Search results for: integral building design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15660

Search results for: integral building design

14790 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India

Authors: Tirthankar Chakraborty, Indranil Mukherjee

Abstract:

The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.

Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector

Procedia PDF Downloads 381
14789 Recycling Carbon Fibers/Epoxy Composites Wastes in Building Materials Based on Geopolymer Binders

Authors: A. Saccani, I. Lancellotti, E. Bursi

Abstract:

Scraps deriving from the production of epoxy-carbon fibers composites have been recycled as a reinforcement to produce building materials. Short chopped fibers (5-7 mm length) have been added at low volume content (max 10%) to produce mortars. The microstructure, mechanical properties (mainly flexural strength) and dimensional stability of the derived materials have been investigated. Two different types of matrix have been used: one based on conventional Portland Cement and the other containing geopolymers formed starting from activated metakaolin and fly ashes. In the second case the materials is almost completely made of recycled ingredients. This is an attempt to produce reliable materials solving waste disposal problems. The first collected results show promising results.

Keywords: building materials, carbon fibres, fly ashes, geopolymers

Procedia PDF Downloads 154
14788 Comparison of Wind Fragility for Window System in the Simplified 10 and 15-Story Building Considering Exposure Category

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Window system in high rise building is occasionally subjected to an excessive wind intensity, particularly during typhoon. The failure of window system did not affect overall safety of structural performance; however, it could endanger the safety of the residents. In this paper, comparison of fragility curves for window system of two residential buildings was studied. The probability of failure for individual window was determined with Monte Carlo Simulation method. Then, lognormal cumulative distribution function was used to represent the fragility. The results showed that windows located on the edge of leeward wall were more susceptible to wind load and the probability of failure for each window panel increased at higher floors.

Keywords: wind fragility, window system, high rise building, wind disaster

Procedia PDF Downloads 308
14787 Analysis of the Interference from Risk-Determining Factors of Cooperative and Conventional Construction Contracts

Authors: E. Harrer, M. Mauerhofer, T. Werginz

Abstract:

As a result of intensive competition, the building sector is suffering from a high degree of rivalry. Furthermore, there can be observed an unbalanced distribution of project risks. Clients are aimed to shift their own risks into the sphere of the constructors or planners. The consequence of this is that the number of conflicts between the involved parties is inordinately high or even increasing; an alternative approach to counter on that developments are cooperative project forms in the construction sector. This research compares conventional contract models and models with partnering agreements to examine the influence on project risks by an early integration of the involved parties. The goal is to show up deviations in different project stages from the design phase to the project transfer phase. These deviations are evaluated by a survey of experts from the three spheres: clients, contractors and planners. By rating the influence of the participants on specific risk factors it is possible to identify factors which are relevant for a smooth project execution.

Keywords: building projects, contract models, partnering, project risks

Procedia PDF Downloads 266
14786 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Internet of Things, smart building, device interoperability, device integration, smart home

Procedia PDF Downloads 266
14785 Building Learning Organization: Case Study of Transforming a Banking Company with 21st Century Creative Services Company

Authors: Zeynep Aykul Yavuz

Abstract:

Misconception about design is about making a product pretty. However, the holistic approaches such as design thinking or human-centered design could take the design from making things nice to things inspired by real people and work with real-world limitations. Design thinking helps companies to understand not only problem area but also opportunities. It can be used by any people from any background which provide a space for companies where employees from different departments work together to solve the same problem. While demanding skills changing year to year into the market, previous technical skills are commons anymore. The frontier companies in the sectors look for interactive methods to solve problems. Moreover, the recruiter aims to understand the candidate’s design thinking skills (. The study includes a case study where a 21st century creative services company “ATÖLYE” offers innovation transformation with design thinking to a banking company. Both companies are located in İstanbul in Turkey. The banking company contacted with the ATÖLYE in January 2018 because they heard design thinking in different markets and how it transformed the way of working. The transformation process had 3 phases which were basic training of teams while getting coaching from ATÖLYE’s employees, coaching training with graduates of basic training, facilitator training. Employees built new skills while solving the banking company’s strategic problems. ATÖLYE offered experiential learning which helped employees’ making sense of new skills and knowledge. One day workshops were organized to create awareness about the practice of design thinking. In addition to these, a community of practice was built to create an environment to make reflections and discuss good practice. Not only graduates from the training program but also other employees from the company participated in the community gatherings. ATÖLYE did not train some employees in the company. Rather than that, its aim was to build a contemporary organization for the company. This provided a sustainable system in terms of human resources and motivation. At the beginning of 2020, employees from the first cohort in the basic training who took coaching training and facilitator training have started to design training for different groups in the company. They have considered what could be better in their training experience and designed new ones according to that, so they have been using design thinking to design the design training. This is one of the outcomes which shows the impact of all process clearly.

Keywords: design thinking, learning community, professional development, training, organizational transformation

Procedia PDF Downloads 108
14784 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland

Authors: Ahmed Aisa, Tariq Iqbal

Abstract:

This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.

Keywords: water heating, thermal storage, capital cost solar, consumption

Procedia PDF Downloads 422
14783 Modern Methods of Construction (MMC): The Potentials and Challenges of Using Prefabrication Technology for Building Modern Houses in Afghanistan

Authors: Latif Karimi, Yasuhide Mochida

Abstract:

The purpose of this paper is to study Modern Methods of Construction (MMC); specifically, the prefabrication technology and check the applicability, suitability, and benefits of this construction technique over conventional methods for building new houses in Afghanistan. Construction industry and house building sector are a key contributor to Afghanistan’s economy. However, this sector is challenged with lack of innovation and severe impacts that it has on the environment due to huge amount of construction waste from building, demolition and or renovation activities. This paper studies the prefabrication technology, a popular MMC that is becoming more common, improving in quality and being available in a variety of budgets. Several feasibility studies worldwide have revealed that this method is the way forward in improving construction industry performance as it has been proven to reduce construction time, construction wastes and improve the environmental performance of the construction processes. In addition, this study emphasizes on 'sustainability' in-house building, since it is a common challenge in housing construction projects on a global scale. This challenge becomes more severe in the case of under-developed countries, like Afghanistan. Because, most of the houses are being built in the absence of a serious quality control mechanism and dismissive to basic requirements of sustainable houses; well-being, cost-effectiveness, minimization - prevention of wastes production during construction and use, and severe environmental impacts in view of a life cycle assessment. Methodology: A literature review and study of the conventional practices of building houses in urban areas of Afghanistan. A survey is also being completed to study the potentials and challenges of using prefabrication technology for building modern houses in the cities across the country. A residential housing project is selected for case study to determine the drawbacks of current construction methods vs. prefabrication technique for building a new house. Originality: There are little previous research available about MMC considering its specific impacts on sustainability related to house building practices. This study will be specifically of interest to a broad range of people, including planners, construction managers, builders, and house owners.

Keywords: modern methods of construction (MMC), prefabrication, prefab houses, sustainable construction, modern houses

Procedia PDF Downloads 239
14782 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.

Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney

Procedia PDF Downloads 565
14781 Connecting Teachers in a Web-Based Professional Development Community in Crisis Time: A Knowledge Building Approach

Authors: Wei Zhao

Abstract:

The pandemic crisis disrupted normal classroom practices so that the constraints of the traditional practice became apparent. This turns out to be new opportunities for technology-based learning and teaching. However, how the technology supports the preschool teachers go through this sudden crisis and how preschool teachers conceived of the use of technology, appropriate and design technological artifacts as a mediator of knowledge construction in order to suit young children’s literacy level are rarely explored. This study addresses these issues by looking at the influence of a web-supported teacher community on changes/shifts in preschool teachers’ epistemological beliefs and practices. This teachers’ professional development community was formulated before the pandemic time and developed virtually throughout the home-based learning caused by Covid-19. It served as a virtual and asynchronous community for those teachers to collaboratively plan for and conduct online lessons using the knowledge-building approach for the purpose of sustaining children’s learning curiosity and opening up new learning opportunities during the lock-down period. The knowledge-building approach helps to increase teachers’ collective responsibility to collaboratively work on shared educational goals in the teacher community and awareness of noticing new ideas or innovations in their classroom. Based on the data collected across five months during and after the lock-down period and the activity theory, results show a dynamic interplay between the evolution of the community culture, the growth of teacher community and teachers’ identity transformation and professional development. Technology is useful in this regard not only because it transforms the geographical distance and new gathering guidelines after the outbreak of pandemic into new ways of communal communication and collaboration. More importantly, while teachers selected, monitored and adapted the technology, it acts as a catalyst for changes in teachers’ old teaching practices and epistemological dispositions.

Keywords: activity theory, changes in epistemology and practice, knowledge building, web-based teachers’ professional development community

Procedia PDF Downloads 174
14780 Correlation between Seismic Risk Insurance Indexes and Uninhabitability Indexes of Buildings in Morocco

Authors: Nabil Mekaoui, Nacer Jabour, Abdelhamid Allaoui, Abderahim Oulidi

Abstract:

The reliability of several insurance indexes of the seismic risk is evaluated and compared for an efficient seismic risk coverage of buildings in Morocco, thus, reducing the basic risk. A large database of earthquake ground motions is established from recent seismic events in Morocco and synthetic ground motions compatible with the design spectrum in order to conduct nonlinear time history analyses on three building models representative of the building stock in Morocco. The uninhabitability index is evaluated based on the simulated damage index, then correlated with preselected insurance indexes. Interestingly, the commonly used peak ground acceleration index showed poor correlation when compared with other indexes, such as spectral accelerations at low periods. Recommendations on the choice of suitable insurance indexes are formulated for efficient seismic risk coverage in Morocco.

Keywords: catastrophe modeling, damage, earthquake, reinsurance, seismic hazard, trigger index, vulnerability

Procedia PDF Downloads 62
14779 Developers’ Gains and Losses from the Economic Incentives of Green Building: Explanations from the Transitional Gains Trap and Transaction Cost Economics

Authors: Ke Fan, Edwin H. W. Chan

Abstract:

Economic incentives of green building (GB) have been implemented to promote green building and address the market barriers. However, if developers could gain from the incentives, why not all the buildings are green? This paper aims to study this problem and provide a new perspective to look at the economic incentives. The theories of Transitional Gains Trap (TGP) and Transaction Cost Economics (TCE) are employed to explain the developers’ gains and losses from the economic incentives. This paper takes the GFA (gross floor area) concession incentive in Hong Kong, which is one of the most popular incentives, as the case to conduct in-depth case study and it did interview to validate the results. The results show that after implementing the GFA concession scheme, the benefit of the GFA concession is capitalized into land value. Therefore, developers have to bear the increased land cost, which supports the theory of the TGP. Even though, some developers are still not willing to participate in the incentive scheme because of high transaction costs (TCs).

Keywords: green building, economic incentives, transitional gains trap, transaction cost

Procedia PDF Downloads 284
14778 Path loss Signals Determination in a Selected Buildings in Kazaure

Authors: Musefiu Aderinola, F. A. Amuda

Abstract:

Outages of GSM signals may be experienced at some indoor locations even when there are strong outdoor receptions. This is often traced to the building penetration loss, which account for increased attenuation of received GSM signals level when a mobile signal device is moved indoor from outdoor. In this work, measurement of two existing GSM operators signal level were made outside and inside two selected buildings- mud and block which represent the prevalent building types in Kazaure, Jigawa State, Nigeria. A gionee P2 mobile phone with RF signal tracker software installed in it was used and the result shows that an average loss of 10.62dBm and 4.25dBm for mud and block buildings respectively.

Keywords: penetration loss, outdoor reception, Gionee P2, RF signal tracker, mud and block building

Procedia PDF Downloads 299
14777 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 144
14776 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications

Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque

Abstract:

Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.

Keywords: energetic certification, virtual reality, augmented reality, sustainability

Procedia PDF Downloads 182
14775 Technical, Functional, and Behavioural Aspects and Their Attributes in Survey Questionnaire for Post Occupancy Evaluation of Residential Hostels

Authors: Meenal Kumar

Abstract:

The structure of a questionnaire becomes critical in gathering accurate feedback in a post-occupancy evaluation of a building. A survey instrument like this one consists of questions based on various aspects of a constructed facility. The questions and the qualities reflect the goals and determine the nature of the survey, which can be classified into several types. Therefore, a survey instrument uses appropriately described attributes. This ongoing research aims to provide an appropriate technique for framing the Questionnaire, taking into account the relevant aspects of the study and its defining features that analyze building performance from the user's perspective, which can further benefit the architects, planners, and designers in designing user-friendly spaces.

Keywords: post occupancy evaluations, satisfaction, attributes, survey, building performance evaluations

Procedia PDF Downloads 54
14774 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers

Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew

Abstract:

Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.

Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia

Procedia PDF Downloads 97
14773 Disaster Mitigation from an Analysis of a Condemned Building Erected over Collapsible Clay Soil in Brazil

Authors: Marcelo Jesus Kato Avila, Joao Da Costa Pantoja

Abstract:

Differential settlement of foundations is a serious pathology in buildings that put at risk lives and property. A common reason for the occurrence of this specific pathology in central Brazil is the presence of collapsible clay, a typical soil in the region. In this study, the foundation of a condemned building erected above this soil is analyzed. The aim is to prevent problems in new constructions, to predict which buildings may be subjected to damages, and to make possible a more precise treatment in less advanced differential settlements observed in the buildings of the vicinity, which includes a hospital, a Military School, an indoor sporting arena, the Police Academy, and the Military Police Headquarters. The methodology consists of visual inspection, photographic report of the main pathologies, analysis of the existing foundations, determination of the soil properties, the study of the cracking level and assessment of structural failure risk of the building. The findings show that the presence of water weaken the soil structure on which the foundation rest, being the main cause of the pathologic settlement, indicating that even in a one store building it was necessary to consider deeper digging, other categories of foundations, and more elaborated and detailed foundation plans when the soil presents this behavior.

Keywords: building cracks, collapsible clay, differential settlement, structural failure risk

Procedia PDF Downloads 249
14772 Application of Axiomatic Design in Industrial Control and Automation Software

Authors: Aydin Homay, Mario de Sousa, Martin wollschlaeger

Abstract:

Axiomatic design is a system design methodology that systematically analyses the transformation of customer needs into functional requirements, design parameters, and process variables. This approach aims to create high-quality product or system designs by adhering to specific design principles or axioms, namely, the independence and information axiom. The application of axiomatic design in the design of industrial control and automation software systems could be challenging due to the high flexibility exposed by the software system and the coupling enforced by the hardware part. This paper aims to present how to use axiomatic design for designing industrial control and automation software systems and how to satisfy the independence axiom within these tightly coupled systems.

Keywords: axiomatic design, decoupling, uncoupling, automation

Procedia PDF Downloads 34
14771 Use of Alternative Water Sources Based on a Rainwater in the Multi-Dwelling Urban Building 2030

Authors: Monika Lipska

Abstract:

Drinking water is water with a very high quality, and as such represents only 2.5% of the total quantity of all water in the world. For many years we have observed continuous increase in its consumption as a result of many factors such as: Growing world population (7 billion in 2011r.), increase of human lives comfort and – above all – the economic growth. Due to the rocketing consumption and growing costs of production of water with such high-quality parameters, we experience accelerating interest in alternative sources of obtaining potable water. One of the ways of saving this valuable material is using rainwater in the Urban Building. With an exponentially growing demand, the acquisition of additional sources of water is necessary to maintain the proper balance of all ecosystems. The first part of the paper describes what rainwater is and what are its potential sources and means of use, while the main part of the article focuses on the description of the methods of obtaining water from rain on the example of new urban building in Poland. It describes the method and installations of rainwater in the new urban building (“MBJ2030”). The paper addresses also the issue of monitoring of the whole recycling systems as well as the particular quality indicators important because of identification of the potential risks to human health. The third part describes the legal arrangements concerning the recycling of rainwater existing in different European Union countries with particular reference to Poland on example the new urban building in Warsaw.

Keywords: rainwater, potable water, non-potable water, Poland

Procedia PDF Downloads 408
14770 Stresses Induced in Saturated Asphalt Pavement by Moving Loads

Authors: Yang Zhong, Meijie Xue

Abstract:

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.

Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement

Procedia PDF Downloads 283
14769 Overview and Post Damage Analysis of Nepal Earthquake 2015

Authors: Vipin Kumar Singhal, Rohit Kumar Mittal, Pavitra Ranjan Maiti

Abstract:

Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes.

Keywords: Nepal earthquake, damage analysis, damage assessment, damage scales

Procedia PDF Downloads 366
14768 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System

Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi

Abstract:

The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.

Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources

Procedia PDF Downloads 447
14767 Environmental Life Cycle Assessment of Circular, Bio-Based and Industrialized Building Envelope Systems

Authors: N. Cihan KayaçEtin, Stijn Verdoodt, Alexis Versele

Abstract:

The construction industry is accounted for one-third of all waste generated in the European Union (EU) countries. The Circular Economy Action Plan of the EU aims to tackle this issue and aspires to enhance the sustainability of the construction industry by adopting more circular principles and bio-based material use. The Interreg Circular Bio-Based Construction Industry (CBCI) project was conceived to research how this adoption can be facilitated. For this purpose, an approach is developed that integrates technical, legal and social aspects and provides business models for circular designing and building with bio-based materials. In the scope of the project, the research outputs are to be displayed in a real-life setting by constructing a demo terraced single-family house, the living lab (LL) located in Ghent (Belgium). The realization of the LL is conducted in a step-wise approach that includes iterative processes for design, description, criteria definition and multi-criteria assessment of building components. The essence of the research lies within the exploratory approach to the state-of-art building envelope and technical systems options for achieving an optimum combination for a circular and bio-based construction. For this purpose, nine preliminary designs (PD) for building envelope are generated, which consist of three basic construction methods: masonry, lightweight steel construction and wood framing construction supplemented with bio-based construction methods like cross-laminated timber (CLT) and massive wood framing. A comparative analysis on the PDs was conducted by utilizing several complementary tools to assess the circularity. This paper focuses on the life cycle assessment (LCA) approach for evaluating the environmental impact of the LL Ghent. The adoption of an LCA methodology was considered critical for providing a comprehensive set of environmental indicators. The PDs were developed at the component level, in particular for the (i) inclined roof, (ii-iii) front and side façade, (iv) internal walls and (v-vi) floors. The assessment was conducted on two levels; component and building level. The options for each component were compared at the first iteration and then, the PDs as an assembly of components were further analyzed. The LCA was based on a functional unit of one square meter of each component and CEN indicators were utilized for impact assessment for a reference study period of 60 years. A total of 54 building components that are composed of 31 distinct materials were evaluated in the study. The results indicate that wood framing construction supplemented with bio-based construction methods performs environmentally better than the masonry or steel-construction options. An analysis on the correlation between the total weight of components and environmental impact was also conducted. It was seen that masonry structures display a high environmental impact and weight, steel structures display low weight but relatively high environmental impact and wooden framing construction display low weight and environmental impact. The study provided valuable outputs in two levels: (i) several improvement options at component level with substitution of materials with critical weight and/or impact per unit, (ii) feedback on environmental performance for the decision-making process during the design phase of a circular single family house.

Keywords: circular and bio-based materials, comparative analysis, life cycle assessment (LCA), living lab

Procedia PDF Downloads 181
14766 Examining the Coverage of CO2-Related Indicators in a Sample of Sustainable Rating Systems

Authors: Wesam Rababa, Jamal Al-Qawasmi

Abstract:

The global climate is negatively impacted by CO2 emissions, which are mostly produced by buildings. Several green building rating systems (GBRS) have been proposed to impose low-carbon criteria in order to address this problem. The Green Globes certification is one such system that evaluates a building's sustainability level by assessing different categories of environmental impact and emerging concepts aimed at reducing environmental harm. Therefore, assessment tools at the national level are crucial in the developing world, where specific local conditions require a more precise evaluation. This study analyzed eight sustainable building assessment systems from different regions of the world, comparing a comprehensive list of CO2-related indicators with a various assessment system for conducting coverage analysis. The results show that GBRS includes both direct and indirect indicators in this regard. It reveals deep variation between examined practices, and a lack of consensus not only on the type and the optimal number of indicators used in a system, but also on the depth and breadth of coverage of various sustainable building SB attributes. Generally, the results show that most of the examined systems reflect a low comprehensive coverage, the highest of which is found in materials category. On the other hand, the most of the examined systems reveal a very low representative coverage.

Keywords: Assessment tools, CO2-related indicators, Comparative study, Green Building Rating Systems

Procedia PDF Downloads 49
14765 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 29
14764 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation

Authors: Mohamed Elassaly

Abstract:

The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building.

Keywords: damage, frequency content, ground motion, PGA, RC building, seismic

Procedia PDF Downloads 400
14763 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities

Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová

Abstract:

Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.

Keywords: BIM model, urban space, BIM methodology, facility management

Procedia PDF Downloads 120
14762 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 287
14761 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria

Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad

Abstract:

Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.

Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort

Procedia PDF Downloads 212