemental query of whether US-to-CS valence transfer was summative or integrative. During analysis, we computed two sets of difference scores reflecting pre-post preference and evaluation performances, respectively. These were subjected to Bayes tests. Across all experiments, results illustrated US-to-CS valence transfer was most likely to shift evaluations for visible CS, but least likely to shift evaluations for subliminal CS. Alternatively, preferences were likely to shift following correlations with single-valence categories (e.g., 100% positive, 100% negative) across both visible and subliminal CS. Our results suggest that CS preferences can be influenced through subliminal conditioning even as CS evaluations remain unchanged, supporting our central hypothesis. As for whether transfer effects are summative/integrative, our results were more mixed; a comparison of relative likelihoods revealed that preferences are more likely to reflect summative effects whereas evaluations reflect integration, independent of visibility condition.

Keywords: subliminal conditioning, evaluations, preferences, valence transfer

Procedia PDF Downloads 154
17827 Using Traffic Micro-Simulation to Assess the Benefits of Accelerated Pavement Construction for Reducing Traffic Emissions

Authors: Sudipta Ghorai, Ossama Salem

Abstract:

Pavement maintenance, repair, and rehabilitation (MRR) processes may have considerable environmental impacts due to traffic disruptions associated with work zones. The simulation models in use to predict the emission of work zones were mostly static emission factor models (SEFD). SEFD calculates emissions based on average operation conditions e.g. average speed and type of vehicles. Although these models produce accurate results for large-scale planning studies, they are not suitable for analyzing driving conditions at the micro level such as acceleration, deceleration, idling, cruising, and queuing in a work zone. The purpose of this study is to prepare a comprehensive work zone environmental assessment (WEA) framework to calculate the emissions caused due to disrupted traffic; by integrating traffic microsimulation tools with emission models. This will help highway officials to assess the benefits of accelerated construction and opt for the most suitable TMP not only economically but also from an environmental point of view.

Keywords: accelerated construction, pavement MRR, traffic microsimulation, congestion, emissions

Procedia PDF Downloads 449
17826 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional

Procedia PDF Downloads 229
17825 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes

Authors: Hamed K. Esfahani, Bithin Datta

Abstract:

Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.

Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites

Procedia PDF Downloads 276
17824 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 166
17823 Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province

Authors: N. Sopipan

Abstract:

In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12.

Keywords: ARIMA Models, exponential smoothing, Holt-Winter model

Procedia PDF Downloads 300
17822 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 185
17821 Using the Nonlocal Theory of Free Vibrations Nanobeam

Authors: Ali Oveysi Sarabi

Abstract:

The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number.

Keywords: nanobeams, free vibration, nonlocal elasticity, winkler foundation model, Pasternak foundation model, beam theories

Procedia PDF Downloads 536
17820 Large Herbivores Benefit Plant Growth via Diverse and Indirect Pathways in a Temperate Grassland

Authors: Xiaofei Li, Zhiwei Zhong, Deli Wang

Abstract:

Large herbivores affect plant growth not only through their direct, consumptive effects, but also through indirect effects that alter species interactions. Indirect effects can be either positive or negative, therefore having the potential to mitigate or enhance the direct impacts of herbivores. However, until recently, we know considerably less about the indirect effects than the direct effects of large herbivores on plants, and few studies have explored multiple indirect pathways simultaneously. Here, we investigated how large domestic herbivores, cattle (Bos taurus), can shape population growth of an intermediately preferred forb species, Artemsisa scoparia, through diverse pathways in a temperate grassland of northeast China. We found that, although exposure to direct consumption of cattle, A. scoparia growth was not inhibited, but rather showed a significant increase in the grazed than ungrazed areas. This unexpected result was due to grazing-induced multiple indirect, positive effects overwhelmed the direct, negative consumption effects of cattle on plant growth. The much more intensive consumption on the dominant Leymus chinensis grass, ground litter removal, and increases in ant nest abundance induced by cattle, exerted significant indirect, positive effects on A. scoparia growth. These pathways benefited A.scoparia growth by lessening interspecific competition, mitigating negative effects of litter accumulation, and increasing soil nutrient availability, respectively. Our results highlight the need to integrate indirect effects into the traditional food web theory, which is based primary on direct, trophic linkages, to fully understand community organization and dynamics. Large herbivores are important conservation and management targets, our results suggest that these mammals should be managed with the understanding that they can affect primary producers through diverse paths.

Keywords: grasslands, large herbivores, plant growth, indirect effects

Procedia PDF Downloads 272
17819 Interoperability Maturity Models for Consideration When Using School Management Systems in South Africa: A Scoping Review

Authors: Keneilwe Maremi, Marlien Herselman, Adele Botha

Abstract:

The main purpose and focus of this paper are to determine the Interoperability Maturity Models to consider when using School Management Systems (SMS). The importance of this is to inform and help schools with knowing which Interoperability Maturity Model is best suited for their SMS. To address the purpose, this paper will apply a scoping review to ensure that all aspects are provided. The scoping review will include papers written from 2012-2019 and a comparison of the different types of Interoperability Maturity Models will be discussed in detail, which includes the background information, the levels of interoperability, and area for consideration in each Maturity Model. The literature was obtained from the following databases: IEEE Xplore and Scopus, the following search engines were used: Harzings, and Google Scholar. The topic of the paper was used as a search term for the literature and the term ‘Interoperability Maturity Models’ was used as a keyword. The data were analyzed in terms of the definition of Interoperability, Interoperability Maturity Models, and levels of interoperability. The results provide a table that shows the focus area of concern for each Maturity Model (based on the scoping review where only 24 papers were found to be best suited for the paper out of 740 publications initially identified in the field). This resulted in the most discussed Interoperability Maturity Model for consideration (Information Systems Interoperability Maturity Model (ISIMM) and Organizational Interoperability Maturity Model for C2 (OIM)).

Keywords: interoperability, interoperability maturity model, school management system, scoping review

Procedia PDF Downloads 209
17818 Effects of a School-based Mindfulness Intervention on Stress Levels and Emotion Regulation of Adolescent Students Enrolled in an Independent School

Authors: Tracie Catlett

Abstract:

Students enrolled in high-achieving schools are under tremendous pressure to perform at high levels inside and outside the classroom. Achievement pressure is a prevalent source of stress for students enrolled in high-achieving schools, and female students, in particular, experience a higher frequency and higher levels of stress compared to their male peers. The practice of mindfulness in a school setting is one tool that has been linked to improved self-regulation of emotions, increased positive emotions, and stress reduction. A mixed methods randomized pretest-posttest no-treatment control trial evaluated the effects of a six-session mindfulness intervention taught during a regularly scheduled life skills period in an independent day school, one type of high-achieving school. Twenty-nine students in Grades 10 and 11 were randomized by class, where Grade 11 students were in the intervention group (n = 14) and Grade 10 students were in the control group (n = 15). Findings from the study produced mixed results. There was no evidence that the mindfulness program reduced participants’ stress levels and negative emotions. In fact, contrary to what was expected, students enrolled in the intervention group experienced higher levels of stress and increased negative emotions at posttreatment when compared to pretreatment. Neither the within-group nor the between-groups changes in stress level were statistically significant, p > .05, and the between-groups effect size was small, d = .2. The study found evidence that the mindfulness program may have had a positive impact on students’ ability to regulate their emotions. The within-group comparison and the between-groups comparison at posttreatment found that students in the mindfulness course experienced statistically significant improvement in the in their ability to regulate their emotions at posttreatment, p = .009 < .05 and p =. 034 < .05, respectively. The between-groups effect size was medium, d =.7, suggesting that the positive differences in emotion regulation difficulties were substantial and have practical implications. The analysis of gender differences, as they relate to stress and emotions, revealed that female students perceive higher levels of stress and report experiencing stress more often than males. There were no gender differences when analyzing sources of stress experienced by the student participants. Both females and males experience regular achievement pressures related to their school performance and worry about their future, college acceptance, grades, and parental expectations. Females reported an increased awareness of their stress and actively engaged in practicing mindfulness to manage their stress. Students in the treatment group expressed that the practice of mindfulness resulted in feelings of relaxation and calmness.

Keywords: achievement pressure, adolescents, emotion regulation, emotions, high-achieving schools, independent schools, mindfulness, negative affect, positive affect, stress

Procedia PDF Downloads 61
17817 3D Human Body Reconstruction Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.

Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X

Procedia PDF Downloads 70
17816 The Effectiveness of Concept Mapping as a Tool for Developing Critical Thinking in Undergraduate Medical Education: A BEME Systematic Review: BEME Guide No. 81

Authors: Marta Fonseca, Pedro Marvão, Beatriz Oliveira, Bruno Heleno, Pedro Carreiro-Martins, Nuno Neuparth, António Rendas

Abstract:

Background: Concept maps (CMs) visually represent hierarchical connections among related ideas. They foster logical organization and clarify idea relationships, potentially aiding medical students in critical thinking (to think clearly and rationally about what to do or what to believe). However, there are inconsistent claims about the use of CMs in undergraduate medical education. Our three research questions are: 1) What studies have been published on concept mapping in undergraduate medical education? 2) What was the impact of CMs on students’ critical thinking? 3) How and why have these interventions had an educational impact? Methods: Eight databases were systematically searched (plus a manual and an additional search were conducted). After eliminating duplicate entries, titles, and abstracts, and full-texts were independently screened by two authors. Data extraction and quality assessment of the studies were independently performed by two authors. Qualitative and quantitative data were integrated using mixed-methods. The results were reported using the structured approach to the reporting in healthcare education of evidence synthesis statement and BEME guidance. Results: Thirty-nine studies were included from 26 journals (19 quantitative, 8 qualitative and 12 mixed-methods studies). CMs were considered as a tool to promote critical thinking, both in the perception of students and tutors, as well as in assessing students’ knowledge and/or skills. In addition to their role as facilitators of knowledge integration and critical thinking, CMs were considered both teaching and learning methods. Conclusions: CMs are teaching and learning tools which seem to help medical students develop critical thinking. This is due to the flexibility of the tool as a facilitator of knowledge integration, as a learning and teaching method. The wide range of contexts, purposes, and variations in how CMs and instruments to assess critical thinking are used increase our confidence that the positive effects are consistent.

Keywords: concept map, medical education, undergraduate, critical thinking, meaningful learning

Procedia PDF Downloads 125
17815 Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats

Authors: Ivan Župan

Abstract:

Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure.

Keywords: critical infrastructure, cyber-physical security, smart industry, security methodology, security technology

Procedia PDF Downloads 76
17814 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces

Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech

Abstract:

Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.

Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate

Procedia PDF Downloads 251
17813 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults

Authors: A. Badran, M. Hollocks, H. Markus

Abstract:

Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.

Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging

Procedia PDF Downloads 471