Search results for: fuel feeding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2204

Search results for: fuel feeding

1334 Adequate Nutritional Support and Monitoring in Post-Traumatic High Output Duodenal Fistula

Authors: Richa Jaiswal, Vidisha Sharma, Amulya Rattan, Sushma Sagar, Subodh Kumar, Amit Gupta, Biplab Mishra, Maneesh Singhal

Abstract:

Background: Adequate nutritional support and daily patient monitoring have an independent therapeutic role in the successful management of high output fistulae and early recovery after abdominal trauma. Case presentation: An 18-year-old girl was brought to AIIMS emergency with alleged history of fall of a heavy weight (electric motor) over abdomen. She was evaluated as per Advanced Trauma Life Support(ATLS) protocols and diagnosed to have significant abdominal trauma. After stabilization, she was referred to Trauma center. Abdomen was guarded and focused assessment with sonography for trauma(FAST) was found positive. Complete duodenojejunal(DJ) junction transection was found at laparotomy, and end-to-end repair was done. However, patient was re-explored in view of biliary peritonitis on post-operative day3, and anastomotic leak was found with sloughing of duodenal end. Resection of non-viable segments was done followed by side-to-side anastomosis. Unfortunately, the anastomosis leaked again, this time due to a post-anastomotic kink, diagnosed on dye study. Due to hostile abdomen, the patient was planned for supportive care, with plan of build-up and delayed definitive surgery. Percutaneous transheptic biliary drainage (PTBD) and STSG were required in the course as well. Nutrition: In intensive care unit (ICU), major goals of nutritional therapy were to improve wound healing, optimize nutrition, minimize enteral feed associated complications, reduce biliary fistula output, and prepare the patient for definitive surgeries. Feeding jejunostomy (FJ) was started from day 4 at the rate of 30ml/h along with total parenteral nutrition (TPN) and intra-venous (IV) micronutrients support. Due to high bile output, bile refeed started from day 13.After 23 days of ICU stay, patient was transferred to general ward with body mass index (BMI)<11kg/m2 and serum albumin –1.5gm%. Patient was received in the ward in catabolic phase with high risk of refeeding syndrome. Patient was kept on FJ bolus feed at the rate of 30–50 ml/h. After 3–4 days, while maintaining patient diet book log it was observed that patient use to refuse feed at night and started becoming less responsive with every passing day. After few minutes of conversation with the patient for a couple of days, she complained about enteral feed discharge in urine, mild pain and sign of dumping syndrome. Dye study was done, which ruled out any enterovesical fistula and conservative management were planned. At this time, decision was taken for continuous slow rate feeding through commercial feeding pump at the rate of 2–3ml/min. Drastic improvement was observed from the second day in gastro-intestinal symptoms and general condition of the patient. Nutritional composition of feed, TPN and diet ranged between 800 and 2100 kcal and 50–95 g protein. After STSG, TPN was stopped. Periodic diet counselling was given to improve oral intake. At the time of discharge, serum albumin level was 2.1g%, weight – 38.6, BMI – 15.19 kg/m2. Patient got discharge on an oral diet. Conclusion: Successful management of post-traumatic proximal high output fistulae is a challenging task, due to impaired nutrient absorption and enteral feed associated complications. Strategic- and goal-based nutrition support can salvage such critically ill patients, as demonstrated in the present case.

Keywords: nutritional monitoring, nutritional support, duodenal fistula, abdominal trauma

Procedia PDF Downloads 247
1333 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5

Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain

Abstract:

The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.

Keywords: chromium, hexose, ionic liquid, , zeolite

Procedia PDF Downloads 158
1332 Feasibility of BioMass Power Generation in Punjab Province of Pakistan

Authors: Muhammad Ghaffar Doggar, Farah

Abstract:

The primary objective of this feasibility study is to conduct a techno-financial assessment for installation of biomass based power plant in Faisalabad division. The study involves identification of best site for power plant followed by an assessment of biomass resource potential in the area and propose power plant of suitable size. The study also entailed comprehensive supply chain analysis to determine biomass fuel pricing, transportation and storage. Further technical and financial analyses have been done for selection of appropriate technology for the power plant and its financial viability, respectively. The assessment of biomass resources and the subsequent technical analysis revealed that 20 MW biomass power plant could be implemented at one of the locations near Faisalabad city i.e. AARI Site, Near Chak Jhumra district Faisalabad, Punjab province. Three options for steam pressure; namely, 70 bar, 90 bar and 100 bar boilers have been considered. Using international experience and prices on power plant technology and local prices on locally available equipment, the study concludes biomass fuel price of around 50 US dollars (USD) per ton when delivered to power plant site. The electricity prices used for feasibility calculations were 0.13 USD per KWh for electricity from a locally financed project and 0.11 USD per KWh for internationally financed power plant. For local financing the most viable choice is the 70 bar solution and with international financing, the most feasible solution is using a 90 bar boiler. Between the two options, the internationally financed 90 bar boiler setup gives better financial results than the locally financed 70 bar boiler project. It has been concluded that 20 MW with 90 bar power plant and internationally financed would have an equity IRR of 23% and a payback period of 7 years. This will be a cheap option for installation of power plants.

Keywords: AARI, Ayub agriculture research institute, biomass - crops residue, KWh - electricity Units, MG - Muhammad Ghaffar

Procedia PDF Downloads 321
1331 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry

Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai

Abstract:

The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.

Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy

Procedia PDF Downloads 85
1330 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 634
1329 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 177
1328 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment

Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon

Abstract:

The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.

Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature

Procedia PDF Downloads 507
1327 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle

Authors: Khaled M. Khader, Mamdouh I. Elimy

Abstract:

Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.

Keywords: Composite Material, Crank-Rocker Mechanism, Transmission angle, Design techniques, Power Saving

Procedia PDF Downloads 288
1326 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept

Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.

Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions

Procedia PDF Downloads 291
1325 Benefits of Automobile Electronic Technology in the Logistics Industry in Third World Countries

Authors: Jonathan Matyenyika

Abstract:

In recent years, automobile manufacturers have increasingly produced vehicles equipped with cutting-edge automotive electronic technology to match the fast-paced digital world of today; this has brought about various benefits in different business sectors that make use of these vehicles as a means of turning over a profit. In the logistics industry, vehicles equipped with this technology have proved to be very utilitarian; this paper focuses on the benefits automobile electronic equipped vehicles have in the logistics industry. Automotive vehicle manufacturers have introduced new technological electronic features to their vehicles to enhance and improve the overall performance, efficiency, safety and driver comfort. Some of these features have proved to be beneficial to logistics operators. To start with the introduction of adaptive cruise control in long-distance haulage vehicles, to see how this system benefits the drivers, we carried out research in the form of interviews with long-distance truck drivers with the main question being, what major difference have they experienced since they started to operate vehicles equipped with this technology to which most stated they had noticed that they are less tired and are able to drive longer distances as compared to when they used vehicles not equipped with this system. As a result, they can deliver faster and take on the next assignment, thus improving efficiency and bringing in more monetary return for the logistics company. Secondly, the introduction of electric hybrid technology, this system allows the vehicle to be propelled by electric power stored in batteries located in the vehicle instead of fossil fuel. Consequently, this benefits the logistic company as vehicles become cheaper to run as electricity is more affordable as compared to fossil fuel. The merging of electronic systems in vehicles has proved to be of great benefit, as my research proves that this can benefit the logistics industry in plenty of ways.

Keywords: logistics, manufacturing, hybrid technology, haulage vehicles

Procedia PDF Downloads 36
1324 Experimental Investigation for Reducing Emissions in Maritime Industry

Authors: Mahmoud Ashraf Farouk

Abstract:

Shipping transportation is the foremost imperative mode of transportation in universal coordination. At display, more than 2/3 of the full worldwide exchange volume accounts for shipping transportation. Ships are utilized as an implies of marine transportation, introducing large-power diesel motors with exhaust containing nitrogen oxide NOx, sulfur oxide SOx, carbo di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO which are the most dangerous contaminants found in exhaust gas from ships. Ships radiating a large amount of exhaust gases have become a significant cause of pollution in the air in coastal areas, harbors and oceans. Therefore, IMO (the International Maritime Organization) has established rules to reduce this emission. This experiment shows the measurement of the exhaust gases emitted from the Aida IV ship's main engine using marine diesel oil fuel (MDO). The measurement is taken by the Sensonic2000 device on 85% load, which is the main sailing load. Moreover, the paper studies different emission reduction technologies as an alternative fuel, which as liquefied natural gas (LNG) applied to the system and reduction technology which is represented as selective catalytic reduction technology added to the marine diesel oil system (MDO+SCR). The experiment calculated the amount of nitrogen oxide NOx, sulfur oxide SOx, carbon-di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO because they have the most effect on the environment. The reduction technologies are applied on the same ship engine with the same load. Finally, the study found that MDO+SCR is the more efficient technology for the Aida IV ship as a training and supply ship due to low consumption and no need to modify the engine. Just add the SCR system to the exhaust line, which is easy and cheapest. Moreover, the differences between them in the emission are not so big.

Keywords: marine, emissions, reduction, shipping

Procedia PDF Downloads 59
1323 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050

Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva

Abstract:

Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.

Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta

Procedia PDF Downloads 64
1322 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine

Authors: Hammam Aljabri, Hong G. Im

Abstract:

Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.

Keywords: hydrogen, combustion, engine knock, SI engine

Procedia PDF Downloads 114
1321 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid

Authors: Ahmed Ismail, Mustafa Baysal

Abstract:

Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.

Keywords: active and reactive power sharing, distributed generation, droop control, microgrid

Procedia PDF Downloads 572
1320 Using the ISO 9705 Room Corner Test for Smoke Toxicity Quantification of Polyurethane

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Polyurethane (PU) foam is typically sold as acoustic foam that is often used as sound insulation in settings such as night clubs and bars. As a construction product, PU is tested by being glued to the walls and ceiling of the ISO 9705 room corner test room. However, when heat is applied to PU foam, it melts and burns as a pool fire due to it being a thermoplastic. The current test layout is unable to accurately measure mass loss and doesn’t allow for the material to burn as a pool fire without seeping out of the test room floor. The lack of mass loss measurement means gas yields pertaining to smoke toxicity analysis can’t be calculated, which makes data comparisons from any other material or test method difficult. Additionally, the heat release measurements are not representative of the actual measurements taken as a lot of the material seeps through the floor (when a tray to catch the melted material is not used). This research aimed to modify the ISO 9705 test to provide the ability to measure mass loss to allow for better calculation of gas yields and understanding of decomposition. It also aimed to accurately measure smoke toxicity in both the doorway and duct and enable dilution factors to be calculated. Finally, the study aimed to examine if doubling the fuel loading would force under-ventilated flaming. The test layout was modified to be a combination of the SBI (single burning item) test set up inside oof the ISO 9705 test room. Polyurethane was tested in two different ways with the aim of altering the ventilation condition of the tests. Test one was conducted using 1 x SBI test rig aiming for well-ventilated flaming. Test two was conducted using 2 x SBI rigs (facing each other inside the test room) (doubling the fuel loading) aiming for under-ventilated flaming. The two different configurations used were successful in achieving both well-ventilated flaming and under-ventilated flaming, shown by the measured equivalence ratios (measured using a phi meter designed and created for these experiments). The findings show that doubling the fuel loading will successfully force under-ventilated flaming conditions to be achieved. This method can therefore be used when trying to replicate post-flashover conditions in future ISO 9705 room corner tests. The radiative heat generated by the two SBI rigs facing each other facilitated a much higher overall heat release resulting in a more severe fire. The method successfully allowed for accurate measurement of smoke toxicity produced from the PU foam in terms of simple gases such as oxygen depletion, CO and CO2. Overall, the proposed test modifications improve the ability to measure the smoke toxicity of materials in different fire conditions on a large-scale.

Keywords: flammability, ISO9705, large-scale testing, polyurethane, smoke toxicity

Procedia PDF Downloads 57
1319 Feeding Habits and Condition Factor of Oreochromis niloticus in Lake Alau, Northeastern Nigeria

Authors: Zahra Ali Lawan, Ali Abdulhakim

Abstract:

The stomach contents of 100 Oreochromis niloticus, sampled between April and August, 2011 in Alau Lake, northeastern Nigeria, were examined. Herbs and algae were the main contents representing 40.15%, 23.36% followed by some mud / sand components, insect parts and fish remains representing 14.60%, 13.87% and 8.03% respectively. Oreochromis niloticus was affirmed as an herbivore and a benthic feeder due to the presence of both herbs and mud/sand among its stomach content. The mean stomach fullness percentage was 70.94% and stomach emptiness was 29.06%. The average condition factor of the fishes was 1.69 with the best conditions recorded in the dry months of April and May at 1.74 and 1.94 respectively. The general trend in the condition factor for this species in this study is that relatively higher condition factors were recorded for relatively higher lengths.

Keywords: stomach contents, oreochromis niloticus, herbivores, Lake Alau

Procedia PDF Downloads 351
1318 Measuring Biobased Content of Building Materials Using Carbon-14 Testing

Authors: Haley Gershon

Abstract:

The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.

Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials

Procedia PDF Downloads 146
1317 The Diverse and Flexible Coping Strategies Simulation for Maanshan Nuclear Power Plant

Authors: Chin-Hsien Yeh, Shao-Wen Chen, Wen-Shu Huang, Chun-Fu Huang, Jong-Rong Wang, Jung-Hua Yang, Yuh-Ming Ferng, Chunkuan Shih

Abstract:

In this research, a Fukushima-like conditions is simulated with TRACE and RELAP5. Fukushima Daiichi Nuclear Power Plant (NPP) occurred the disaster which caused by the earthquake and tsunami. This disaster caused extended loss of all AC power (ELAP). Hence, loss of ultimate heat sink (LUHS) happened finally. In order to handle Fukushima-like conditions, Taiwan Atomic Energy Council (AEC) commanded that Taiwan Power Company should propose strategies to ensure the nuclear power plant safety. One of the diverse and flexible coping strategies (FLEX) is a different water injection strategy. It can execute core injection at 20 Kg/cm2 without depressurization. In this study, TRACE and RELAP5 were used to simulate Maanshan nuclear power plant, which is a three loops PWR in Taiwan, under Fukushima-like conditions and make sure the success criteria of FLEX. Reducing core cooling ability is due to failure of emergency core cooling system (ECCS) in extended loss of all AC power situation. The core water level continues to decline because of the seal leakage, and then FLEX is used to save the core water level and make fuel rods covered by water. The result shows that this mitigation strategy can cool the reactor pressure vessel (RPV) as soon as possible under Fukushima-like conditions, and keep the core water level higher than Top of Active Fuel (TAF). The FLEX can ensure the peak cladding temperature (PCT) below than the criteria 1088.7 K. Finally, the FLEX can provide protection for nuclear power plant and make plant safety.

Keywords: TRACE, RELAP5/MOD3.3, ELAP, FLEX

Procedia PDF Downloads 235
1316 Pregnancy Outcome in Women with HIV Infection from a Tertiary Care Centre of India

Authors: Kavita Khoiwal, Vatsla Dadhwal, K. Aparna Sharma, Dipika Deka, Plabani Sarkar

Abstract:

Introduction: About 2.4 million (1.93 - 3.04 million) people are living with HIV/AIDS in India. Of all HIV infections, 39% (9,30,000) are among women. 5.4% of infections are from mother to child transmission (MTCT), 25,000 infected children are born every year. Besides the risk of mother to child transmission of HIV, these women are at risk of the higher adverse pregnancy outcome. The objectives of the study were to compare the obstetric and neonatal outcome in women who are HIV positive with low-risk HIV negative women and effect of antiretroviral drugs on preterm birth and IUGR. Materials and Methods: This is a retrospective case record analysis of 212 HIV-positive women delivering between 2002 to 2015, in a tertiary health care centre which was compared with 238 HIV-negative controls. Women who underwent medical termination of pregnancy and abortion were excluded from the study. Obstetric outcome analyzed were pregnancy induced hypertension, HIV positive intrauterine growth restriction, preterm birth, anemia, gestational diabetes and intrahepatic cholestasis of pregnancy. Neonatal outcome analysed were birth weight, apgar score, NICU admission and perinatal transmission.HIV-positiveOut of 212 women, 204 received antiretroviral therapy (ART) to prevent MTCT, 27 women received single dose nevirapine (sdNVP) or sdNVP tailed with 7 days of zidovudine and lamivudine (ZDV + 3TC), 15 received ZDV, 82 women received duovir and 80 women received triple drug therapy depending upon the time period of presentation. Results: Mean age of 212 HIV positive women was 25.72+3.6 years, 101 women (47.6 %) were primigravida. HIV positive status was diagnosed during pregnancy in 200 women while 12 women were diagnosed prior to conception. Among 212 HIV positive women, 20 (9.4 %) women had preterm delivery (< 37 weeks), 194 women (91.5 %) delivered by cesarean section and 18 women (8.5 %) delivered vaginally. 178 neonates (83.9 %) received exclusive top feeding and 34 neonates (16.03 %) received exclusive breast feeding. When compared to low risk HIV negative women (n=238), HIV positive women were more likely to deliver preterm (OR 1.27), have anemia (OR 1.39) and intrauterine growth restriction (OR 2.07). Incidence of pregnancy induced hypertension, diabetes mellitus and ICP was not increased. Mean birth weight was significantly lower in HIV positive women (2593.60+499 gm) when compared to HIV negative women (2919+459 gm). Complete follow up is available for 148 neonates till date, rest are under evaluation. Out of these 7 neonates found to have HIV positive status. Risk of preterm birth (P value = 0.039) and IUGR (P value = 0.739) was higher in HIV positive women who did not receive any ART during pregnancy than women who received ART. Conclusion: HIV positive pregnant women are at increased risk of adverse pregnancy outcome. Multidisciplinary team approach and use of highly active antiretroviral therapy can optimize the maternal and perinatal outcome.

Keywords: antiretroviral therapy, HIV infection, IUGR, preterm birth

Procedia PDF Downloads 250
1315 Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds

Authors: R. Simide, T. Miard

Abstract:

Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology.

Keywords: bioremediation, integrated multi-trophic aquaculture (IMTA), laboratory and commercial scales, recirculating aquaculture, sustainable

Procedia PDF Downloads 142
1314 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations

Authors: Aibek Kukpayev, Dhawal Shah

Abstract:

Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.

Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes

Procedia PDF Downloads 126
1313 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 120
1312 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell

Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan

Abstract:

In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.

Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell

Procedia PDF Downloads 191
1311 Failure Analysis: Solid Rocket Motor Type “Candy” - Explosion in a Static Test

Authors: Diego Romero, Fabio Rojas, J. Alejandro Urrego

Abstract:

The sounding rockets are aerospace vehicles that were developed in the mid-20th century, and Colombia has been involved in research that was carried out with the aim of innovating with this technology. The rockets are university research programs with the collaboration of the local government, with a simple strategy, develop and reduce the greatest costs associated with the production of a kind type of technology. In this way, in this document presents the failure analysis of a solid rocket motor, with the real compatibly to reach the thermosphere with a low-cost fuel. This solid rocket motor is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. This motor has been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, and the investigation has allowed the production of solid motors powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry.To outline the main points the explosion in a static test is an important to explore and demonstrate the ways to develop technology, methodologies, production and manufacturing, being a solid rocket motor with 30 kN of thrust. In conclusion, this analysis explores different fields such as: design, manufacture, materials, production, first fire and more, with different engineering tools with principal objective find root failure. Following the engineering analysis methodology, was possible to design a new version of motor, with learned lessons new manufacturing specification, therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.

Keywords: candy propellant, candy rockets, explosion, failure analysis, static test, solid rocket motor

Procedia PDF Downloads 148
1310 Sociological Enquiry into Occupational Risks and Its Consequences among Informal Automobile Artisans in Osun State, Nigeria

Authors: Funmilayo Juliana Afolabi, Joke Haafkens, Paul De Beer

Abstract:

Globally, there is a growing concern on reducing workplace accidents in the informal sector. However, there is a dearth of study on the perception of the informal workers on occupational risks they are exposed to. The way a worker perceives the workplace risk will influence his/her risk tolerance and risk behavior. The aim of this paper, therefore, is to have an in-depth understanding of the way the artisans perceive the risks at their workplace and how it influences their risk tolerance and risk behavior. This will help in designing meaningful intervention for the artisans and it will assist the policy makers in formulating a policy that will help them. Methods: Forty-three artisans were purposely selected for the study; data were generated through observation of the workplace and work practices of the artisans and in-depth interview from automobile artisans (Panel beater, Mechanic, Vulcanizer, and Painters) in Osun State, Nigeria. The transcriptions were coded and analyzed using MAXQDA software. Results: The perceived occupational risks among the study groups are a danger of being run over by oncoming vehicles while working by the roadside, a risk of vehicle falling on workers while working under the vehicle, cuts, and burns, fire explosion, falls from height and injuries from bursting of tires. The identified risk factors are carelessness of the workers, pressure from customers, inadequate tools, preternatural forces, God’s will and lack of apprentices that will assist them in the workplace. Furthermore, the study revealed that artisans engage in risky behavior like siphoning fuel with mouth because of perception that fuel is good for expelling worms and will make them free from any stomach upset. Conclusions: The study concluded that risky behaviors are influenced by culture, beliefs, and perception of the artisans. The study, therefore, suggested proper health and safety education for the artisans.

Keywords: automobile artisans, informal, occupational risks, Nigeria, sociological enquiry

Procedia PDF Downloads 170
1309 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing

Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup

Abstract:

In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.

Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety

Procedia PDF Downloads 58
1308 Sustainable Crop Mechanization among Small Scale Rural Farmers in Nigeria: The Hurdles

Authors: Charles Iledun Oyewole

Abstract:

The daunting challenge that the ‘man with the hoe’ is going to face in the coming decades will be complex and interwoven. With global population already above 7 billion people, it has been estimated that food (crop) production must more than double by 2050 to meet up with the world’s food requirements. Nigeria population is also expected to reach over 240 million people by 2050, at the current annual population growth of 2.61 per cent. The country’s farming population is estimated at over 65 per cent, but the country still depends on food importation to complement production. The small scale farmer, who depends on simple hand tools: hoes and cutlasses, remains the centre of agricultural production, accounting for 90 per cent of the total agricultural output and 80 per cent of the market flow. While the hoe may have been a tool for sustainable development at a time in human history, this role has been smothered by population growth, which has brought too many mouths to be fed (over 170 million), as well as many industries to fuel with raw materials. It may then be argued that the hoe is unfortunately not a tool for the coming challenges and that agricultural mechanization should be the focus. However, agriculture as an enterprise is a ‘complete wheel’ which does not work when broken, particularly, in respect to mechanization. Generally, mechanization will prompt increase production, where land is readily available; increase production, will require post-harvest handling mechanisms, crop processing and subsequent storage. An important aspect of this is readily available and favourable markets for such produce; fuel by good agricultural policies. A break in this wheel will lead to the process of mechanization crashing back to subsistence production, and probably reversal to the hoe. The focus of any agricultural policy should be to chart a course for sustainable mechanization that is environmentally friendly, that may ameliorate Nigeria’s food and raw material gaps. This is the focal point of this article.

Keywords: Crop production, Farmer, Hoes, Mechanization, Policy framework, Population, Growth, Rural areas

Procedia PDF Downloads 195
1307 Effect of Supplementation of Hay with Noug Seed Cake (Guizotia abyssinica), Wheat Bran and Their Mixtures on Feed Utilization, Digestiblity and Live Weight Change in Farta Sheep

Authors: Fentie Bishaw Wagayie

Abstract:

This study was carried out with the objective of studying the response of Farta sheep in feed intake and live weight change when fed on hay supplemented with noug seed cake (NSC), wheat bran (WB), and their mixtures. The digestibility trial of 7 days and 90 days of feeding trial was conducted using 25 intact male Farta sheep with a mean initial live weight of 16.83 ± 0.169 kg. The experimental animals were arranged randomly into five blocks based on the initial live weight, and the five treatments were assigned randomly to each animal in a block. Five dietary treatments used in the experiment comprised of grass hay fed ad libitum (T1), grass hay ad libitum + 300 g DM WB (T2), grass hay ad libitum + 300 g DM (67% WB: 33% NSC mixture) (T3), grass hay ad libitum + 300 g DM (67% NSC: 33% WB) (T4) and 300 g DM/ head/day NSC (T5). Common salt and water were offered ad libitum. The supplements were offered twice daily at 0800 and 1600 hours. The experimental sheep were kept in individual pens. Supplementation of NSC, WB, and their mixtures significantly increased (p < 0.01) the total dry matter (DM) (665.84-788 g/head/day) and (p < 0.001) crude protein (CP) intake. Unsupplemented sheep consumed significantly higher (p < 0.01) grass hay DM (540.5g/head/day) as compared to the supplemented treatments (365.8-488 g/h/d), except T2. Among supplemented sheep, T5 had significantly higher (p < 0.001) CP intake (99.98 g/head/day) than the others (85.52-90.2 g/head/day). Supplementation significantly improved (p < 0.001) the digestibility of CP (66.61-78.9%), but there was no significant effect (p > 0.05) on DM, OM, NDF, and ADF digestibility between supplemented and control treatments. Very low CP digestibility (11.55%) observed in the basal diet (grass hay) used in this study indicated that feeding sole grass hay could not provide nutrients even for the maintenance requirement of growing sheep. Significant final and daily live weight gain (p < 0.001) in the range of 70.11-82.44 g/head/day was observed in supplemented Farta sheep, but unsupplemented sheep lost weight by 9.11g/head/day. Numerically, among the supplemented treatments, sheep supplemented with a higher proportion of NSC in T4 (201 NSC + 99 g WB) gained more weight than the rest, though not statistically significant (p > 0.05). The absence of statistical difference in daily body weight gain between all supplemented sheep indicated that the supplementation of NSC, WB, and their mixtures had similar potential to provide nutrients. Generally, supplementation of NSC, WB, and their mixtures to the basal grass hay diet improved feed conversion ratio, total DM intake, CP intake, and CP digestibility, and it also improved the growth performance with a similar trend for all supplemented Farta sheep over the control group. Therefore, from a biological point of view, to attain the required level of slaughter body weight within a short period of the growing program, sheep producer can use all the supplement types depending upon their local availability, but in the order of priority, T4, T5, T3, and T2, respectively. However, based on partial budget analysis, supplementation of 300 g DM/head /day NSC (T5) could be recommended as profitable for producers with no capital limitation, whereas T4 supplementation (201 g NSC + 99 WB DM/day) is recommended when there is capital scarcity.

Keywords: weight gain, supplement, Farta sheep, hay as basal diet

Procedia PDF Downloads 43
1306 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 307
1305 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine

Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.

Abstract:

The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.

Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust

Procedia PDF Downloads 341