Search results for: inorganic salt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1116

Search results for: inorganic salt

246 Properties Soft Cheese as Diversification of Dangke: A Natural Cheese of South Sulawesi Indonesia

Authors: Ratmawati Malaka, Effendi Abustam, Kusumandari Indah Prahesti, Sudirman Baco

Abstract:

Dangke is natural cheese from Enrekang South Sulawesi, Indonesia produced through aglutination buffalo milk, cow, goat or sheep using the sap of papaya (Carica papaya). Dangke has been widely known in South Sulawesi but this soft cheese product diversification by using passion fruit juice as milk clotting agents has not been used. Passion fruit juice has a high acidity with a pH of around 4 - 4.5 and has a proteolytic enzyme, so that it can be used to agglutinate milk. The purpose of this study was to investigate the nature Dangke using passion fruit juice as coagulate milk. Dangke made by 10 lt of raw milk by heating at a temperature of 73oC with coagulant passion fruit juice (7.5% and 10%), and added 1% salt. Curd clot and then be formed using a coconut shell, is then pressed until the cheese is compact. The cheese is then observed for 28 days ripening at a temperature of about 5 ° C. Dangke then studied to violence, pH, fat levels and microstructure. Hardness is determined using CD-shear Force, pH is measured using a pH meter Hanna, and fat concentrations were analyzed with methods of proximate. Microstructure viewed using a light microscope with magnification 1000 x. The results showed that the levels of clotting material very significant influence on hardness, pH, and lipid levels. Maturation increase the hardness but lower the pH, the level of fat soft cheese with an average Dangke respectively 21.4% and 30.5% on 7.5% addition of passion fruit juice and 10%. Dangke violence is increasing with the increasing maturation time (1.38 to 3.73 kg / cm), but Dangke pH was decreased by the increase in storage maturation (5.34 to 4.1). Microktrukture cheeses coagulated with 10% of the passion fruit are very firmer and compact with a full globular fat of 7.5%. But the sensory properties of the soft cheese similar in both treatment. The manufacturing process with the addition of coagulant passion fruit juice on making Dangke affect hardness, pH, fat content and microstructure during storage at 5 ° C for 1 d - 28 d.

Keywords: dangke, passion fruits, microstructure, cheese

Procedia PDF Downloads 400
245 Formulation and Evaluation of Piroxicam Hydrotropic Starch Gel

Authors: Mohammed Ghazwani, Shyma Ali Alshahrani, Zahra Abdu Yousef, Taif Torki Asiri, Ghofran Abdur Rahman, Asma Ali Alshahrani, Umme Hani

Abstract:

Background and introduction: Piroxicam is a nonsteroidal anti-inflammatory drug characterized by low solubility-high permeability used to reduce pain, swelling, and joint stiffness from arthritis. Hydrotropes are a class of compounds that normally increase the aqueous solubility of insoluble solutes. Aim: The objective of the present research study was to formulate and optimize Piroxicam hydrotropic starch gel using sodium salicylate, sodium benzoate as hydrotropic salts, and potato starch for topical application. Materials and methods: The prepared Piroxicam hydrotropic starch gel was characterized for various physicochemical parameters like drug content estimation, pH, tube extrudability, and spreadability; all the prepared formulations were subjected to in-vitro diffusion studies for six hours in 100 ml phosphate buffer (pH 7.4) and determined gel strength. Results: All formulations were found to be white opaque in appearance and have good homogeneity. The pH of formulations was found to be between 6.9-7.9. Drug content ranged from 96.8%-99.4.5%. Spreadability plays an important role in patient compliance and helps in the uniform application of gel to the skin as gels should spread easily; F4 showed a spreadability of 2.4cm highest among all other formulations. In in vitro diffusion studies, extrudability and gel strength were good with F4 in comparison with other formulations; hence F4 was selected as the optimized formulation. Conclusion: Isolated potato starch was successfully employed to prepare the gel. Hydrotropic salt sodium salicylate increased the solubility of Piroxicam and resulted in a stable gel, whereas the gel prepared using sodium benzoate changed its color after one week of preparation from white to light yellowish. Hydrotropic potato starch gel proposed a suitable vehicle for the topical delivery of Piroxicam.

Keywords: Piroxicam, potato starch, hydrotropic salts, hydrotropic starch gel

Procedia PDF Downloads 130
244 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 304
243 Organic Paddy Production as a Coping Strategy to the Adverse Impact of Climate Change

Authors: Thapa M., J.P. Dutta, K.R. Pandey, R.R. Kattel

Abstract:

Nepal is extremely vulnerable to the impact of climate change. To mitigate the climate change effects on agricultural production and productivity a range of adaptive strategies needs to be considered. The study was conducted to assess organic paddy production as a coping strategy to the adverse impact of climate change in Phulbari, VDC of Chitwan district. Altogether, 120 respondents (60 adopters of organic farming and 60 from non adopter) were selected using snowball technique of sampling. Pre- tested interview schedule, direct observation, focus group discussion, key informant interview as well as secondary data were used to collect the required information. Factors determining the adoption of organic farming were found to be age, year of schooling, training, frequency of extension contact, perception about climate change, economically active members and poor. A unit increase in these factors except poor would increase the probability of adoption by 4.1%, 7.5%, 7.8%, 43.1%, 41.8% and 7% respectively. However, for poor, it would decrease the probability of adoption of organic farming by 5.1%. Average organic matter content in the adopters' field was higher (2.7%) than the non-adopters' field (2.5%). The regression result showed that type of farmer, price and area under rice cultivation had positive and significant relationship with income; however dependency ratio had negative relationship. As the year of adoption of organic farming increases, the production of rice decline in the first two years then after goes on increasing but the cost of production goes on decreasing with the year of adoption. The respondents adapted to the changing climate through diversification of crops, use of resistance varieties and following good cropping pattern. Gradually growing consumers' awareness about health, preference towards quality food products are the strong points behind organic farming, whereas lacks of bio-fertilizers, lack of effective extension services, no price differentiation between organic and inorganic products were the weak points. There is need for more training and education to change the attitude of farmers and enhance their confidence about the role of organic farming to cope with climate change impact.

Keywords: Organic farming, climate change, sustainable development

Procedia PDF Downloads 445
242 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials

Procedia PDF Downloads 215
241 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar

Authors: H. Aljabiry, L. Bailey, S. Young

Abstract:

Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.

Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands

Procedia PDF Downloads 124
240 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions

Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida

Abstract:

A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.

Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition

Procedia PDF Downloads 445
239 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.

Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks

Procedia PDF Downloads 424
238 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 589
237 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation

Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza

Abstract:

The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.

Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes

Procedia PDF Downloads 464
236 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 262
235 Nitrification and Denitrification Kinetic Parameters of a Mature Sanitary Landfill Leachate

Authors: Tânia F. C. V. Silva, Eloísa S. S. Vieira, João Pinto da Costa, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

Sanitary landfill leachates are characterized as a complex mixture of diverse organic and inorganic contaminants, which are usually removed by combining different treatment processes. Due to its simplicity, reliability, high cost-effectiveness and high nitrogen content (mostly under the ammonium form) inherent in this type of effluent, the activated sludge biological process is almost always applied in leachate treatment plants (LTPs). The purpose of this work is to assess the effect of the main nitrification and denitrification variables on the nitrogen's biological removal, from mature leachates. The leachate samples were collected after an aerated lagoon, at a LTP nearby Porto, presenting a high amount of dissolved organic carbon (1.0-1.3 g DOC/L) and ammonium nitrogen (1.1-1.7 g NH4+-N/L). The experiments were carried out in a 1-L lab-scale batch reactor, equipped with a pH, temperature and dissolved oxygen (DO) control system, in order to determine the reaction kinetic constants at unchanging conditions. The nitrification reaction rate was evaluated while varying the (i) operating temperature (15, 20, 25 and 30ºC), (ii) DO concentration interval (0.5-1.0, 1.0-2.0 and 2.0-4.0 mg/L) and (iii) solution pH (not controlled, 7.5-8.5 and 6.5-7.5). At the beginning of most assays, it was verified that the ammonium stripping occurred simultaneously to the nitrification, reaching up to 37% removal of total dissolved nitrogen. The denitrification kinetic constants and the methanol consumptions were calculated for different values of (i) volatile suspended solids (VSS) content (25, 50 and 100 mL of centrifuged sludge in 1 L solution), (ii) pH interval (6.5-7.0, 7.5-8.0 and 8.5-9.0) and (iii) temperature (15, 20, 25 and 30ºC), using effluent previously nitrified. The maximum nitrification rate obtained was 38±2 mg NH4+-N/h/g VSS (25ºC, 0.5-1.0 mg O2/L, pH not controlled), consuming 4.4±0.3 mg CaCO3/mg NH4+-N. The highest denitrification rate achieved was 19±1 mg (NO2--N+NO3--N)/h/g VSS (30ºC, 50 mL of sludge and pH between 7.5 and 8.0), with a C/N consumption ratio of 1.1±0.1 mg CH3OH/mg (NO2--N+NO3--N) and an overall alkalinity production of 3.7±0.3 mg CaCO3/mg (NO2--N+NO3--N). The denitrification process showed to be sensitive to all studied parameters, while the nitrification reaction did not suffered significant change when DO content was changed.

Keywords: mature sanitary landfill leachate, nitrogen removal, nitrification and denitrification parameters, lab-scale activated sludge biological reactor

Procedia PDF Downloads 266
234 Treatment of a Galvanization Wastewater in a Fixed-Bed Column Using L. hyperborean and P. canaliculata Macroalgae as Natural Cation Exchangers

Authors: Tatiana A. Pozdniakova, Maria A. P. Cechinel, Luciana P. Mazur, Rui A. R. Boaventura, Vitor J. P. Vilar.

Abstract:

Two brown macroalgae, Laminaria hyperborea and Pelvetia canaliculata, were employed as natural cation exchangers in a fixed-bed column for Zn(II) removal from a galvanization wastewater. The column (4.8 cm internal diameter) was packed with 30-59 g of previously hydrated algae up to a bed height of 17-27 cm. The wastewater or eluent was percolated using a peristaltic pump at a flow rate of 10 mL/min. The effluent used in each experiment presented similar characteristics: pH of 6.7, 55 mg/L of chemical oxygen demand and about 300, 44, 186 and 244 mg/L of sodium, calcium, chloride and sulphate ions, respectively. The main difference was nitrate concentration: 20 mg/L for the effluent used with L. hyperborean and 341 mg/L for the effluent used with P. canaliculata. The inlet zinc concentration also differed slightly: 11.2 mg/L for L. hyperborean and 8.9 mg/L for P. canaliculata experiments. The breakthrough time was approximately 22.5 hours for both macroalgae, corresponding to a service capacity of 43 bed volumes. This indicates that 30 g of biomass is able to treat 13.5 L of the galvanization wastewater. The uptake capacities at the saturation point were similar to that obtained in batch studies (unpublished data) for both algae. After column exhaustion, desorption with 0.1 M HNO3 was performed. Desorption using 9 and 8 bed volumes of eluent achieved an efficiency of 100 and 91%, respectively for L. hyperborean and P. canaliculata. After elution with nitric acid, the column was regenerated using different strategies: i) convert all the binding sites in the sodium form, by passing a solution of 0.5 M NaCl, until achieve a final pH of 6.0; ii) passing only tap water in order to increase the solution pH inside the column until pH 3.0, and in this case the second sorption cycle was performed using protonated algae. In the first approach, in order to remove the excess of salt inside the column, distilled water was passed through the column, leading to the algae structure destruction and the column collapsed. Using the second approach, the algae remained intact during three consecutive sorption/desorption cycles without loss of performance.

Keywords: biosorption, zinc, galvanization wastewater, packed-bed column

Procedia PDF Downloads 305
233 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence

Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi

Abstract:

In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.

Keywords: germination, priming, seedling growth, wheat

Procedia PDF Downloads 167
232 Probiotic Potential and Antimicrobial Activity of Enterococcus faecium Isolated from Chicken Caecal and Fecal Samples

Authors: Salma H. Abu Hafsa, A. Mendonca, B. Brehm-Stecher, A. A. Hassan, S. A. Ibrahim

Abstract:

Enterococci are important inhabitants of the animal intestine and are widely used in probiotic products. A probiotic strain is expected to possess several desirable properties in order to exert beneficial effects. Therefore, the objective of this study was to isolate and characterize strains of Enterococcus sp. from chicken cecal and fecal samples to determine potential probiotic properties. Enterococci were isolated from thirty one chicken cecal and fecal samples collected from a local farm. In vitro studies were performed to assess antibacterial activity (using agar well diffusion and cell free supernatant broth technique against Salmonella enterica serotype Enteritidis), susceptibility to antibiotics (amoxycillin, cotrimoxazole, chloramphenicol, cefuroxime, ceftriaxone, ciprofloxacin, and nalidixic acid), survival in acidic conditions, resistance to bile salts, and their survival during simulated gastric juice conditions at pH 2.5. Isolates were identified using biochemical and molecular assays (API 50 CHL, and API ZYM kits followed by 16S rDNA gene sequence analysis). Two strains were identified, of which, Enteroccocus faecium was capable of inhibiting the growth of S. enteritidis and was susceptible to a wide range of antibiotics. In addition, the isolated strain exhibited significant resistance under highly acidic conditions (pH=2.5) for 8 hours and survived well in bile salt at 0.2% for 24 hours and showing ability to survive in the presence of simulated gastric juice at pH 2.5. Based on these results, the E. faecium isolate fulfills some of the criteria to be considered as a probiotic strain and therefore, could be used as a feed additive with good potential for controlling S. enteritidis in chickens. However, in vivo studies are needed to determine the safety of the strain.

Keywords: acid tolerance, antimicrobial activity, Enterococcus faecium, probiotic

Procedia PDF Downloads 390
231 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.

Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles

Procedia PDF Downloads 285
230 Assessment of the Groundwater Agricultural Pollution Risk: Case of the Semi-Arid Region (Batna-East Algeria)

Authors: Dib Imane, Chettah Wahid, Khedidja Abdelhamid

Abstract:

The plain of Gadaïne - Ain Yaghout, located in the wilaya of Batna (Eastern Algeria), experiences intensive human activities, particularly in agricultural practices which are accompanied by an increasing use of chemical fertilizers and manure. These activities lead to a degradation of the quality of water resources. In order to protect the quality of groundwater in this plain and formulate effective strategies to mitigate or avoid any contamination of groundwater, a risk assessment using the European method known as “COSTE Action 620” was applied to the mio-. plio-quaternary aquifer of this plain. Risk assessment requires the identification of existing dangers and their potential impact on groundwater by using a system of evaluation and weighting. In addition, it also requires the integration of the hydrogeological factors that influence the movement of contaminants by means of the intrinsic vulnerability maps of groundwater, which were produced according to the modified DRASTIC method. The overall danger on the plain ranges from very low to high. Farms containing stables, houses detached from the public sewer system, and sometimes manure piles were assigned a weighting factor expressing the highest degree of harmfulness; this created a medium to high danger index. Large areas for agricultural practice and grazing are characterized, successively, by low to very low danger. Therefore, the risks present at the study site are classified according to a range from medium to very high-risk intensity. These classes successively represent 3%, 49%, and 0.2% of the surface of the plain. Cultivated land and farms present a high to very high level of risk successively. In addition, with the exception of the salt mine, which presents a very high level of risk, the gas stations and cemeteries, as well as the railway line, represent a high level of risk.

Keywords: semi-arid, quality of water resources, risk assessment, vulnerability, contaminants

Procedia PDF Downloads 35
229 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 372
228 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 120
227 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery

Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi

Abstract:

Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.

Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor

Procedia PDF Downloads 110
226 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 254
225 Sensory and Microbiological Sustainability of Smoked Meat Products–Smoked Ham in Order to Determine the Shelf-Life under the Changed Conditions at +15°C

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The meat is in the group of perishable food which can be spoiled very rapidly if stored at room temperature. Salting in combination with smoke is intended to extend shelf life, and also to form the specific taste, odor and color. The smoke do not affect only on taste and flavor of the product, it has a bactericidal and oxidative effect and that is the reason because smoked products are less susceptible to oxidation and decay processes. According to mentioned the goal of this study was to evaluate shelf life of smoked ham, which is stored in conditions of high temperature (+15 °C). For the purposes of this study analyzes were conducted on eight samples of smoked ham every 7th day from the day of reception until 21st day. During this period, smoked ham is subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp. and yeasts and molds) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579 and yeasts and molds ISO 21527-2. Results of sensory analysis of smoked ham indicating that the samples after the first seven days of storage showed visual changes at the surface in the form of allocations of salt, most likely due to the process of drying out the internal parts of the product. The sample, after fifteen days of storage had intensive exterior changes, but the taste was still acceptable. Between the fifteenth and twenty-first day of storage, there is an unacceptable change on the surface and inside of the product and the occurrence of molds and yeasts but neither one analyzed pathogen was found. Based on the obtained results it can be concluded that this type of product cannot be stored for more than seven days at an elevated temperature of +15°C because there are a visual changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, smoked meat products, food engineering, agricultural process engineering

Procedia PDF Downloads 354
224 Screening and Optimization of Conditions for Pectinase Production by Aspergillus Flavus

Authors: Rumaisa Shahid, Saad Aziz Durrani, Shameel Pervez, Ibatsam Khokhar

Abstract:

Food waste is a prevalent issue in Pakistan, with over 40 percent of food discarded annually. Despite their decay, rotting fruits retain residual nutritional value consumed by microorganisms, notably fungi and bacteria. Fungi, preferred for their extracellular enzyme release, are gaining prominence, particularly for pectinase production. This enzyme offers several advantages, including clarifying juices by breaking down pectic compounds. In this study, three Aspergillus flavus isolates derived from decomposed fruits and manure were selected for pectinase production. The primary aim was to isolate fungi from diverse waste sources, identify the isolates and assess their capacity for pectinase production. The identification was done through morphological characteristics with the help of Light microscopy and Scanning Electron Microscopy (SEM). Pectinolytic potential was screened using pectin minimal salt agar (PMSA) medium, comparing clear zone diameters among isolates. Identification relied on morphological characteristics. Optimizing substrate (lemon and orange peel powder) concentrations, pH, temperature, and incubation period aimed to enhance pectinase yield. Spectrophotometry enabled quantitative analysis. The temperature was set at room temperature (28 ºC). The optimal conditions for Aspergillus flavus strain AF1(isolated from mango) included a pH of 5, an incubation period of 120 hours, and substrate concentrations of 3.3% for orange peels and 6.6% for lemon peels. For AF2 and AF3 (both isolated from soil), the ideal pH and incubation period were the same as AF1 i.e. pH 5 and 120 hours. However, their optimized substrate concentrations varied, with AF2 showing maximum activity at 3.3% for orange peels and 6.6% for lemon peels, while AF3 exhibited its peak activity at 6.6% for orange peels and 8.3% for lemon peels. Among the isolates, AF1 demonstrated superior performance under these conditions, comparatively.

Keywords: pectinase, lemon peel, orange peel, aspergillus flavus

Procedia PDF Downloads 60
223 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl

Authors: Muhittin Karaman, Murat Budakoglu

Abstract:

In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.

Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey

Procedia PDF Downloads 421
222 Influence of Applied Inorganic and Organic Nitrogen Fertilizers on Nitrogen Forms in Biochar-Treated Soil

Authors: Eman H. El-Gamal, Maher E. Saleh, Mohamed Rashad, Ibrahim Elsokkary, Mona M. Abd El-Latif

Abstract:

Biochar application to calcareous soils could potentially influence the nitrogen dynamics that affect the bioavailability of plants. This study was carried out to investigate the effect of incubation periods on the changes of nitrogen levels (total nitrogen TN and exchangeable ammonium NH₄⁺ and nitrate NO₃⁻) in biochar-treated calcareous soil. The incubation course was extended to 144 days at 30 ± 3 ℃ and at 50% of soil water holding capacity (WHC). Two types of biochars were obtained by pyrolysis at 500 ℃ from rice husk (RHB) and sugarcane bagasse (SCBB). The experiment was planned in a factorial experimental design with three factors (6 periods '24 days for each period' × 3 biochar types 'un-amended, RHB and SCBB' × 3 nitrogen fertilizers 'control, ammonium nitrate; AN and animal manure; AM') in a completely randomized design. The results obtained showed that the highest level of TN was found in the first 24 days of the incubation period in all treatments. However, the amount of TN was decreased with proceeding incubation period up to 144 days and reached to the lowest level at the end of incubation with values of change rate was 17.5, 16.6, and 14.6 g kg⁻¹ day⁻¹ for the un-amended, RHB and SCBB treated soil, respectively. The values of change rate in biochar-soils treated with nitrogen fertilizers were decreased gradually through the whole incubation time from 127.22 to 12.45 g kg⁻¹ day⁻¹ and from 65.00 to 13.43 g kg⁻¹ day⁻¹ for AN and AM respectively, in the case of RHB-soil. While in SCBB-soil, these values were decreased from 70.83 to 12.13 g kg⁻¹ day⁻¹ and from 59.17 to 11.48 g kg⁻¹ day⁻¹ for AN and AM treatments, respectively. The lowest concentration of exchangeable NH₄⁺ was generally found through the period from 24-48 days of incubation. However, the addition of nitrogen fertilizers, enhanced NH₄⁺ production through incubation periods. In the case of RHB-soil, the value of change rate in NH₄⁺ level in the first 24 days of incubation was 0.43 mg kg⁻¹ day⁻¹ and with the addition of AN and AM this value increased to 1.54 and 4.38 mg kg⁻¹ day⁻¹, respectively. In the case of SCBB-soil, the value of change rate in NH₄⁺ level was 0.29 mg kg⁻¹ day⁻¹ which increased to 1.04 mg kg⁻¹ day⁻¹ at the end of incubation, and due to the addition of AN and AM this value increased to 2.78 and 1.90 mg kg⁻¹ day⁻¹ in the first 24 days of incubation period, respectively. However, as compared to the control treatment, the lowest rate of change in NH₄⁺ level was found at the end of incubation. On the other hand, incubation of all biochars-amended soil and treated with AN and AM decreased the concentration levels of NO₃⁻, especially through the first 24-72 days of incubation period. As a result, the values of change rate in NO₃⁻ concentrations in all treatments were almost negative.

Keywords: ammonium nitrate, animal manure, biochar, rice husk, sugarcane bagasse

Procedia PDF Downloads 119
221 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces

Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech

Abstract:

Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.

Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate

Procedia PDF Downloads 240
220 Cedrela Toona Roxb.: An Exploratory Study Describing Its Antidiabetic Property

Authors: Kinjal H. Shah, Piyush M. Patel

Abstract:

Diabetes mellitus is considered to be a serious endocrine syndrome. Synthetic hypoglycemic agents can produce serious side effects including hematological effects, coma, and disturbances of the liver and kidney. In addition, they are not suitable for use during pregnancy. In recent years, there have been relatively few reports of short-term side effects or toxicity due to sulphonylureas. Published figures and frequency of side effects in large series of patient range from about 1 to 5%, with symptoms severe enough to lead to the withdrawal of the drug in less than 1 to 2%. Adverse effects, in general, have been of the following type: allergic skin reactions, gastrointestinal disturbances, blood dyscrasias, hepatic dysfunction, and hypoglycemia. The associated disadvantages with insulin and oral hypoglycemic agents have led to stimulation in the research for locating natural resources showing antidiabetic activity and to explore the possibilities of using traditional medicines with proper chemical and pharmacological profiles. Literature survey reveals that the inhabitants of Abbottabad district of Pakistan use the dried leaf powder along with table salt and water orally for treating diabetes, skin allergy, wounds and as a blood purifier, where they pronounced the plant locally as ‘Nem.' The detailed phytochemical investigation of the Cedrela toona Roxb. leaves for antidiabetic activity has not been documented. Hence, there is a need for phytochemical investigation of the leaves for antidiabetic activity. The collection of fresh leaves and authentification followed by successive extraction, phytochemical screening, and testing of antidiabetic activity. The blood glucose level was reduced maximum in ethanol extract at 5th and 7th h after treatment. Blood glucose was depressed by 8.2% and 10.06% in alloxan – induced diabetic rats after treatment which was comparable to the standard drug, Glibenclamide. This may be due to the activation of the existing pancreatic cells in diabetic rats by the ethanolic extract.

Keywords: antidiabetic, Cedrela toona Roxb., phytochemical screening, blood glucose

Procedia PDF Downloads 248
219 Attenuation of Amyloid beta (Aβ) (1-42)-Induced Neurotoxicity by Luteolin

Authors: Dona Pamoda W. Jayatunga, Veer Bala Gupta, Eugene Hone, Ralph N. Martins

Abstract:

Being a neurodegenerative disorder, Alzheimer’s disease (AD) affects a majority of the elderly demented worldwide. The key risk factors for AD are age, metabolic syndrome, allele status of APOE gene, head injuries and lifestyle. The progressive nature of AD is characterized by symptoms of multiple cognitive deficits exacerbated over time, leading to death within a decade from clinical diagnosis. However, it is revealed that AD originates via a prodromal phase that spans from one to few decades before symptoms first manifest. The key pathological hallmarks of AD brains are deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT). However, the yet unknown etiology of the disease fails to distinguish mitochondrial dysfunction between a cause or an outcome. The absence of early diagnosis tools and definite therapies for AD have permitted recruits of nutraceutical-based approaches aimed at reducing the risk of AD by modulating lifestyle or be used as preventive tools during AD prodromal state before widespread neurodegeneration begins. The objective of the present study was to investigate beneficial effects of luteolin, a plant-based flavone compound, against AD. The neuroprotective effects of luteolin on amyloid beta (Aβ) (1-42)-induced neurotoxicity was measured using cultured human neuroblastoma BE(2)-M17 cells. After exposure to 20μM Aβ (1-42) for 48 h, the neuroblastoma cells exhibited marked apoptotic death. Co-treatment of 20μM Aβ (1-42) with luteolin (0.5-5μM) significantly protected the cells against Aβ (1-42)-induced toxicity, as assessed by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4sulfophenyl)-2H-tetrazolium, inner salt; MTS] reduction assay and the lactate dehydrogenase (LDH) cell death assay. The results suggest that luteolin prevents Aβ (1-42)-induced apoptotic neuronal death. However, further studies are underway to determine its protective mechanisms in AD including the activity against tau hyperphosphorylation and mitochondrial dysfunction.

Keywords: Aβ (1-42)-induced toxicity, Alzheimer’s disease, luteolin, neuroblastoma cells

Procedia PDF Downloads 143
218 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 171
217 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil

Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin

Abstract:

Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.

Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions

Procedia PDF Downloads 21