Search results for: compliment response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5156

Search results for: compliment response

4286 Aspects Regarding the Structural Behaviour of Autonomous Underwater Vehicle for Emergency Response

Authors: Lucian Stefanita Grigore, Damian Gorgoteanu, Cristian Molder, Amado Stefan, Daniel Constantin

Abstract:

The purpose of this article is to present an analytical-numerical study on the structural behavior of a sunken autonomous underwater vehicle (AUV) for emergency intervention. The need for such a study was generated by the key objective of the ERL-Emergency project. The project aims to develop a system of collaborative robots for emergency response. The system consists of two robots: unmanned ground vehicles (UGV) on tracks and the second is an AUV. The system of collaborative robots, AUV and UGV, will be used to perform missions of monitoring, intervention, and rescue. The main mission of the AUV is to dive into the maritime space of an industrial port to detect possible leaks in a pipeline transporting petroleum products. Another mission is to close and open the valves with which the pipes are provided. Finally, you will need to be able to lift a manikin to the surface, which you can take to land. Numerical analysis was performed by the finite element method (FEM). The conditions for immersing the AUV at 100 m depth were simulated, and the calculations for different fluid flow rates were repeated. From a structural point of view, the stiffening areas and the enclosures in which the command-and-control elements and the accumulators are located have been especially analyzed. The conclusion of this research is that the AUV meets very well the established requirements.

Keywords: analytical-numerical, emergency, FEM, robotics, underwater

Procedia PDF Downloads 136
4285 Treatment of Non-Small Cell Lung Cancer (NSCLC) With Activating Mutations Considering ctDNA Fluctuations

Authors: Moiseenko F. V., Volkov N. M., Zhabina A. S., Stepanova E. O., Kirillov A. V., Myslik A. V., Artemieva E. V., Agranov I. R., Oganesyan A. P., Egorenkov V. V., Abduloeva N. H., Aleksakhina S. Yu., Ivantsov A. O., Kuligina E. S., Imyanitov E. N., Moiseyenko V. M.

Abstract:

Analysis of ctDNA in patients with NSCLC is an emerging biomarker. Multiple research efforts of quantitative or at least qualitative analysis before and during the first periods of treatment with TKI showed the prognostic value of ctDNA clearance. Still, these important results are not incorporated in clinical standards. We evaluated the role of ctDNA in EGFR-mutated NSCLC receiving first-line TKI. Firstly, we analyzed sequential plasma samples from 30 patients that were collected before intake of the first tablet (at baseline) and at 6, 12, 24, 36, and 48 hours after the “starting point.” EGFR-M+ allele was measured by ddPCR. Afterward, we included sequential qualitative analysis of ctDNA with cobas® EGFR Mutation Test v2 from 99 NSCLC patients before the first dose, after 2 and 4 months of treatment, and on progression. Early response analysis showed the decline of EGFR-M+ level in plasma within the first 48 hours of treatment in 11 subjects. All these patients showed objective tumor response. 10 patients showed either elevation of EGFR-M+ plasma concentration (n = 5) or stable content of circulating EGFR-M+ after the start of the therapy (n = 5); only 3 of these patients achieved an objective response (p = 0.026) when compared to the former group). The rapid decline of plasma EGFR-M+ DNA concentration also predicted for longer PFS (13.7 vs. 11.4 months, p = 0.030). Long-term ctDNA monitoring showed clinically significant heterogeneity of EGFR-mutated NSCLC treated with 1st line TKIs in terms of progression-free and overall survival. Patients without detectable ctDNA at baseline (N = 32) possess the best prognosis on the duration of treatment (PFS: 24.07 [16.8-31.3] and OS: 56.2 [21.8-90.7] months). Those who achieve clearance after two months of TKI (N = 42) have indistinguishably good PFS (19.0 [13.7 – 24.2]). Individuals who retain ctDNA after 2 months (N = 25) have the worst prognosis (PFS: 10.3 [7.0 – 13.5], p = 0.000). 9/25 patients did not develop ctDNA clearance at 4 months with no statistical difference in PFS from those without clearance at 2 months. Prognostic heterogeneity of EGFR-mutated NSCLC should be taken into consideration in planning further clinical trials and optimizing the outcomes of patients.

Keywords: NSCLC, EGFR, targeted therapy, ctDNA, prognosis

Procedia PDF Downloads 36
4284 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids

Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi

Abstract:

The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.

Keywords: dianabol steroid, determination, modified GCE, urine

Procedia PDF Downloads 265
4283 Distance and Coverage: An Assessment of Location-Allocation Models for Fire Stations in Kuwait City, Kuwait

Authors: Saad M. Algharib

Abstract:

The major concern of planners when placing fire stations is finding their optimal locations such that the fire companies can reach fire locations within reasonable response time or distance. Planners are also concerned with the numbers of fire stations that are needed to cover all service areas and the fires, as demands, with standard response time or distance. One of the tools for such analysis is location-allocation models. Location-allocation models enable planners to determine the optimal locations of facilities in an area in order to serve regional demands in the most efficient way. The purpose of this study is to examine the geographic distribution of the existing fire stations in Kuwait City. This study utilized location-allocation models within the Geographic Information System (GIS) environment and a number of statistical functions to assess the current locations of fire stations in Kuwait City. Further, this study investigated how well all service areas are covered and how many and where additional fire stations are needed. Four different location-allocation models were compared to find which models cover more demands than the others, given the same number of fire stations. This study tests many ways to combine variables instead of using one variable at a time when applying these models in order to create a new measurement that influences the optimal locations for locating fire stations. This study also tests how location-allocation models are sensitive to different levels of spatial dependency. The results indicate that there are some districts in Kuwait City that are not covered by the existing fire stations. These uncovered districts are clustered together. This study also identifies where to locate the new fire stations. This study provides users of these models a new variable that can assist them to select the best locations for fire stations. The results include information about how the location-allocation models behave in response to different levels of spatial dependency of demands. The results show that these models perform better with clustered demands. From the additional analysis carried out in this study, it can be concluded that these models applied differently at different spatial patterns.

Keywords: geographic information science, GIS, location-allocation models, geography

Procedia PDF Downloads 156
4282 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 161
4281 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-Jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in the single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is an obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. Therefore, the dynamic change of parameter in asphalt mixture should be taken into consideration when the theoretical analysis is taken out.

Keywords: asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress

Procedia PDF Downloads 480
4280 Ubuntu: A Holistic Social Framework for Preserving Ecosystem Amidst the Climate Change Challenges

Authors: Gabriel Sunday Ayayia

Abstract:

The paper argues that Ubuntu, as a philosophy that emphasizes the interconnectedness of all living things and importance of community and mutual support, can be used as a social framework to address the problems of climate change and promote environmental sustainability. The research demonstrate that Ubuntu is an ideological concept that encourages collective action on climate change, with the emphasis on individual and collective commitment to taking concrete action to address the problems of climate change. The paper shows that Ubuntu can be employed as a social tool that would enhance the cultivation of shared identity and promote the sense of shared response responsibility to develop the resilience to cope with climate change. Using qualitative and quantitative methodologies, the study establishes the imperativeness of mutual support and cooperation through the lens of Ubuntu as a human-centered scalable response to the debacle of climate change. It recommends that we can build a society that values the environment and promotes sustainable practices by encouraging community involvement in sustainable initiatives by integrating Ubuntu-based principles to our decision-making processes, collaboration, leadership, human agency and governance.

Keywords: ubuntu, climate change, humanity, collective actions, community-based

Procedia PDF Downloads 164
4279 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges

Authors: Dianelys Vega, Carlos Magluta, Ney Roitman

Abstract:

The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.

Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction

Procedia PDF Downloads 113
4278 A Comparison of qCON/qNOX to the Bispectral Index as Indices of Antinociception in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway

Authors: Roya Yumul, Ofelia Loani Elvir-Lazo, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

BACKGROUND: An objective means for monitoring the anti-nociceptive effects of perioperative medications has long been desired as a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively. To this end, electroencephalogram (EEG) based tools including BIS and qCON were designed to provide information about the depth of sedation while qNOX was produced to inform on the degree of antinociception. The goal of this study was to compare the reliability of qCON/qNOX to BIS as specific indicators of response to nociceptive stimulation. METHODS: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board (IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to the endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed on all patients prior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. RESULTS: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from 74 ±13 mm Hg at baseline to 84 ± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76 ± 12 BPM at baseline to 80 ± 13 BPM during noxious stimuli [p=0.078] respectively). CONCLUSION: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices

Keywords: antinociception, BIS, general anesthesia, LMA, qCON/qNOX

Procedia PDF Downloads 116
4277 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process

Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink

Abstract:

The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, Poland

Keywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway

Procedia PDF Downloads 400
4276 Effect of Extrusion Parameters on the Rheological Properties of Ready-To-Eat Extrudates Developed from De-Oiled Rice Bran

Authors: Renu Sharma, D. C. Saxena, Tanuja Srivastava

Abstract:

Mechanical properties of ready-to-eat extrudates are perceived by the consumers as one of the quality criteria. Texture quality of any product has a strong influence on the sensory evaluation as well as on the acceptability of the product. The main texture characteristics influencing the product acceptability are crispness, elasticity, hardness and softness. In the present work, the authors investigated one of the most important textural characteristics of extrudates i.e. hardness. A five-level, four-factor central composite rotatable design was employed to investigate the effect of temperature, screw speed, feed moisture content and feed composition mainly rice bran content and their interactions, on the mechanical hardness of extrudates. Among these, feed moisture was found to be a prominent factor affecting the product hardness. It was found that with the increase of feed moisture content, the rice bran proportion leads to increase in hardness of extrudates whereas the increase of temperature leads to decrease of hardness of product. A good agreement between the predicted (26.49 N) and actual value (28.73N) of the response confirms the validation of response surface methodology (RSM)-model.

Keywords: deoiled rice bran, extrusion, rheological properties, RSM

Procedia PDF Downloads 358
4275 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company

Authors: Shanshan Zhou, Massimo Battaglia

Abstract:

Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.

Keywords: community identity, disaster, identity, organizational learning

Procedia PDF Downloads 705
4274 Effect of Rainflow Cycle Number on Fatigue Lifetime of an Arm of Vehicle Suspension System

Authors: Hatem Mrad, Mohamed Bouazara, Fouad Erchiqui

Abstract:

Fatigue, is considered as one of the main cause of mechanical properties degradation of mechanical parts. Probability and reliability methods are appropriate for fatigue analysis using uncertainties that exist in fatigue material or process parameters. Current work deals with the study of the effect of the number and counting Rainflow cycle on fatigue lifetime (cumulative damage) of an upper arm of the vehicle suspension system. The major part of the fatigue damage induced in suspension arm is caused by two main classes of parameters. The first is related to the materials properties and the second is the road excitation or the applied force of the passenger’s number. Therefore, Young's modulus and road excitation are selected as input parameters to conduct repetitive simulations by Monte Carlo (MC) algorithm. Latin hypercube sampling method is used to generate these parameters. Response surface method is established according to fatigue lifetime of each combination of input parameters according to strain-life method. A PYTHON script was developed to automatize finite element simulations of the upper arm according to a design of experiments.

Keywords: fatigue, monte carlo, rainflow cycle, response surface, suspension system

Procedia PDF Downloads 237
4273 Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames

Authors: Alfredo Reyes-Salazar, Mario D. Llanes-Tizoc, Eden Bojorquez, Federico Valenzuela-Beltran, Juan Bojorquez, Jose R. Gaxiola-Camacho, Achintya Haldar

Abstract:

Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.

Keywords: moment-resisting steel frames, consistent and concentrated mass matrices, non-linear seismic response, Rayleigh damping

Procedia PDF Downloads 131
4272 Comparison of Selected Behavioural Patterns of German Shepherd Puppies in Open-Field Test by Practical Assessment Report

Authors: Igor Miňo, Lenka Lešková

Abstract:

Over the past 80 years, open-field method has evolved as a commonly used tool for the analysis of animal behaviour. The study was carried out using 50 kennel-reared purebred puppies of the German Shepherd dog breed. All dogs were tested in 5th, 7th, and 9th week of age. For the purpose of behavioural analysis, an open-field evaluation report was designed prior to testing to ensure the most convenient, rapid, and suitable way to assess selected behavioural patterns in field conditions. Onset of vocalisation, intensity of vocalisation, level of physical activity, response to sound, and overall behaviour was monitored in the study. Correlations between measures of height, weight and chest circumference, and behavioural characteristics in the 5th, 7th, and 9th week of age were not statistically significant. Onset of vocalisation, intensity of vocalisation, level of physical activity and response to sound differed on statistically significant level between 5th, 7th, and 9th week of age. Results suggest that our practical assessment report may be used as an applicable method to evaluate the suitability of service dog puppies for future working roles.

Keywords: dog, behaviour, open-field, testing

Procedia PDF Downloads 201
4271 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Authors: F. L. Motta, M. H. A. Santana

Abstract:

Humic Acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm Empty Fruit Bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Keywords: empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride

Procedia PDF Downloads 282
4270 Effects of Viscous and Pressure Forces in Vortex and Wake Induced Vibrations

Authors: Ravi Chaithanya Mysa, Abouzar Kaboudian, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Cross-flow vortex-induced vibrations of a circular cylinder are compared with the wake-induced oscillations of the downstream cylinder of a tandem cylinder arrangement. It is known that the synchronization of the frequency of vortex shedding with the natural frequency of the structure leads to large amplitude motions. In the case of tandem cylinders, the large amplitudes of the downstream cylinder found are compared to single cylinder setup. In this work, in the tandem arrangement, the upstream cylinder is fixed and the downstream cylinder is free to oscillate in transverse direction. We show that the wake from the upstream cylinder interacts with the downstream cylinder which influences the response of the coupled system. Extensive numerical experiments have been performed on single cylinder as well as tandem cylinder arrangements in cross-flow. Here, the wake interactions in connection to the forces generated are systematically studied. The ratio of the viscous loads to the pressure loads is found to play a major role in the displacement response of the single and tandem cylinder arrangements, as the viscous forces dissipate the energy.

Keywords: circular cylinder, vortex-shedding, VIV, wake-induced, vibrations

Procedia PDF Downloads 342
4269 Characterization of Transcription Factors Involved in Early Defense Response during Interaction of Oil Palm Elaeis guineensis Jacq. with Ganoderma boninense

Authors: Sakeh N. Mohd, Bahari M. N. Abdul, Abdullah S. N. Akmar

Abstract:

Oil palm production generates high export earnings to many countries especially in Southeast Asian region. Infection by necrotrophic fungus, Ganoderma boninense on oil palm results in basal stem rot which compromises oil palm production leading to significant economic loss. There are no reliable disease treatments nor promising resistant oil palm variety has been cultivated to eradicate the disease up to date. Thus, understanding molecular mechanisms underlying early interactions of oil palm with Ganoderma boninense may be vital to promote preventive or control measure of the disease. In the present study, four months old oil palm seedlings were infected via artificial inoculation of Ganoderma boninense on rubber wood blocks. Roots of six biological replicates of treated and untreated oil palm seedlings were harvested at 0, 3, 7 and 11 days post inoculation. Next-generation sequencing was performed to generate high-throughput RNA-Seq data and identify differentially expressed genes (DEGs) during early oil palm-Ganoderma boninense interaction. Based on de novo transcriptome assembly, a total of 427,122,605 paired-end clean reads were assembled into 30,654 unigenes. DEGs analysis revealed upregulation of 173 transcription factors on Ganoderma boninense-treated oil palm seedlings. Sixty-one transcription factors were categorized as DEGs according to stringent cut-off values of genes with log2 ratio [Number of treated oil palm seedlings/ Number of untreated oil palm seedlings] ≥ |1.0| (corresponding to 2-fold or more upregulation) and P-value ≤ 0.01. Transcription factors in response to biotic stress will be screened out from abiotic stress using reverse transcriptase polymerase chain reaction. Transcription factors unique to biotic stress will be verified using real-time polymerase chain reaction. The findings will help researchers to pinpoint defense response mechanism specific against Ganoderma boninense.

Keywords: Ganoderma boninense, necrotrophic, next-generation sequencing, transcription factors

Procedia PDF Downloads 243
4268 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment

Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo

Abstract:

The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.

Keywords: polyethism, urban environment, phenology, social sweat bee

Procedia PDF Downloads 199
4267 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites

Authors: Lee Siong Wee, Tan Kang Hai, Yang En-Hua

Abstract:

This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.

Keywords: bond stress, high performance fiber reinforced cement composites, slip, strain

Procedia PDF Downloads 476
4266 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach

Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft

Abstract:

Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.

Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology

Procedia PDF Downloads 93
4265 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress

Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury

Abstract:

Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.

Keywords: JNK, autophagy, drug resistance, cancer

Procedia PDF Downloads 271
4264 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 679
4263 Seed Germination, Seedling Emergence and Response to Herbicides of Papaver Species (Papaver rhoeas and P. dubium)

Authors: Faezeh Zaefarian1, Sajedeh Golmohammadzadeh, Mohammad Rezvani

Abstract:

Weed management decisions for weed species can be derived from knowledge of seed germination biology. Experiments were conducted in laboratory and greenhouse to determine the effects of light, temperature, salt and water stress, seed burial depth on seed germination and seedling emergence of Papaver rhoeas and P.dubium and to assay the response of these species to commonly available POST herbicides. Germination of the Papaver seeds was influenced by the tested temperatures (day/night temperatures of 20 and 25 °C) and light. The concentrations of sodium chloride, ranging from 0 to 80 mM, influence germination of seeds. The osmotic potential required for 50% inhibition of maximum germination of P. rhoeas was -0.27 MPa and for P. dubium species was 0.25 MPa. Seedling emergence was greatest for the seeds placed at 1 cm and emergence declined with increased burial depth in the soil. No seedlings emerged from a burial depth of 6 cm. The herbicide 2,4-D at 400 g ai ha-1 provided excellent control of both species when applied at the four-leaf and six-leaf stages. However, at the six-leaf stage, percent control was reduced. The information gained from this study could contribute to developing components of integrated weed management strategies for Papaver species.

Keywords: germination, papaver species, planting depth, POST herbicides

Procedia PDF Downloads 220
4262 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 310
4261 Nonlinear Response of Tall Reinforced Concrete Shear Wall Buildings under Wind Loads

Authors: Mahtab Abdollahi Sarvi, Siamak Epackachi, Ali Imanpour

Abstract:

Reinforced concrete shear walls are commonly used as the lateral load-resisting system of mid- to high-rise office or residential buildings around the world. Design of such systems is often governed by wind rather than seismic effects, in particular in low-to-moderate seismic regions. The current design philosophy as per the majority of building codes under wind loads require elastic response of lateral load-resisting systems including reinforced concrete shear walls when subjected to the rare design wind load, resulting in significantly large wall sections needed to meet strength requirements and drift limits. The latter can highly influence the design in upper stories due to stringent drift limits specified by building codes, leading to substantial added costs to the construction of the wall. However, such walls may offer limited to moderate over-strength and ductility due to their large reserve capacity provided that they are designed and detailed to appropriately develop such over-strength and ductility under extreme wind loads. This would significantly contribute to reducing construction time and costs, while maintaining structural integrity under gravity and frequently-occurring and less frequent wind events. This paper aims to investigate the over-strength and ductility capacity of several imaginary office buildings located in Edmonton, Canada with a glance at earthquake design philosophy. Selected models are 10- to 25-story buildings with three types of reinforced concrete shear wall configurations including rectangular, barbell, and flanged. The buildings are designed according to National Building Code of Canada. Then fiber-based numerical models of the walls are developed in Perform 3D and by conducting nonlinear static (pushover) analysis, lateral nonlinear behavior of the walls are evaluated. Ductility and over-strength of the structures are obtained based on the results of the pushover analyses. The results confirmed moderate nonlinear capacity of reinforced concrete shear walls under extreme wind loads. This is while lateral displacements of the walls pass the serviceability limit states defined in Pre standard for Performance-Based Wind Design (ASCE). The results indicate that we can benefit the limited nonlinear response observed in the reinforced concrete shear walls to economize the design of such systems under wind loads.

Keywords: concrete shear wall, high-rise buildings, nonlinear static analysis, response modification factor, wind load

Procedia PDF Downloads 87
4260 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 85
4259 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 111
4258 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 196
4257 Ethical 'Spaces': A Critical Analysis of the Medical, Ethical and Legal Complexities in the Treatment and Care of Unidentified and Critically Incapacitated Victims Following a Disaster

Authors: D. Osborn, L. Easthope

Abstract:

The increasing threat of ‘marauding terror,' utilising improvised explosive devices and firearms, has focused the attention of policy makers and emergency responders once again on the treatment of the critically injured patient in a highly volatile scenario. Whilst there have been significant improvements made in the response and lessons learned from recent disasters in the international disaster community there still remain areas of uncertainty and a lack of clarity in the care of the critically injured. This innovative, longitudinal study has at its heart the aim of using ethnographic methods to ‘slow down’ the journey such patients will take and make visible the ethical complexities that 2017 technologies, expectations and over a decade of improved combat medicine techniques have brought. The primary researcher, previously employed in the hospital emergency management environment, has closely followed responders as they managed casualties with life-threatening injuries. Ethnographic observation of Exercise Unified Response in March 2016, exposed the ethical and legal 'vacuums' within a mass casualty and fatality setting, specifically the extrication, treatment and care of critically injured patients from crushed and overturned train carriages. This article highlights a gap in the debate, evaluation, planning and response to an incident of this nature specifically the incapacitated, unidentified patients and the ethics of submitting them to the invasive ‘Disaster Victim Identification’ process. Using a qualitative ethnographic analysis, triangulating observation, interviews and documentation, this analysis explores the gaps and highlights the next stages in the researcher’s pathway as she continues to explore with emergency practitioners some of this century’s most difficult questions in relation to the medico-legal and ethical challenges faced by emergency services in the wake of new and emerging threats and medical treatment expectations.

Keywords: ethics, disaster, Disaster Victim Identification (DVI), legality, unidentified

Procedia PDF Downloads 172