Search results for: assisted suicide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 960

Search results for: assisted suicide

90 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 78
89 Urban Waste Management for Health and Well-Being in Lagos, Nigeria

Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo

Abstract:

High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.

Keywords: health, infrastructure, management, septage, well-being

Procedia PDF Downloads 146
88 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments

Authors: Turin Datta, Kisor K. Sahu

Abstract:

Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.

Keywords: DSS 2205, polarization, pitting, SEM

Procedia PDF Downloads 243
87 Identification of Candidate Gene for Root Development and Its Association With Plant Architecture and Yield in Cassava

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: manihot esculenta crantz, plant architecture, dartseq, snp markers, genome-wide association study

Procedia PDF Downloads 61
86 A Preliminary in vitro Investigation of the Acetylcholinesterase and α-Amylase Inhibition Potential of Pomegranate Peel Extracts

Authors: Zoi Konsoula

Abstract:

The increasing prevalence of Alzheimer’s disease (AD) and diabetes mellitus (DM) constitutes them major global health problems. Recently, the inhibition of key enzyme activity is considered a potential treatment of both diseases. Specifically, inhibition of acetylcholinesterase (AChE), the key enzyme involved in the breakdown of the neurotransmitter acetylcholine, is a promising approach for the treatment of AD, while inhibition of α-amylase retards the hydrolysis of carbohydrates and, thus, reduces hyperglycemia. Unfortunately, commercially available AChE and α-amylase inhibitors are reported to possess side effects. Consequently, there is a need to develop safe and effective treatments for both diseases. In the present study, pomegranate peel (PP) was extracted using various solvents of increasing polarity, while two extraction methods were employed, the conventional maceration and the ultrasound assisted extraction (UAE). The concentration of bioactive phytoconstituents, such as total phenolics (TPC) and total flavonoids (TFC) in the prepared extracts was evaluated by the Folin-Ciocalteu and the aluminum-flavonoid complex method, respectively. Furthermore, the anti-neurodegenerative and anti-hyperglycemic activity of all extracts was determined using AChE and α-amylase inhibitory activity assays, respectively. The inhibitory activity of the extracts against AChE and α-amylase was characterized by estimating their IC₅₀ value using a dose-response curve, while galanthamine and acarbose were used as positive controls, respectively. Finally, the kinetics of AChE and α-amylase in the presence of the most inhibitory potent extracts was determined by the Lineweaver-Burk plot. The methanolic extract prepared using the UAE contained the highest amount of phytoconstituents, followed by the respective ethanolic extract. All extracts inhibited acetylcholinesterase in a dose-dependent manner, while the increased anticholinesterase activity of the methanolic (IC₅₀ = 32 μg/mL) and ethanolic (IC₅₀ = 42 μg/mL) extract was positively correlated with their TPC content. Furthermore, the activity of the aforementioned extracts was comparable to galanthamine. Similar results were obtained in the case of α-amylase, however, all extracts showed lower inhibitory effect on the carbohydrate hydrolyzing enzyme than on AChE, since the IC₅₀ value ranged from 84 to 100 μg/mL. Also, the α-amylase inhibitory effect of the extracts was lower than acarbose. Finally, the methanolic and ethanolic extracts prepared by UAE inhibited both enzymes in a mixed (competitive/noncompetitive) manner since the Kₘ value of both enzymes increased in the presence of extracts, while the Vmax value decreased. The results of the present study indicate that PP may be a useful source of active compounds for the management of AD and DM. Moreover, taking into consideration that PP is an agro-industrial waste product, its valorization could not only result in economic efficiency but also reduce the environmental pollution.

Keywords: acetylcholinesterase, Alzheimer’s disease, α-amylase, diabetes mellitus, pomegranate

Procedia PDF Downloads 103
85 Controlled Drug Delivery System for Delivery of Poor Water Soluble Drugs

Authors: Raj Kumar, Prem Felix Siril

Abstract:

The poor aqueous solubility of many pharmaceutical drugs and potential drug candidates is a big challenge in drug development. Nanoformulation of such candidates is one of the major solutions for the delivery of such drugs. We initially developed the evaporation assisted solvent-antisolvent interaction (EASAI) method. EASAI method is use full to prepared nanoparticles of poor water soluble drugs with spherical morphology and particles size below 100 nm. However, to further improve the effect formulation to reduce number of dose and side effect it is important to control the delivery of drugs. However, many drug delivery systems are available. Among the many nano-drug carrier systems, solid lipid nanoparticles (SLNs) have many advantages over the others such as high biocompatibility, stability, non-toxicity and ability to achieve controlled release of drugs and drug targeting. SLNs can be administered through all existing routes due to high biocompatibility of lipids. SLNs are usually composed of lipid, surfactant and drug were encapsulated in lipid matrix. A number of non-steroidal anti-inflammatory drugs (NSAIDs) have poor bioavailability resulting from their poor aqueous solubility. In the present work, SLNs loaded with NSAIDs such as Nabumetone (NBT), Ketoprofen (KP) and Ibuprofen (IBP) were successfully prepared using different lipids and surfactants. We studied and optimized experimental parameters using a number of lipids, surfactants and NSAIDs. The effect of different experimental parameters such as lipid to surfactant ratio, volume of water, temperature, drug concentration and sonication time on the particles size of SLNs during the preparation using hot-melt sonication was studied. It was found that particles size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. SLNs prepared at optimized condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). We successfully prepared the SLN of below 220 nm using different lipids and surfactants combination. The drugs KP, NBT and IBP showed 74%, 69% and 53% percentage of entrapment efficiency with drug loading of 2%, 7% and 6% respectively in SLNs of Campul GMS 50K and Gelucire 50/13. In-vitro drug release profile of drug loaded SLNs is shown that nearly 100% of drug was release in 6 h.

Keywords: nanoparticles, delivery, solid lipid nanoparticles, hot-melt sonication, poor water soluble drugs, solubility, bioavailability

Procedia PDF Downloads 290
84 The Historical Background of Physical Changing Towards Ancient Mosques in Aceh, Indonesia

Authors: Karima Adilla

Abstract:

Aceh province, into which Islam convinced to have entered Indonesia in the 12th Century before spreading throughout the archipelago and the rest of Southeast Asia, has several early Islamic mosques that still exist until today. However, due to some circumstances, the restoration and rehabilitation towards those mosques have been made in some periods, while the background was diverse. Concerning this, the research will examine the physical changing aspects of 3 prominent historical mosques in Aceh Besar and Banda Aceh; those are, Indrapuri Mosque, Baiturrahman Grand Mosque, and Baiturrahim Mosque built coincided with the beginning of Islam’s development in Aceh and regarded as eventful mosques. The existence of Indrapuri Mosque built on the remains of the Lamuri Kingdom’s temple is a historical trace that there was Hindu-Buddhist civilization in Aceh before Islam entered and became the majority religion about 98% from Aceh total population. Also, there was the Dutch who colonialized Aceh behind the existence of two famous mosques in Aceh, namely Baiturrahman Grand Mosque and Baiturrahim Mosque, as the colonizer also assisted to rebuild those 2 sacred Mosques to quell the anger of the Acehnese people because their mosque was burnt by the Dutch. Interestingly, despite underwent a long history successively since the rise of Islam after the Hindu-Buddhist kingdom had collapsed, colonialization, conflict, in Aceh, and even experienced the earthquake and tsunami disaster in 2004, those mosques still exist. Therefore, those mosques have been considered as historical silent witnesses. However, it was not merely those reasons that led the mosques underwent several physical changes, otherwise economic, political, social, cultural and religious factors were also highly influential. Instead of directly illustrating the physical changing of those three mosques, this research intends to identify under what condition the physical appearance continuously changing during the sultanate era, the colonial period until post-independent in terms of the architectural style, detail elements, design philosophy, and how the remnants buildings act as medium to bridge the history. A framework will use qualitative research methods by collecting actual data of the mosque's physical change figures through field studies, investigations, library studies and interviews. This research aims to define every trace of historical issues embedded in the physical changing of those mosques as they are intertwined in collecting historical proof. Thus, the result will reveal the characteristic interrelation between history, the mosque architectural style in a certain period, the physical changes background and its impact. Eventually, this research will also explicate a clear inference of each mosque’s role in representing history in Aceh Besar and Banda Aceh specifically, as well as Aceh generally through architectural design concepts.

Keywords: Aceh ancient mosques, Aceh history, Islamic architecture, physical changing

Procedia PDF Downloads 112
83 Enhance Concurrent Design Approach through a Design Methodology Based on an Artificial Intelligence Framework: Guiding Group Decision Making to Balanced Preliminary Design Solution

Authors: Loris Franchi, Daniele Calvi, Sabrina Corpino

Abstract:

This paper presents a design methodology in which stakeholders are assisted with the exploration of a so-called negotiation space, aiming to the maximization of both group social welfare and single stakeholder’s perceived utility. The outcome results in less design iterations needed for design convergence while obtaining a higher solution effectiveness. During the early stage of a space project, not only the knowledge about the system but also the decision outcomes often are unknown. The scenario is exacerbated by the fact that decisions taken in this stage imply delayed costs associated with them. Hence, it is necessary to have a clear definition of the problem under analysis, especially in the initial definition. This can be obtained thanks to a robust generation and exploration of design alternatives. This process must consider that design usually involves various individuals, who take decisions affecting one another. An effective coordination among these decision-makers is critical. Finding mutual agreement solution will reduce the iterations involved in the design process. To handle this scenario, the paper proposes a design methodology which, aims to speed-up the process of pushing the mission’s concept maturity level. This push up is obtained thanks to a guided negotiation space exploration, which involves autonomously exploration and optimization of trade opportunities among stakeholders via Artificial Intelligence algorithms. The negotiation space is generated via a multidisciplinary collaborative optimization method, infused by game theory and multi-attribute utility theory. In particular, game theory is able to model the negotiation process to reach the equilibria among stakeholder needs. Because of the huge dimension of the negotiation space, a collaborative optimization framework with evolutionary algorithm has been integrated in order to guide the game process to efficiently and rapidly searching for the Pareto equilibria among stakeholders. At last, the concept of utility constituted the mechanism to bridge the language barrier between experts of different backgrounds and differing needs, using the elicited and modeled needs to evaluate a multitude of alternatives. To highlight the benefits of the proposed methodology, the paper presents the design of a CubeSat mission for the observation of lunar radiation environment. The derived solution results able to balance all stakeholders needs and guaranteeing the effectiveness of the selection mission concept thanks to its robustness in valuable changeability. The benefits provided by the proposed design methodology are highlighted, and further development proposed.

Keywords: concurrent engineering, artificial intelligence, negotiation in engineering design, multidisciplinary optimization

Procedia PDF Downloads 109
82 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 260
81 Reducing Falls in Memory Care through Implementation of the Stopping Elderly Accidents, Deaths, and Injuries Program

Authors: Cory B. Lord

Abstract:

Falls among the elderly population has become an area of concern in healthcare today. The negative impacts of falls lead to increased morbidity, mortality, and financial burdens for both patients and healthcare systems. Falls in the United States is reported at an annual rate of 36 million in those aged 65 and older. Each year, one out of four people in this age group will suffer a fall, with 20% of these falls causing injury. The setting for this Doctor of Nursing Practice (DNP) project was a memory care unit in an assisted living community, as these facilities house cognitively impaired older adults. These communities lack fall prevention programs; therefore, the need exists to add to the body of knowledge to positively impact this population. The objective of this project was to reduce fall rates through the implementation of the Center for Disease Control and Prevention (CDC) STEADI (stopping elderly accidents, deaths, and injuries) program. The DNP project performed was a quality improvement pilot study with a pre and post-test design. This program was implemented in the memory care setting over 12 weeks. The project included an educational session for staff and a fall risk assessment with appropriate resident referrals. The three aims of the DNP project were to reduce fall rates among the elderly aged 65 and older who reside in the memory care unit, increase staff knowledge of STEADI fall prevention measures after an educational session, and assess the willingness of memory care unit staff to adopt an evidence-based a fall prevention program. The Donabedian model was used as a guiding conceptual framework for this quality improvement pilot study. The fall rate data for 12 months before the intervention was evaluated and compared to post-intervention fall rates. The educational session comprised of a pre and post-test to assess staff knowledge of the fall prevention program and the willingness of staff to adopt the fall prevention program. The overarching goal was to reduce falls in the elderly population who live in memory care units. The results of the study showed, on average that the fall rate during the implementation period of STEADI (μ=6.79) was significantly lower when compared to the prior 12 months (μ= 9.50) (p=0.02, α = 0.05). The mean staff knowledge scores improved from pretest (μ=77.74%) to post-test (μ=87.42%) (p=0.00, α= 0.05) after the education session. The results of the willingness to adopt a fall prevention program were scored at 100%. In summation, implementing the STEADI fall prevention program can assist in reducing fall rates for residents aged 65 and older who reside in a memory care setting.

Keywords: dementia, elderly, falls, STEADI

Procedia PDF Downloads 104
80 Genetic Variations of Two Casein Genes among Maghrabi Camels Reared in Egypt

Authors: Othman E. Othman, Amira M. Nowier, Medhat El-Denary

Abstract:

Camels play an important socio-economic role within the pastoral and agricultural system in the dry and semidry zones of Asia and Africa. Camels are economically important animals in Egypt where they are dual purpose animals (meat and milk). The analysis of chemical composition of camel milk showed that the total protein contents ranged from 2.4% to 5.3% and it is divided into casein and whey proteins. The casein fraction constitutes 52% to 89% of total camel milk protein and it divided into 4 fractions namely αs1, αs2, β and κ-caseins which are encoded by four tightly genes. In spite of the important role of casein genes and the effects of their genetic polymorphisms on quantitative traits and technological properties of milk, the studies for the detection of genetic polymorphism of camel milk genes are still limited. Due to this fact, this work focused - using PCR-RFP and sequencing analysis - on the identification of genetic polymorphisms and SNPs of two casein genes in Maghrabi camel breed which is a dual purpose camel breed in Egypt. The amplified fragments at 488-bp of the camel κ-CN gene were digested with AluI endonuclease. The results showed the appearance of three different genotypes in the tested animals; CC with three digested fragments at 203-, 127- and 120-bp, TT with three digested fragments at 203-, 158- and 127-bp and CT with four digested fragments at 203-, 158-, 127- and 120-bp. The frequencies of three detected genotypes were 11.0% for CC, 48.0% for TT and 41.0% for CT genotypes. The sequencing analysis of the two different alleles declared the presence of a single nucleotide polymorphism (C→T) at position 121 in the amplified fragments which is responsible for the destruction of a restriction site (AG/CT) in allele T and resulted in the presence of two different alleles C and T in tested animals. The nucleotide sequences of κ-CN alleles C and T were submitted to GenBank with the accession numbers; KU055605 and KU055606, respectively. The primers used in this study amplified 942-bp fragments spanning from exon 4 to exon 6 of camel αS1-Casein gene. The amplified fragments were digested with two different restriction enzymes; SmlI and AluI. The results of SmlI digestion did not show any restriction site whereas the digestion with AluI endonuclease revealed the presence of two restriction sites AG^CT at positions 68^69 and 631^632 yielding the presence of three digested fragments with sizes 68-, 563- and 293-bp.The nucleotide sequences of this fragment from camel αS1-Casein gene were submitted to GenBank with the accession number KU145820. In conclusion, the genetic characterization of quantitative traits genes which are associated with the production traits like milk yield and composition is considered an important step towards the genetic improvement of livestock species through the selection of superior animals depending on the favorable alleles and genotypes; marker assisted selection (MAS).

Keywords: genetic polymorphism, SNP polymorphism, Maghrabi camels, κ-Casein gene, αS1-Casein gene

Procedia PDF Downloads 586
79 Evaluating the Teaching and Learning Value of Tablets

Authors: Willem J. A. Louw

Abstract:

The wave of new advanced computing technology that has been developed during the recent past has significantly changed the way we communicate, collaborate and collect information. It has created a new technology environment and paradigm in which our children and students grow-up and this impacts on their learning. Research confirmed that Generation Y students have a preference for learning in the new technology environment. The challenge or question is: How do we adjust our teaching and learning to make the most of these changes. The complexity of effective and efficient teaching and learning must not be underestimated and changes must be preceded by proper objective research to prevent any haphazard developments that could do more harm than benefit. A blended learning approach has been used in the Forestry department for a few numbers of years including the use of electronic-peer assisted learning (e-pal) in a fixed-computer set-up within a learning management system environment. It was decided to extend the investigation and do some exploratory research by using a range of different Tablet devices. For this purpose, learning activities or assignments were designed to cover aspects of communication, collaboration and collection of information. The Moodle learning management system was used to present normal module information, to communicate with students and for feedback and data collection. Student feedback was collected by using an online questionnaire and informal discussions. The research project was implemented in 2013, 2014 and 2015 amongst first and third-year students doing a forestry three-year technical tertiary qualification in commercial plantation management. In general, more than 80% of the students alluded to that the device was very useful in their learning environment while the rest indicated that the devices were not very useful. More than ninety percent of the students acknowledged that they would like to continue using the devices for all of their modules whilst the rest alluded to functioning efficiently without the devices. Results indicated that information collection (access to resources) was rated the highest advantageous factor followed by communication and collaboration. The main general advantages of using Tablets were listed by the students as being mobility (portability), 24/7 access to learning material and information of any kind on a user friendly device in a Wi-Fi environment, fast computing process speeds, saving time, effort and airtime through skyping and e-mail, and use of various applications. Ownership of the device is a critical factor while the risk was identified as a major potential constraint. Significant differences were reported between the different types and quality of Tablets. The preferred types are those with a bigger screen and the ones with overall better functionality and quality features. Tablets significantly increase the collaboration, communication and information collection needs of the students. It does, however, not replace the need of a computer/laptop because of limited storage and computation capacity, small screen size and inefficient typing.

Keywords: tablets, teaching, blended learning, tablet quality

Procedia PDF Downloads 229
78 Incidence and Risk Factors of Traumatic Lumbar Puncture in Newborns in a Tertiary Care Hospital

Authors: Heena Dabas, Anju Paul, Suman Chaurasia, Ramesh Agarwal, M. Jeeva Sankar, Anurag Bajpai, Manju Saksena

Abstract:

Background: Traumatic lumbar puncture (LP) is a common occurrence and causes substantial diagnostic ambiguity. There is paucity of data regarding its epidemiology. Objective: To assess the incidence and risk factors of traumatic LP in newborns. Design/Methods: In a prospective cohort study, all inborn neonates admitted in NICU and planned to undergo LP for a clinical indication of sepsis were included. Neonates with diagnosed intraventricular hemorrhage (IVH) of grade III and IV were excluded. The LP was done by operator - often a fellow or resident assisted by bedside nurse. The unit has policy of not routinely using any sedation/analgesia during the procedure. LP is done by 26 G and 0.5-inch-long hypodermic needle inserted in third or fourth lumbar space while the infant is in lateral position. The infants were monitored clinically and by continuous measurement of vital parameters using multipara monitor during the procedure. The occurrence of traumatic tap along with CSF parameters and other operator and assistant characteristics were recorded at the time of procedure. Traumatic tap was defined as presence of visible blood or more than 500 red blood cells on microscopic examination. Microscopic trauma was defined when CSF is not having visible blood but numerous RBCs. The institutional ethics committee approved the study protocol. A written informed consent from the parents and the health care providers involved was obtained. Neonates were followed up till discharge/death and final diagnosis was assigned along with treating team. Results: A total of 362 (21%) neonates out of 1726 born at the hospital were admitted during the study period (July 2016 to January, 2017). Among these neonates, 97 (26.7%) were suspected of sepsis. A total of 54 neonates were enrolled who met the eligibility criteria and parents consented to participate in the study. The mean (SD) birthweight was 1536 (732) grams and gestational age 32.0 (4.0) weeks. All LPs were indicated for late onset sepsis at the median (IQR) age of 12 (5-39) days. The traumatic LP occurred in 19 neonates (35.1%; 95% C.I 22.6% to 49.3%). Frank blood was observed in 7 (36.8%) and in the remaining, 12(63.1%) CSF was detected to have microscopic trauma. The preliminary risk factor analysis including birth weight, gestational age and operator/assistant and other characteristics did not demonstrate clinically relevant predictors. Conclusion: A significant number of neonates requiring lumbar puncture in our study had high incidence of traumatic tap. We were not able to identify modifiable risk factors. There is a need to understand the reasons and further reduce this issue for improving management in NICUs.

Keywords: incidence, newborn, traumatic, lumbar puncture

Procedia PDF Downloads 274
77 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production

Authors: Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.

Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector

Procedia PDF Downloads 99
76 Differentiated Surgical Treatment of Patients With Nontraumatic Intracerebral Hematomas

Authors: Mansur Agzamov, Valery Bersnev, Natalia Ivanova, Istam Agzamov, Timur Khayrullaev, Yulduz Agzamova

Abstract:

Objectives. Treatment of hypertensive intracerebral hematoma (ICH) is controversial. Advantage of one surgical method on other has not been established. Recent reports suggest a favorable effect of minimally invasive surgery. We conducted a small comparative study of different surgical methods. Methods. We analyzed the result of surgical treatment of 176 patients with intracerebral hematomas at the age from 41 to 78 years. Men were been113 (64.2%), women - 63 (35.8%). Level of consciousness: conscious -18, lethargy -63, stupor –55, moderate coma - 40. All patients on admission and in the dynamics underwent computer tomography (CT) of the brain. ICH was located in the putamen in 87 cases, thalamus in 19, in the mix area in 50, in the lobar area in 20. Ninety seven patients of them had an intraventricular hemorrhage component. The baseline volume of the ICH was measured according to a bedside method of measuring CT intracerebral hematomas volume. Depending on the intervention of the patients were divided into three groups. Group 1 patients, 90 patients, operated open craniotomy. Level of consciousness: conscious-11, lethargy-33, stupor–18, moderate coma -18. The hemorrhage was located in the putamen in 51, thalamus in 3, in the mix area in 25, in the lobar area in 11. Group 2 patients, 22 patients, underwent smaller craniotomy with endoscopic-assisted evacuation. Level of consciousness: conscious-4, lethargy-9, stupor–5, moderate coma -4. The hemorrhage was located in the putamen in 5, thalamus in 15, in the mix area in 2. Group 3 patients, 64 patients, was conducted minimally invasive removal of intracerebral hematomas using the original device (patent of Russian Federation № 65382). The device - funnel cannula - which after the special markings introduced into the hematoma cavity. Level of consciousness: conscious-3, lethargy-21, stupor–22, moderate coma -18. The hemorrhage was located in the putamen in 31, in the mix area in 23, thalamus in 1, in the lobar area in 9. Results of treatment were evaluated by Glasgow outcome scale. Results. The study showed that the results of surgical treatment in three groups depending on the degree of consciousness, the volume and localization of hematoma. In group 1, good recovery observed in 8 cases (8.9%), moderate disability in 22 (24.4%), severe disability - 17 (18.9%), death-43 (47.8%). In group 2, good recovery observed in 7 cases (31.8%), moderate disability in 7 (31.8%), severe disability - 5 (29.7%), death-7 (31.8%). In group 3, good recovery was observed in 9 cases (14.1%), moderate disability-17 (26.5%), severe disability-19 (29.7%), death-19 (29.7%). Conclusions. The method of using cannulae allowed to abandon from open craniotomy of the majority of patients with putaminal hematomas. Minimally invasive technique reduced the postoperative mortality and improves treatment outcomes of these patients.

Keywords: nontraumatic intracerebral hematoma, minimal invasive surgical technique, funnel canula, differentiated surcical treatment

Procedia PDF Downloads 56
75 Synthesis of Functionalized-2-Aryl-2, 3-Dihydroquinoline-4(1H)-Ones via Fries Rearrangement of Azetidin-2-Ones

Authors: Parvesh Singh, Vipan Kumar, Vishu Mehra

Abstract:

Quinoline-4-ones represent an important class of heterocyclic scaffolds that have attracted significant interest due to their various biological and pharmacological activities. This heterocyclic unit also constitutes an integral component in drugs used for the treatment of neurodegenerative diseases, sleep disorders and in antibiotics viz. norfloxacin and ciprofloxacin. The synthetic accessibility and possibility of fictionalization at varied positions in quinoline-4-ones exemplifies an elegant platform for the designing of combinatorial libraries of functionally enriched scaffolds with a range of pharmacological profles. They are also considered to be attractive precursors for the synthesis of medicinally imperative molecules such as non-steroidal androgen receptor antagonists, antimalarial drug Chloroquine and martinellines with antibacterial activity. 2-Aryl-2,3-dihydroquinolin-4(1H)-ones are present in many natural and non-natural compounds and are considered to be the aza-analogs of favanones. The β-lactam class of antibiotics is generally recognized to be a cornerstone of human health care due to the unparalleled clinical efficacy and safety of this type of antibacterial compound. In addition to their biological relevance as potential antibiotics, β-lactams have also acquired a prominent place in organic chemistry as synthons and provide highly efficient routes to a variety of non-protein amino acids, such as oligopeptides, peptidomimetics, nitrogen-heterocycles, as well as biologically active natural and unnatural products of medicinal interest such as indolizidine alkaloids, paclitaxel, docetaxel, taxoids, cyptophycins, lankacidins, etc. A straight forward route toward the synthesis of quinoline-4-ones via the triflic acid assisted Fries rearrangement of N-aryl-βlactams has been reported by Tepe and co-workers. The ring expansion observed in this case was solely attributed to the inherent ring strain in β-lactam ring because -lactam failed to undergo rearrangement under reaction conditions. Theabovementioned protocol has been recently extended by our group for the synthesis of benzo[b]-azocinon-6-ones via a tandem Michael addition–Fries rearrangement of sorbyl anilides as well as for the single-pot synthesis of 2-aryl-quinolin-4(3H)-ones through the Fries rearrangement of 3-dienyl-βlactams. In continuation with our synthetic endeavours with the β-lactam ring and in view of the lack of convenient approaches for the synthesis of C-3 functionalized quinolin-4(1H)-ones, the present work describes the single-pot synthesis of C-3 functionalized quinolin-4(1H)-ones via the trific acid promoted Fries rearrangement of C-3 vinyl/isopropenyl substituted β-lactams. In addition, DFT calculations and MD simulations were performed to investigate the stability profles of synthetic compounds.

Keywords: dihydroquinoline, fries rearrangement, azetidin-2-ones, quinoline-4-ones

Procedia PDF Downloads 225
74 MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties

Authors: Lekgowa Collen Makola, Cecil Naphtaly Moro Ouma, Sharon Moeno, Langelihle Dlamini

Abstract:

In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater.

Keywords: photocatalysis, Z-scheme, multijunction heterostructure, Ti₃C₂ MXene, g-C₃N₄

Procedia PDF Downloads 92
73 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 49
72 Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA

Authors: Leonard Lipovich, Pattaraporn Thepsuwan, Anton-Scott Goustin, Juan Cai, Donghong Ju, James B. Brown

Abstract:

Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL.

Keywords: genetic code, lncRNA, long non-coding RNA, mass spectrometry, proteogenomics, ribo-seq, ribosome, RNAseq

Procedia PDF Downloads 206
71 Debriefing Practices and Models: An Integrative Review

Authors: Judson P. LaGrone

Abstract:

Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.

Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education

Procedia PDF Downloads 132
70 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 303
69 Viability of Permaculture Principles to Sustainable Agriculture Enterprises in Malta

Authors: Byron Baron

Abstract:

Malta is a Mediterranean archipelago presenting a combination of environmental conditions which are less suitable for agriculture. This has resulted in a heavy dependence on agricultural chemicals, as well as over-extraction of groundwater, compounded by concomitant destruction of natural habitat surrounding the land areas used for agriculture. Such prolonged intensive land use has resulted in even greater degradation of Maltese soils. This study was thus designed with the goal of assessing the viability of implementing a sustainable agricultural system based on permaculture practices compared to the traditional local practices applied for intensive farming. The permaculture model was implemented over a period of two years for a number of locally-grown staple crops. The tangible targets included improved soil health, reduced water consumption, increased reliance on renewable energy, increased wild plant and insect diversity, and sustained crop yield. To achieve this in the permaculture test area, numerous practices were introduced. In line with permaculture principles land, tillage was reduced, only natural fertilisers were used, no herbicides or pesticides were used, irrigation was linked to a desalination system with sensors for monitoring soil parameters, mulching was practiced, and a photovoltaic system was installed. Furthermore, areas for wild plants were increased and controlled only by trimming, not mowing. A variety of environmental parameters were measured at regular intervals as well as crop yield (in kilos of produce) in order to quantify if any improvements in crop output and environmental conditions were obtained. The results obtained show a very slight improvement in overall soil health due to the brevity of the test period. Water consumption was reduced by over 50% with no apparent losses or ill effects on the crops. Renewable energy was sufficient to provide all electric power on-site, so apart from the initial investment costs, there were no limitations. Moreover, surrounding the commercial crops with borders of wild plants whilst only taking up less than 15% of the total land area assisted pollination, increased animal visitors, and did not give rise to any pest infestations. The conclusion from this study was that whilst results are promising, more detailed and long-term studies are required to understand the full extent of the implications brought about by such a transition, which hints towards the untapped potential of investing in the available resources on the island with the goal of improving the balance between economic prosperity and ecological sustainability.

Keywords: agronomic measures, ecological amplification, sustainability, permaculture

Procedia PDF Downloads 77
68 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 143
67 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design

Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez

Abstract:

Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.

Keywords: coffee waste, optimization, oil yield, statistical planning

Procedia PDF Downloads 95
66 Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water

Authors: Nada Verdel, Tomaz Rijavec, Albin Pintar, Ales Lapanje

Abstract:

Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare.

Keywords: bioaugmentation, biodegradation of azo dyes, cometabolism, smart wastewater treatment technologies

Procedia PDF Downloads 174
65 Consensual A-Monogamous Relationships: Challenges and Ways of Coping

Authors: Tal Braverman Uriel, Tal Litvak Hirsch

Abstract:

Background and Objectives: Little or only partial emphasis has been placed on exploring the complexity of consensual non-monogamous relationships. The term "polyamory" refers to consensual non-monogamy, and it is defined as having emotional and/or sexual relations simultaneously with two or more people, the consent and knowledge of all the partners concerned. Managing multiple romantic relationships with different people evokes more emotions, leads to more emotional conflicts arising from different interests, and demands practical strategies. An individual's transition from a monogamous lifestyle to a consensual non-monogamous lifestyle yields new challenges, accompanied by stress, uncertainty, and question marks, as do other life-changing events, such as divorce or transition to parenthood. The study examines both the process of transition and adaptation to a consensually non-monogamous relationship, as well as the coping mechanism involved in the daily conduct of this lifestyle. The research focuses on understanding the consequences, challenges, and coping methods from a personal, marital, and familial point of view and focuses on 40 middle-aged individuals (20 men and 20 women ages 40-60). The research sheds light on a way of life that has not been previously studied in Israel and is still considered unacceptable. Theories of crisis (e.g., as Folkman and Lazarus) were applied, and as a result, a deeper understanding of the subject was reached, all while focusing on multiple aspects of dealing with stress. The basic research question examines the consequences of entering a polyamorous life from a personal point of view as an individual, partner, and parent and the ways of coping with these consequences. Method: The research is conducted with a narrative qualitative approach in the interpretive paradigm, including semi-structured in-depth interviews. The method of analysis is thematic. Results: The findings indicate that in most cases, an individual's motivation to open the relationship is mainly a longing for better sexuality and for an added layer of excitement to their lives. Most of the interviewees were assisted by their spouses in the process, as well as by social networks and podcasts on the subject. Some of them therapeutic professionals from the field are helpful. It also clearly emerged that among those who experienced acute emotional crises with the primary partner or painful separations from secondary partners, all believed polyamory to be the adequate way of life for them. Finally, a key resource for managing tension and stress is the ability to share and communicate with the primary partner. Conclusions: The study points to the challenges and benefits of a non-monogamous lifestyle as well as the use of coping mechanisms and resources that are consistent with the existing theory and research in the field in the context of life changes. The study indicates the need to expand the research canvas in the future in the context of parenting and the consequences for children.

Keywords: a-monogamy, consent, family, stress, tension

Procedia PDF Downloads 49
64 Technology Management for Early Stage Technologies

Authors: Ming Zhou, Taeho Park

Abstract:

Early stage technologies have been particularly challenging to manage due to high degrees of their numerous uncertainties. Most research results directly out of a research lab tend to be at their early, if not the infant stage. A long while uncertain commercialization process awaits these lab results. The majority of such lab technologies go nowhere and never get commercialized due to various reasons. Any efforts or financial resources put into managing these technologies turn fruitless. High stake naturally calls for better results, which make a patenting decision harder to make. A good and well protected patent goes a long way for commercialization of the technology. Our preliminary research showed that there was not a simple yet productive procedure for such valuation. Most of the studies now have been theoretical and overly comprehensive where practical suggestions were non-existent. Hence, we attempted to develop a simple and highly implementable procedure for efficient and scalable valuation. We thoroughly reviewed existing research, interviewed practitioners in the Silicon Valley area, and surveyed university technology offices. Instead of presenting another theoretical and exhaustive research, we aimed at developing a practical guidance that a government agency and/or university office could easily deploy and get things moving to later steps of managing early stage technologies. We provided a procedure to thriftily value and make the patenting decision. A patenting index was developed using survey data and expert opinions. We identified the most important factors to be used in the patenting decision using survey ratings. The rating then assisted us in generating good relative weights for the later scoring and weighted averaging step. More importantly, we validated our procedure by testing it with our practitioner contacts. Their inputs produced a general yet highly practical cut schedule. Such schedule of realistic practices has yet to be witnessed our current research. Although a technology office may choose to deviate from our cuts, what we offered here at least provided a simple and meaningful starting point. This procedure was welcomed by practitioners in our expert panel and university officers in our interview group. This research contributed to our current understanding and practices of managing early stage technologies by instating a heuristically simple yet theoretical solid method for the patenting decision. Our findings generated top decision factors, decision processes and decision thresholds of key parameters. This research offered a more practical perspective which further completed our extant knowledge. Our results could be impacted by our sample size and even biased a bit by our focus on the Silicon Valley area. Future research, blessed with bigger data size and more insights, may want to further train and validate our parameter values in order to obtain more consistent results and analyze our decision factors for different industries.

Keywords: technology management, early stage technology, patent, decision

Procedia PDF Downloads 320
63 Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology

Authors: Julia Gontar, Natalia Buderatskaya, Igor Ilyin, Olga Parnitskaya, Sergey Lavrynenko, Eduard Kapustin, Ekaterina Ilyina, Yana Lakhno

Abstract:

Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease.

Keywords: donor oocyte cytoplasmic transfer, embryos’ chromosome set, oocyte spindle transfer, pronuclear transfer

Procedia PDF Downloads 300
62 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 104
61 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals

Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze

Abstract:

Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.

Keywords: extraction, green technologies, natural resources, flavonoids

Procedia PDF Downloads 108