Search results for: disease prognosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3988

Search results for: disease prognosis

3118 Night Shift Work as an Oxidative Stressor: A Systematic Review

Authors: Madeline Gibson

Abstract:

Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings.

Keywords: night shift work, coxidative stress, circadian rhythm, melatonin, disease, circadian rhythm disruption

Procedia PDF Downloads 265
3117 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 32
3116 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 81
3115 Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons

Authors: Tei Kim, Brooklynn McNeil, Kathryn Dunn, Douglas I. Walker

Abstract:

To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease.

Keywords: bioinformatics, automation, opentrons, research

Procedia PDF Downloads 113
3114 Systematic Review of the Efficacy of Traditional Chinese Medicine in Parkinson Disease

Authors: Catarina Ramos Pereira, Jorge Rodrigues, Natália Oliveira, Jorge Machado, Maria Begoña Criado, Jorge Machado, Henri J. Greten

Abstract:

Background: Parkinson's disease is a multi-system neurodegenerative disorder characterized by motor and non-motor symptoms. To slow disorder progression, different treatment options are now available, but in most cases, these therapeutic strategies also involve the presence of important side effects. This has led many patients to pursue complementary therapies, such as acupuncture, to alleviate PD symptoms. Therefore, an update on the efficacy of this treatment for patients of PD is of great value. This work presents a systematic review of the efficacy of acupuncture treatments in relieving PD symptoms. Methods: EMBASE, Medline, Pubmed, Science Direct, The Cochrane Library, Cochrane Central Register of Controlled Trials (Central), and Scielo databases were systematically searched from January 2011 through July 2021. Randomized controlled trials (RCTs) published in English with all types of acupuncture treatment were included. The selection and analysis of the articles were conducted by two blinding authors through the Rayyan application. Results: 720 potentially relevant articles were identified; 52 RCTs met our inclusion criteria. After the exclusion of 35, we found 17 eligible. The included RCTs reported positive effects for acupuncture plus conventional treatment compared with conventional treatment alone in the UPDRS score. Conclusions: Additional evidence should be supported by rigorous methodological strategies. Although firm conclusions cannot be drawn, acupuncture treatment, in the framework of an interdisciplinary care team, appears to have positive effects on PD symptoms.

Keywords: systematic review, Parkinson disease, acupuncture, traditional Chinese medicine

Procedia PDF Downloads 139
3113 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 136
3112 Computer Aided Screening of Secreted Frizzled-Related Protein 4 (SFRP4): A Potential Control for Diabetes Mellitus

Authors: Shazia Anwer Bukhari, Waseem Akhtar Shamshari, Mahmood-Ur-Rahman, Muhammad Zia-Ul-Haq, Hawa Z. E. Jaafar

Abstract:

Diabetes mellitus is a life threatening disease and scientists are doing their best to find a cost effective and permanent treatment of this malady. The recent trend is to control the disease by target base inhibiting of enzymes or proteins. Secreted frizzled-related protein 4 (SFRP4) is found to cause five times more risk of diabetes when expressed above average levels. This study was therefore designed to analyze the SFRP4 and to find its potential inhibitors. SFRP4 was analyzed by bio-informatics tools of sequence tool and structure tool. A total of three potential inhibitors of SFRP4 were found, namely cyclothiazide, clopamide and perindopril. These inhibitors showed significant interactions with SFRP4 as compared to other inhibitors as well as control (acetohexamide). The findings suggest the possible treatment of diabetes mellitus type 2 by inhibiting the SFRP4 using the inhibitors cyclothiazide, clopamide and perindopril.

Keywords: bioscreening, clopamide, cyclothiazide, diabetes mellitus, perindopril, SFRP4

Procedia PDF Downloads 446
3111 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning

Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.

Abstract:

Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.

Keywords: image processing, python, convolution neural network (CNN), machine learning

Procedia PDF Downloads 76
3110 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensifying the occurrence of fungal resistance, are highly toxic to the environment, farmers, and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, and biodefensivesornon-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute to covering such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces damage to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 41
3109 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 134
3108 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement

Authors: Amir Reza Heydari, Yaser Jenab

Abstract:

Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.

Keywords: atherosclerosis, materials, restenosis, review, validation

Procedia PDF Downloads 90
3107 Incidence and Etiology of Neonatal Calf Diarrhea in the Region of Blida, Algeria

Authors: A. Dadda, D. Khelef, K. Ait-Oudia, R. Kaidi

Abstract:

Neonatal calf diarrhea is the most important disease of neonatal calves and results in the greatest economic losses due to disease in this age group in both dairy and beef calves. The objectives of the present study were to estimate the morbidity and the mortality of neonatal diarrhea in dairy calves also to determine aetiology and risk factors were caused diarrhea in dairy veal under 60 days old. A total of 324 claves, housed in 30 dairy breeding were followed during two velage season from January to Juan 2013. The total mortality was 5,9% and was significantly higher in calves had less than 15 days of age. The incidence rate of diarrhea was 31,5% and peaked in the first two weeks after velage. The main causes were breeding controls, defect of passive immunity, old of calf, production season, and nutrient of pregnant cattle, veal’s housing and infectious agents. ELISA test on 22 fecal samples revealed that the 31, 82% of dairy breeding were infected, by cryptosporidium parvum in 13, 6% of study population, E.Coli F5 in 9% and Rotavirus with rate of 4, 5%.

Keywords: diarrhoea, neonatal, mortality, aetiology, risk factors, incidence

Procedia PDF Downloads 633
3106 Rituximab Therapy for Musculoskeletal Involvement in Systemic Sclerosis

Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva

Abstract:

Objectives. There is very few data on changes of the musculoskeletal manifestations (artritis, arthralgia, muscle weakness, etc.) in systemic sclerosis (SSc) on rituximab (RTX) therapy. The aim of our study was to assess the severity of the musculoskeletal involvement in SSc patients (pts) and its changes during RTX therapy. Methods. Our study included 103 pts with SSc. The mean followup period was 12.6±10.7 months. The mean age was 47±12.9 years, female-87 pts (84%), the diffuse cutaneous subset of the disease had 55 pts (53%). The mean disease duration was 6.2±5.5 years. All pts had interstitial lung disease (ILD) and were positive for ANA, 67% of them were positive for antitopoisomerase-1. All patients received prednisolone at a dose of 11.3±4.5 mg/day, immunosuppressants at inclusion received 47% of them. Pts received RTX due to the ineffectiveness of previous therapy for ILD. The cumulative mean dose of RTX was 1.7±0.6 grams. Arthritis was observed in 22 pts (21%), arthralgias in 47 pts (46%). Muscle weakness was observed in 17 pts (17%). Tendon friction rubs was established in 7 pts (7%). The results at baseline and at the end of the follow up are presented in the form of mean values. Results. There was an improvement of all outcome parameters and musculoskeletal manifestations on RTX therapy. There was a decrease in the number of pts with arthritis from 22 (21%) to 10 (9%), a decrease in the number of pts with arthralgias from 47 (46%) to 31 (30%). The number of pts with muscle weakness decreased from 17 (17%) to 7 (7%). The number of pts with tendon friction rubs decreased from 7 (7%) to 3 (3%). The creatine phosphokinase decreased from 365.5±186 to 70.8±50.4 (p=0.00006). The C-reactive protein (CRP) decreased from 23.2±31.3 to 8.62±7.4 (p=0.001). The dose of prednisolone was reduced from 11.3±4.5 to 9.8±3.5 mg/day (p=0.0004). Conclusion. In our study, musculoskeletal involvement was detected in almost half of the patients with SSc-ILD. There was an improvement of musculoskeletal manifestations despite a small cumulative dose of RTX. We also managed to reduce the dose of glucocorticosteroids. The improvement of musculoskeletal manifestations was accompanied by a decrease in laboratory parameters - creatine phosphokinase and CRP. RTX is effective option for treatment of musculoskeletal manifestations in SSc.

Keywords: arthritis, musculoskeletal involvement, systemic sclerosis, rituximab

Procedia PDF Downloads 80
3105 Visfatin and Apelin Are New Interrelated Adipokines Playing Role in the Pathogenesis of Type 2 Diabetes Mellitus Associated Coronary Artery Disease in Postmenopausal Women

Authors: Hala O. El-Mesallamy, Salwa M. Suwailem, Mae M. Seleem

Abstract:

Visfatin and apelin are two new adipokines that recently gained a special interest in diabetes research. This study was conducted to study the interplay between these two adipokines and their correlation with other inflammatory and biochemical parameters in type 2 diabetic (T2D) postmenopausal women with CAD. Visfatin and apelin were measured by enzyme-linked immunoassay (ELISA). Visfatin was found to be significantly higher in the following groups: T2D patients without CAD, non-obese and obese T2D patients with CAD when compared to control group. Apelin was found to be significantly lower in non-obese and obese T2D patients with CAD when compared to control group. Visfatin and apelin were found to be significantly associated with each other and with other biochemical parameters. The current study provides evidence for the interplay between visfatin and apelin through the inflammatory milieu characteristic of T2D and their possible role in the pathogenesis of CAD complication of T2D.

Keywords: apelin, coronary artery disease, inflammation, type 2 diabetes, visfatin

Procedia PDF Downloads 251
3104 PCR Detection, Histopathological Characterization, and Autogenous Immunization of Bovine Papillomatosis (Wart) in Cattle, in Mekelle, Northern Ethiopia

Authors: Kidane Workelul, Yohans Tekle, Guesh Negash, Haftay Abraha, Nigus Abebe Shumuye, Yisehak Tsegaye Redda

Abstract:

Bovine papillomatosis (wart) is one of the economically important bovine skin diseases worldwide, caused by a group of viruses named papillomaviruses (PVs). However, it has often been misdiagnosed as other skin diseases and remained untreated. In order to determine the status of the diseases, twenty-two farms were visited, and fourteen infected cattle with cutaneous papillomatosis were identified from a total of 235. Papilloma biopsies were taken for molecular and histopathological characterization, the therapeutic trial of an autogenous vaccine was evaluated on infected animals. The overall status of bovine papillomatosis in this study was calculated as 5.96% (14/235). The disease was found to be statistically significant in the age groups less than two years (X² = 26.69, P = 0.0001). The more prominent histologically characterized lesions in the sampled tissue were identified as squamous papilloma and fibro-papilloma. The Polymerase Chain Reaction (PCR) based identification revealed that all the clinically and histo-pathologically characterized papillomatosis cases were found to be infected with Bovine Papilloma Virus1(BPV1), indicating that BPV1 was the most common and sole causative agent of the diseases in the study area. In immunizing active bovine papillomatosis, an autogenous vaccine therapeutic trial demonstrated excellent results, with practically full recovery and no recurrence of the infection. Hence, it is concluded that bovine papillomatosis is an economically important disease of young age group cattle as well as a treatable disease. So, the production of marketable autogenous vaccines against bovine papillomatosis should be started and given at an early stage.

Keywords: autogenous vaccine, bovine papillomatosis, bovine papilloma virus1 clinical-pathology, polymerase chine reaction, wart

Procedia PDF Downloads 78
3103 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 221
3102 Impact of an Educational Intervention on Knowledge, Attitude and Practices of Community Members on Schistosomiasis in Nelson Mandela Bay

Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri

Abstract:

Schistosomiasis, often known as bilharzia, is a parasitic water-borne disease caused by trematode flatworms of the genus Schistosoma. Schistosomiasis infection and prevention have been found to be influenced by a range of socio-cultural risk factors, including human characteristics (e.g., gender, age, education, knowledge, attitude, and practices), as well as environmental and economic elements. Lack of awareness of the disease may also contribute to an individual's tendency to participate in behaviours or activities that heighten their susceptibility to infection. The current study assessed the community knowledge, attitude and practices (KAP) on schistosomiasis and implemented an educational intervention following pre-test interviews. A cross-sectional quasi-experimental research design was used in this quantitative study. Pre- and post-intervention interview format surveys were conducted using a structured questionnaire, targeting individuals aged 18–65 years residing within 5 km of select water bodies. The questionnaire contained 54 close-ended questions about schistosomiasis causes, transmission, and clinical symptoms and the participants were interviewed face-to-face in their homes. Data was captured on Question Pro and analyzed using Microsoft Office Excel 365 (2019) and R (version 4.3.1) software. Overall, 380 individuals completed the pre and post-intervention assessments; 194 and 185 were males (51.1%) and females (48.7%), respectively. A notable 91.3% of participants did not know about schistosomiasis in the pre-intervention phase; however, the mean post-intervention test score (9.4 ± 1.4) for knowledge among participants was higher than the pre-intervention test score (2.2 ± 2.1) indicating a good and improved knowledge of schistosomiasis among the participants. Furthermore, the paired samples t-test results demonstrated that the increase in knowledge levels was statistically significant (p<0.001). Also, the post-intervention improvement of both practice (p<0.001) and attitude (p<0.001) levels was statistically significant. A positive correlation (r=0.23, p<0.001) was found between knowledge and attitude in the pre-intervention stage. Knowledgeable participants had a more positive attitude towards obtaining medical assistance and disease prevention. Moreover, attitudes and practices correlated negatively (r=-0.13, p=0.013) post-intervention; hence, those with positive attitudes did not engage in risky water-related practices, which was the desired outcome. The educational intervention had a favourable impact on the KAP of the study population as the majority were able to recall the disease aetiology, symptoms, transmission pattern, and preventative measures three months post-intervention. Nevertheless, previous research has suggested that participants were unable to recall information about the disease following the intervention. Consequently, research should prioritize behavioural modification strategies that may result in a more persistent outcome in terms of the participants' knowledge, which could ultimately contribute to the development of long-term positive attitudes and practices.

Keywords: educational intervention, knowledge, attitudes and practices, schistosomiasis

Procedia PDF Downloads 17
3101 Efficacy of Yoga and Meditation Based Lifestyle Intervention on Inflammatory Markers in Patients with Rheumatoid Arthritis

Authors: Surabhi Gautam, Uma Kumar, Rima Dada

Abstract:

A sustained acute-phase response in Rheumatoid Arthritis (RA) is associated with increased joint damage and inflammation leading to progressive disability. It is induced continuously by consecutive stimuli of proinflammatory cytokines, following a wide range of pathophysiological reactions, leading to increased synthesis of acute phase proteins like C - reactive protein (CRP) and dysregulation in levels of immunomodulatory soluble Human Leukocyte Antigen-G (HLA-G) molecule. This study was designed to explore the effect of yoga and meditation based lifestyle intervention (YMLI) on inflammatory markers in RA patients. Blood samples of 50 patients were collected at baseline (day 0) and after 30 days of YMLI. Patients underwent a pretested YMLI under the supervision of a certified yoga instructor for 30 days including different Asanas (physical postures), Pranayama (breathing exercises), and Dhayna (meditation). Levels of CRP, IL-6, IL-17A, soluble HLA-G and erythrocyte sedimentation rate (ESR) were measured at day 0 and 30 interval. Parameters of disease activity, disability quotient, pain acuity and quality of life were also assessed by disease activity score (DAS28), health assessment questionnaire (HAQ), visual analogue scale (VAS), and World Health Organization Quality of Life (WHOQOL-BREF) respectively. There was reduction in mean levels of CRP (p < 0.05), IL-6 (interleukin-6) (p < 0.05), IL-17A (interleukin-17A) (p < 0.05) and ESR (p < 0.05) and elevation in soluble HLA-G (p < 0.05) at 30 days compared to baseline level (day 0). There was reduction seen in DAS28-ESR (p < 0.05), VAS (p < 0.05) and HAQ (p < 0.05) after 30 days with respect to the base line levels (day 0) and significant increase in WHOQOL-BREF scale (p < 0.05) in all 4 domains of physical health, psychological health, social relationships, and environmental health. The present study has demonstrated that yoga practices are associated with regression of inflammatory processes by reducing inflammatory parameters and regulating the levels of soluble HLA-G significantly in active RA patients. Short term YMLI has significantly improved pain perception, disability quotient, disease activity and quality of life. Thus this simple life style intervention can reduce disease severity and dose of drugs used in the treatment of RA.

Keywords: inflammation, quality of life, rheumatoid arthritis, yoga and meditation

Procedia PDF Downloads 166
3100 MNH-886(Bt.): A Cotton Cultivar (G. Hirsutum L.) for Cultivation in Virus Infested Regions of Pakistan, Having High Seed Cotton Yield and Desirable Fibre Characteristics

Authors: Wajad Nazeer, Saghir Ahmad, Khalid Mahmood, Altaf Hussain, Abid Mahmood, Baoliang Zhou

Abstract:

MNH-886(Bt.) is a upland cotton cultivar (Gossypium hirsutum L.) developed through hybridization of three parents [(FH-207×MNH-770)×Bollgard-1] at Cotton Research Station Multan, Pakistan. It is resistant to CLCuVD with 16.25 % disease incidence (60 DAS, March sowing) whereas moderately susceptible to CLCuVD when planted in June with disease incidence 34 % (60 DAS). This disease reaction was lowest among 25 cotton advanced lines/varieties tested at hot spots of CLCuVD. Its performance was tested during 2009 to 2012 in various indigenous, provincial, and national varietal trials in comparison with the commercial variety IR-3701 and AA-802 & CIM-496. In PCCT trial during 2009-10; 2011-12, MNH-886 surpassed all the existing Bt. strains along with commercial varieties across the Punjab province with seed cotton yield production 2658 kg ha-1 and 2848 kg ha-1 which was 81.31 and 13% higher than checks, respectively. In National Coordinated Bt. Trial, MNH-886(Bt.) produced 3347 kg ha-1 seed cotton at CCRI, Multan; the hot spot of CLCuVD, in comparison to IR-3701 which gave 2556 kg ha-1. It possesses higher lint percentage (41.01%), along with the most desirable fibre traits (staple length 28.210mm, micronaire value 4.95 µg inch-1 and fibre strength 99.5 tppsi, and uniformity ratio 82.0%). The quantification of toxicity level of crystal protein was found positive for Cry1Ab/Ac protein with toxicity level 2.76µg g-1 and Mon 531 event was confirmed. Having tremendous yield potential, good fibre traits, and great tolerance to CLCuVD we can recommended this variety for cultivation in CLCuVD hotspots of Pakistan.

Keywords: cotton, cultivar, cotton leaf curl virus, CLCuVD hit districts

Procedia PDF Downloads 318
3099 Stability and Sensitivity Analysis of Cholera Model with Treatment Class

Authors: Yunusa Aliyu Hadejia

Abstract:

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.

Keywords: mathematical model, treatment, stability, sensitivity

Procedia PDF Downloads 98
3098 Comparison of Health Related Quality of Life in End Stage Renal Diseases Undergoing Twice and Thrice Hemodialysis

Authors: Anamika A. Sharma, Arezou Ahmadi R. A., Narendra B. Parihar, Manjusha Sajith

Abstract:

Introduction: Hemodialysis is the most effective therapeutic technique for patient with ESRD second to renal transplantation. However it is a lifelong therapy which requires frequent hospital, or dialysis centers visits mainly twice and thrice weekly, thus considerably changes the normal way of patient’s living. So this study aimed to Assess Health-Related Quality of life in End-Stage Renal Disease (ESRD) Undergoing Twice and Thrice weekly Hemodialysis. Method: A prospective observational, cross-sectional study was carried out from September 2016 to April 2017 in end-stage renal disease patients undergoing hemodialysis. Socio-demographic and clinical details of patients were obtained from the medical records. WHOQOL-BREF questionnaire was used to Access Health-Related Quality Of Life. Quality of Life scores of Twice weekly and Thrice weekly hemodialysis was analyzed by Kruskal Wallis Test. Results: Majority of respondents were male (72.55%), married (89.31%), employed (58.02%), belong to middle class (71.00%) and resides in rural area (58.78%). The mean ages in the patient undergoing twice weekly and thrice weekly hemodialysis were 51.89 ± 15.64 years and 51.33 ± 15.70 years respectively. Average Quality of Life scores observed in twice weekly and thrice weekly hemodialysis was 52.07 ± 13.30 (p=0.0037) and 52.87 ± 13.47 (p=0.0004) respectively. The hemoglobin of thrice weekly dialysis patients (10.28 gm/dL) was high as compared to twice weekly dialysis (9.23 gm/dL). Patients undergoing thrice weekly dialysis had improved serum urea, serum creatinine values (95.85 mg/dL, 8.32 mg/dL) as compared to twice weekly hemodialysis ( 104.94 mg/dL, 8.68 mg/dL). Conclusion: Our study concluded that there was no significant difference between overall Health-Related Quality Of Life in twice weekly and thrice weekly hemodialysis. Frequent hemodialysis was associated with improved control of hypertension, serum urea, serum creatinine levels.

Keywords: end stage renal disease, health related quality of life, twice weekly hemodialysis, thrice weekly hemodialysis

Procedia PDF Downloads 179
3097 Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis and Alzheimer’s Disease

Authors: Edward Poluyi, Eghosa Morgan, Charles Poluyi, Chibuikem Ikwuegbuenyi, Grace Imaguezegie

Abstract:

Background: Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives : This review will discuss the available literature linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods: Given the complexity of this subject, a realistic review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results: Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.

Keywords: amyotrophic lateral sclerosis, Alzheimer's disease, mild traumatic brain injury, neurodegeneration

Procedia PDF Downloads 88
3096 An Approach to Make an Adaptive Immunoassay to Detect an Unknown Disease

Authors: Josselyn Mata Calidonio, Arianna I. Maddox, Kimberly Hamad-Schifferli

Abstract:

Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using antibodies specific to that biomarker. However, a way to detect unknown viruses has not yet been achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay repurposes cross-reactive antibodies raised against the alpha variant. Gold nanoparticles of two different colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and discriminate an unknown that it has not encountered before, Omicron BA.1. The test has an accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.

Keywords: adaptive immunoassay, detecting unknown viruses, gold nanoparticles, paper immunoassay, repurposing antibodies

Procedia PDF Downloads 112
3095 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 124
3094 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer

Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso

Abstract:

Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).

Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells

Procedia PDF Downloads 213
3093 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone

Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga

Abstract:

Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.

Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study

Procedia PDF Downloads 161
3092 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 168
3091 Effect of vr Based Wii Fit Training on Muscle Strength, Sensory Integration Ability and Walking Abilities in Patients with Parkinson's Disease: A Randomized Control Trial

Authors: Ying-Yi Laio, Yea-Ru Yang, Yih-Ru Wu, Ray-Yau Wang

Abstract:

Background: Virtual reality (VR) systems are proved to increase motor performance in stroke and elderly. However, the effects have not been established in patients with Parkinson’s disease (PD). Purpose: To examine the effects of VR based training in improving muscle strength, sensory integration ability and walking abilities in patients with PD by a randomized controlled trial. Method: Thirty six participants with diagnosis of PD were randomly assigned to one of the three groups (n=12 for each group). Participants received VR-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by treadmill training for another 15 minutes for 12 sessions in 6 weeks. Participants in the control group received no structured exercise program but fall-prevention education. Outcomes included lower extremity muscle strength, sensory integration ability, walking velocity, stride length, and functional gait assessment (FGA). All outcomes were assessed at baseline, after training and at 1-month follow-up. Results: Both VRWii and TE groups showed more improvement in level walking velocity, stride length, FGA, muscle strength and vestibular system integration than control group after training and at 1-month follow-up. The VRWii training, but not the TE training, resulted in more improvement in visual system integration than the control. Conclusions: VRWii training is as beneficial as traditional exercise in improving walking abilities, sensory integration ability and muscle strength in patients with PD, and such improvements persisted at least for 1 month. The VRWii training is then suggested to be implemented in patients with PD.

Keywords: virtual reality, walking, sensory integration, muscle strength, Parkinson’s disease

Procedia PDF Downloads 327
3090 Pulsatile Drug Delivery System for Chronopharmacological Disorders

Authors: S. S. Patil, B. U. Janugade, S. V. Patil

Abstract:

Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery thus increasing patient compliance. These systems are designed according to the circadian rhythm of the body. Chronotherapeutics is the discipline concerned with the delivery of drugs according to inherent activities of a disease over a certain period of time. It is becoming increasingly more evident that the specific time that patients take their medication may be even more significant than was recognized in the past. The tradition of prescribing medication at evenly spaced time intervals throughout the day, in an attempt to maintain constant drug levels throughout a 24-hour period, may be changing as researcher’s report that some medications may work better if their administration is coordinated with day-night patterns and biological rhythms. The potential benefits of chronotherapeutics have been demonstrated in the management of a number of diseases. In particular, there is a great deal of interest in how chronotherapy can particularly benefit patients suffering from allergic rhinitis, rheumatoid arthritis and related disorders, asthma, cancer, cardiovascular diseases, and peptic ulcer disease.

Keywords: pulsatile drug delivery, chronotherapeutics, circadian rhythm, asthma, chronobiology

Procedia PDF Downloads 363
3089 A Multi-Site Knowledge Attitude and Practice Survey of Ebola Virus Disease (EVD) in Nigeria

Authors: Ilyasu G., Ogoina D., Otu AA, Muhammed FD, Ebenso B., Otokpa D., Rotifa S., Tuduo-Wisdom O., Habib AG

Abstract:

Background: The 2014 Ebola Virus Disease (EVD) outbreak was characterized by fear, misconceptions and irrational behaviors. We conducted a knowledge attitude and practice survey of EVD in Nigeria to inform the institution of effective control measures. Methods: Between July 30th and September 30th 2014, a cross-sectional study on knowledge, attitude and practice (KAP) of Ebola Virus Disease (EVD) was undertaken among adults of the general population and healthcare workers (HCW) in three states of Nigeria, including Kano, Cross River and Bayelsa states. Demographic information and data on KAP were obtained using a self-administered standardized questionnaire. The percentage KAP scores were categorized as good and poor. Independent predictors of good knowledge of EVD were ascertained using a binary logistic regression model. Results: Out of 1035 study participants with a median age of 32 years, 648 (62.6%) were males, 846 (81.7%) had tertiary education and 441 (42.6%) were HCW. There were 218, 239 and 578 respondents from Bayelsa, Cross Rivers, and Kano states, respectively. The overall median percentage KAP scores and interquartile ranges (IQR) were 79.46% (15.07%), 95.0% (33.33%), and 49.95% (37.50%), respectively. Out of the 1035 respondents, 470 (45.4%), 544(52.56%), and 252 (24.35%) had good KAP of EVD defined using 80%, 90%, and 70% score cut-offs, respectively. Independent predictors of good knowledge of EVD were a HCW (Odds Ratio-OR-2.89, 95% Confidence interval-CI of 1.41-5.90), reporting ‘moderate to high fear of EVD’ (OR-2.15, 95% CI-1.47-3.13) and ‘willingness to modify habit’ (OR-1.68, 95% CI-1.23-2.30). Conclusion: Our results reveal suboptimal EVD-related knowledge, attitude and practice among adults in Nigeria. To effectively control future outbreaks of EVD in Nigeria, there is a need to institute public sensitization programs that improve understanding of EVD and address EVD-related myths and misconceptions, especially among the general population.

Keywords: Ebola, health care worker, knowledge, attitude

Procedia PDF Downloads 284