Search results for: alkaline phosphate
77 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery
Authors: Augustus K. Lebechi, Kenneth I. Ozoemena
Abstract:
Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.
Procedia PDF Downloads 6476 Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia
Authors: Bezhan Tutberidze
Abstract:
The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma.Keywords: calc-alkalic, dolerite, Georgia, Javakheti Highland
Procedia PDF Downloads 27075 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture
Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz
Abstract:
Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV
Procedia PDF Downloads 10774 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete
Authors: Yuan Yue, Wen-Wei Wang
Abstract:
The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.
Procedia PDF Downloads 5673 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat
Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline
Abstract:
The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere
Procedia PDF Downloads 30772 Shear Strength Envelope Characteristics of LimeTreated Clays
Authors: Mohammad Moridzadeh, Gholamreza Mesri
Abstract:
The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.Keywords: Brenna clay, friction resistance, lime treatment, residual
Procedia PDF Downloads 15971 Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus
Authors: Alaa G. M. Osman, Abd-El –Baset M. Abd El Reheem, Khaled Y. Abouelfadl, Usama M. Mahmoud, Mohsen A. Moustafa
Abstract:
This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish.Keywords: biomarkers, water pollution, blood parameters, river nile, african catfish, nile tilapia
Procedia PDF Downloads 29170 Processes Controlling Release of Phosphorus (P) from Catchment Soils and the Relationship between Total Phosphorus (TP) and Humic Substances (HS) in Scottish Loch Waters
Authors: Xiaoyun Hui, Fiona Gentle, Clemens Engelke, Margaret C. Graham
Abstract:
Although past work has shown that phosphorus (P), an important nutrient, may form complexes with aqueous humic substances (HS), the principal component of natural organic matter, the nature of such interactions is poorly understood. Humic complexation may not only enhance P concentrations but it may change its bioavailability within such waters and, in addition, influence its transport within catchment settings. This project is examining the relationships and associations of P, HS, and iron (Fe) in Loch Meadie, Sutherland, North Scotland, a mesohumic freshwater loch which has been assessed as reference condition with respect to P. The aim is to identify characteristic spectroscopic parameters which can enhance the performance of the model currently used to predict reference condition TP levels for highly-coloured Scottish lochs under the Water Framework Directive. In addition to Loch Meadie, samples from other reference condition lochs in north Scotland and Shetland were analysed. By including different types of reference condition lochs (clear water, mesohumic and polyhumic water) this allowed the relationship between total phosphorus (TP) and HS to be more fully explored. The pH, [TP], [Fe], UV/Vis absorbance/spectra, [TOC] and [DOC] for loch water samples have been obtained using accredited methods. Loch waters were neutral to slightly acidic/alkaline (pH 6-8). [TP] in loch waters were lower than 50 µg L-1, and in Loch Meadie waters were typically <10 µg L-1. [Fe] in loch waters were mainly <0.6 mg L-1, but for some loch water samples, [Fe] were in the range 1.0-1.8 mg L-1and there was a positive correlation with [TOC] (r2=0.61). Lochs were classified as clear water, mesohumic or polyhumic based on water colour. The range of colour values of sampled lochs in each category were 0.2–0.3, 0.2–0.5 and 0.5–0.8 a.u. (10 mm pathlength), respectively. There was also a strong positive correlation between [DOC] and water colour (R2=0.84). The UV/Vis spectra (200-700 nm) for water samples were featureless with only a slight “shoulder” observed in the 270–290 nm region. Ultrafiltration was then used to separate colloidal and truly dissolved components from the loch waters and, since it contained the majority of aqueous P and Fe, the colloidal component was fractionated by gel filtration chromatography method. Gel filtration chromatographic fractionation of the colloids revealed two brown-coloured bands which had distinctive UV/Vis spectral features. The first eluting band had larger and more aromatic HS molecules than the second band, and in addition both P and Fe were primarily associated with the larger, more aromatic HS. This result demonstrated that P was able to form complexes with Fe-rich components of HS, and thus provided a scientific basis for the significant correlation between [Fe] and [TP] that the previous monitoring data of reference condition lochs from Scottish Environment Protection Agency (SEPA) showed. The distinctive features of the HS will be used as the basis for an improved spectroscopic tool.Keywords: total phosphorus, humic substances, Scottish loch water, WFD model
Procedia PDF Downloads 54669 Risk Factors Associated with Ectoprotozoa Infestation of Wild and Farmed Cyprinids
Authors: M. A. Peribanez, G. Illan, I. De Blas, A. Muniesa, I. Ruiz-Zarzuela
Abstract:
Intensive aquaculture is commonly associated with increased incidence of parasites. However, in Spain, the recent intensification of cyprinid production has not led to knowledge of the parasites that develop in the aquaculture facilities, the factors that affect their development and spread and the transmission between wild and cultivated fish species. The present study focuses on the knowledge of environmental factors, as well as host dependent factors, and their possible influence as risk factors in the incidence and intensity of parasitic infections. This work was conducted in the Duero River Basin, NW Spain. A total of 114 tenches (Tinca tinca) were caught in a fish farm and 667 specimens belonging to six species of cyprinid, not tench, in five rivers. An exhaustive search and microscopic identification of protozoa on skin and gills were carried out. Physical, chemical, and biological parameters of water samples from the capture points were determined. Only two ectoprotozoa were identified, Ichthyophthirius multifiliis and Tripartiella sp. In I. multifiliis, a high intensity of infection (more than 40 parasites on the body surface and more than 80 on gills) was determined in farmed tench (14%) and in Iberian barbel (Luciobarbus bocagei) (91%) and Duero nase (Pseudochondrostoma duriense) (71%) of middle stretches of rivers. The prevalence was similar between farmed tenches and cyprinids of middle courses. Tripartiella sp. was only found in barbels (prevalence in middle stretches, 0.7%) and in farmed tenches (63%), this species resulting in a high risk factor (odds ratio, OR= 1143) in the presence of the ciliate. There were no differences between the two species relative to the intensity of parasitization. Some of the physical, chemical and microbiological water quality parameters appear to be risk factors in the presence of I. multifiliis, with maximum OR of 8. Nevertheless, in Tripartiella sp., the risk is multiplied by 720 when the pH value exceeds 8.4, if we consider the total of the data, and it is increased more than 500 times if we only consider the values recorded in the fish farm (529 by nitrates > 3 mg/l; 530 by total coliforms > 100 CFU/100 ml). However, the high prevalence and risk of infection by I. multifiliis and Tripartiella sp. in fish farms should be related to environmental factors that dependent upon sampling point rather than in direct influence of the physical-chemical and biological parameters of the water. The high pH value recorded in the fish farm (9.62 ± 0.76) is the only parameter that we consider may have a substantial direct influence. Chronic exposure to alkaline pH levels can be a chronic stress generator, predisposing to parasitization by Tripartiella sp. In conclusion, often minor changes in ecosystem conditions, both natural and man-made, can modify the host-parasite relationship, resulting in an increase in the prevalence and intensity of parasitic infections in populations of cyprinids, sometimes causing disease outbreaks.Keywords: cyprinids, fish, parasites, protozoa, risk factors
Procedia PDF Downloads 11468 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application
Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski
Abstract:
Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)
Procedia PDF Downloads 16467 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk
Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda
Abstract:
Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.Keywords: cheese fraud, milk, pasteurisation, TD-NMR
Procedia PDF Downloads 24266 Inhibition of the Activity of Polyphenol Oxidase Enzyme Present in Annona muricata and Musa acuminata by the Experimentally Identified Natural Anti-Browning Agents
Authors: Michelle Belinda S. Weerawardana, Gobika Thiripuranathar, Priyani A. Paranagama
Abstract:
Most of fresh vegetables and fruits available in the retail markets undergo a physiological disorder in its appearance and coloration, which indeed discourages consumer purchase. A loss of millions of dollars yearly to the food industry had been due to this pronounced color reaction called Enzymatic Browning which is driven due to the catalytic activity by an oxidoreductase enzyme, polyphenol oxidase (PPO). The enzyme oxidizes the phenolic compounds which are abundantly available in fruits and vegetables as substrates into quinones, which could react with proteins in its surrounding to generate black pigments, called melanins, which are highly UV-active compounds. Annona muricata (Katu anoda) and Musa acuminata (Ash plantains) is a fruit and a vegetable consumed by Sri Lankans widely due to their high nutritional values, medicinal properties and economical importance. The objective of the present study was to evaluate and determine the effective natural anti-browning inhibitors that could prevent PPO activity in the selected fruit and vegetable. Enzyme extracts from Annona muricata (Katu anoda) and Musa acuminata (Ash plantains), were prepared by homogenizing with analytical grade acetone, and pH of each enzyme extract was maintained at 7.0 using a phosphate buffer. The extracts of inhibitors were prepared using powdered ginger rhizomes and essential oil from the bark of Cinnamomum zeylanicum. Water extracts of ginger were prepared and the essential oil from Ceylon cinnamon bark was extracted using steam distillation method. Since the essential oil is not soluble in water, 0.1µl of cinnamon bark oil was mixed with 0.1µl of Triton X-100 emulsifier and 5.00 ml of water. The effect of each inhibitor on the PPO activity was investigated using catechol (0.1 mol dm-3) as the substrate and two samples of enzyme extracts prepared. The dosages of the prepared Cinnamon bark oil, and ginger (2 samples) which were used to measure the activity were 0.0035 g/ml, 0.091 g/ml and 0.087 g/ml respectively. The measurements of the inhibitory activity were obtained at a wavelength of 525 nm using the UV-visible spectrophotometer. The results evaluated thus revealed that % inhibition observed with cinnamon bark oil, and ginger for Annona muricata was 51.97%, and 60.90% respectively. The effects of cinnamon bark oil, and ginger extract on PPO activity of Musa acuminata were 49.51%, and 48.10%. The experimental findings thus revealed that Cinnamomum zeylanicum bark oil was a more effective inhibitor for PPO enzyme present in Musa acuminata and ginger was effective for PPO enzyme present in Annona muricata. Overall both the inhibitors were proven to be more effective towards the activities of PPO enzyme present in both samples. These inhibitors can thus be corroborated as effective, natural, non-toxic, anti-browning extracts, which when added to the above fruit and vegetable will increase the shelf life and also the acceptance of the product by the consumers.Keywords: anti-browning agent, enzymatic browning, inhibitory activity, polyphenol oxidase
Procedia PDF Downloads 27565 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles
Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş
Abstract:
Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin
Procedia PDF Downloads 28864 Improvement of Activity of β-galactosidase from Kluyveromyces lactis via Immobilization on Polyethylenimine-Chitosan
Authors: Carlos A. C. G. Neto, Natan C. G. e Silva , Thaís de O. Costa, Luciana R. B. Gonçalves, Maria V. P. Rocha
Abstract:
β-galactosidases (E.C. 3.2.1.23) are enzymes that have attracted by catalyzing the hydrolysis of lactose and in producing galacto-oligosaccharides by favoring transgalactosylation reactions. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers is a promising alternative to enhance the stability of the biocatalysts, among which polyethylenimine (PEI) stands out. PEI has certain properties, such as being a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases. Besides that, protects them from environmental variations. The use of chitosan support coated with PEI could improve the catalytic efficiency of β-galactosidase from Kluyveromyces lactis in the transgalactosylation reaction for the production of prebiotics, such as lactulose since this strain is more effective in the hydrolysis reaction. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from K. lactis immobilized on chitosan-coated with PEI, determining the immobilization parameters, its operational and thermal stability, and then to apply it in hydrolysis and transgalactolisation reactions to produce lactulose using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% (v/v) glutaraldehyde and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg protein per gram support. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey supplemented with fructose at a ratio of 1:2 lactose/fructose, totaling 200 g/L. Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6 with 0.1 mM MnCl2. The biocatalyst whose support was coated was named CHI_GLU_PEI_GAL, and the one that was not coated was named CHI_GLU_GAL. The coating of the support with PEI considerably improved the parameters of immobilization. The immobilization yield increased from 56.53% to 97.45%, biocatalyst activity from 38.93 U/g to 95.26 U/g and the efficiency from 3.51% to 6.0% for uncoated and coated support, respectively. The biocatalyst CHI_GLU_PEI_GAL was better than CHI_GLU_GAL in the hydrolysis of lactose and production of lactulose, converting 97.05% of lactose at 5 min of reaction and producing 7.60 g/L lactulose in the same time interval. QUI_GLU_PEI_GAL biocatalyst was stable in the hydrolysis reactions of lactose during the 10 cycles evaluated, converting 73.45% lactose even after the tenth cycle, and in the lactulose production was stable until the fifth cycle evaluated, producing 10.95 g/L lactulose. However, the thermal stability of CHI_GLU_GAL biocatalyst was superior, with a half-life time 6 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (CHI_GLU_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as, the catalytic action of the enzyme. Besides that, this process can be economically viable due to the use of an industrial residue as a substrate.Keywords: β-galactosidase, immobilization, kluyveromyces lactis, lactulose, polyethylenimine, transgalactosylation reaction, whey
Procedia PDF Downloads 11163 Physicochemical Properties and Toxicity Studies on a Lectin from the Bulb of Dioscorea bulbifera
Authors: Uchenna Nkiruka Umeononihu, Adenike Kuku, Oludele Odekanyin, Olubunmi Babalola, Femi Agboola, Rapheal Okonji
Abstract:
In this study, a lectin from the bulb of Dioscorea bulbifera was purified, characterised, and its acute and sub-acute toxicity was investigated with a view to evaluate its toxic effects in mice. The protein from the bulb was extracted by homogenising 50 g of the bulb in 500 ml of phosphate buffered saline (0.025 M) of pH 7.2, stirred for 3 hr, and centrifuged at the speed of 3000 rpm. Blood group and sugar specificity assays of the crude extract were determined. The lectin was purified in a two-step procedure- gel filtration on Sephadex G-75 and affinity chromatography on Sepharose 4-B arabinose. The degree of purity of the purified lectin was ascertained by SDS-polyacrylamide gel electrophoresis. Detection of covalently bound carbohydrate was carried out with Periodic Acid-Schiffs (PAS) reagent staining technique. Effects of temperature, pH, and EDTA on the lectin were carried out using standard methods. This was followed by acute toxicity studies via oral and subcutaneous routes using mice. The animals were monitored for mortality and signs of toxicity. The sub-acute toxicity studies were carried out using rats. Different concentrations of the lectin were administered twice daily for 5 days via the subcutaneous route. The animals were sacrificed on the sixth day; blood samples and liver tissues were collected. Biochemical assays (determination of total protein, direct bilirubin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), catalase (CAT), and superoxide dismutase (SOD)) were carried out on the serum and liver homogenates. The collected organs (heart, liver, kidney, and spleen) were subjected to histopathological analysis. The results showed that lectin from the bulbs of Dioscorea bulbifera agglutinated non-specifically the erythrocytes of the human ABO system as well as rabbit erythrocytes. The haemagglutinating activity was strongly inhibited by arabinose and dulcitol with minimum inhibitory concentrations of 0.781 and 6.25, respectively. The lectin was purified to homogeneity with native and subunit molecular weights of 56,273 and 29,373 Daltons, respectively. The lectin was thermostable up to 30 0C and lost 25 %, 33.3 %, and 100 % of its heamagglutinating activity at 40°C, 50°C, and 60°C, respectively. The lectin was maximally active at pH 4 and 5 but lost its total activity at pH eight, while EDTA (10 mM) had no effect on its haemagglutinating activity. PAS reagent staining showed that the lectin was not a glycoprotein. The sub-acute studies on rats showed elevated levels of ALT, AST, serum bilirubin, total protein in serum and liver homogenates suggesting damage to liver and spleen. The study concluded that the aerial bulb of D. bulbifera lectin was non-specific in its heamagglutinating activity and dimeric in its structure. The lectin shared some physicochemical characteristics with lectins from other Dioscorecea species and was moderately toxic to the liver and spleen of treated animals.Keywords: Dioscorea bulbifera, heamagglutinin, lectin, toxicity
Procedia PDF Downloads 12762 A Computational Approach to Screen Antagonist’s Molecule against Mycobacterium tuberculosis Lipoprotein LprG (Rv1411c)
Authors: Syed Asif Hassan, Tabrej Khan
Abstract:
Tuberculosis (TB) caused by bacillus Mycobacterium tuberculosis (Mtb) continues to take a disturbing toll on human life and healthcare facility worldwide. The global burden of TB remains enormous. The alarming rise of multi-drug resistant strains of Mycobacterium tuberculosis calls for an increase in research efforts towards the development of new target specific therapeutics against diverse strains of M. tuberculosis. Therefore, the discovery of new molecular scaffolds targeting new drug sites should be a priority for a workable plan for fighting resistance in Mycobacterium tuberculosis (Mtb). Mtb non-acylated lipoprotein LprG (Rv1411c) has a Toll-like receptor 2 (TLR2) agonist actions that depend on its association with triacylated glycolipids binding specifically with the hydrophobic pocket of Mtb LprG lipoprotein. The detection of a glycolipid carrier function has important implications for the role of LprG in Mycobacterial physiology and virulence. Therefore, considering the pivotal role of glycolipids in mycobacterial physiology and host-pathogen interactions, designing competitive antagonist (chemotherapeutics) ligands that competitively bind to glycolipid binding domain in LprG lipoprotein, will lead to inhibition of tuberculosis infection in humans. In this study, a unified approach involving ligand-based virtual screening protocol USRCAT (Ultra Shape Recognition) software and molecular docking studies using Auto Dock Vina 1.1.2 using the X-ray crystal structure of Mtb LprG protein was implemented. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the Ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has the higher hypothetical affinity, also has greater negative value. Based on the USRCAT, Lipinski’s values and molecular docking results, [(2R)-2,3-di(hexadecanoyl oxy)propyl][(2S,3S,5S,6R)-3,4,5-trihydroxy-2,6-bis[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6 (hydroxymethyl)tetrahydropyran-2-yl]oxy]cyclohexyl] phosphate (XPX) was confirmed as a promising drug-like lead compound (antagonist) binding specifically to the hydrophobic domain of LprG protein with affinity greater than that of PIM2 (agonist of LprG protein) with a free binding energy of -9.98e+006 Kcal/mol and binding affinity of -132 Kcal/mol, respectively. A further, in vitro assay of this compound is required to establish its potency in inhibiting molecular evasion mechanism of MTB within the infected host macrophages. These results will certainly be helpful in future anti-TB drug discovery efforts against Multidrug-Resistance Tuberculosis (MDR-TB).Keywords: antagonist, agonist, binding affinity, chemotherapeutics, drug-like, multi drug resistance tuberculosis (MDR-TB), RV1411c protein, toll-like receptor (TLR2)
Procedia PDF Downloads 27161 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles
Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio
Abstract:
Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles
Procedia PDF Downloads 24660 Immobilization of β-Galactosidase from Kluyveromyces Lactis on Polyethylenimine-Agarose for Production of Lactulose
Authors: Carlos A. C. G. Neto, Natan C. G. Silva, Thais O. Costa, Luciana R. B. Goncalves, Maria v. P. Rocha
Abstract:
Galactosidases are enzymes responsible for catalyzing lactose hydrolysis reactions and also favoring transgalactosylation reactions for the production of prebiotics, among which lactulose stands out. These enzymes, when immobilized, can have some enzymatic characteristics substantially improved, and the coating of supports with multifunctional polymers in immobilization processes is a promising alternative in order to extend the useful life of the biocatalysts, for example, the coating with polyethyleneimine (PEI). PEI is a flexible polymer that suits the structure of the enzyme, giving greater stability, especially for multimeric enzymes such as β-galactosidases and also protects it from environmental variations, for example, pH and temperature. In addition, it can substantially improve the immobilization parameters and also the efficiency of enzymatic reactions. In this context, the aim of the present work was first to develop biocatalysts of β-galactosidase from Kluyveromyces lactis immobilized on PEI coated agarose, determining the immobilization parameters, its operational and thermal stability, and then to apply it in the hydrolysis of lactose and synthesis of lactulose, using whey as a substrate. This immobilization strategy was chosen in order to improve the catalytic efficiency of the enzyme in the transgalactosylation reaction for the production of prebiotics, and there are few studies with β-galactosidase from this strain. The immobilization of β-galactosidase in agarose previously functionalized with 48% (w/v) glycidol and then coated with 10% (w/v) PEI solution was evaluated using an enzymatic load of 10 mg/g of protein. Subsequently, the hydrolysis and transgalactosylation reactions were conducted at 50 °C, 120 RPM for 20 minutes, using whey (66.7 g/L of lactose) supplemented with 133.3 g/L fructose at a ratio of 1:2 (lactose/fructose). Operational stability studies were performed in the same conditions for 10 cycles. Thermal stabilities of biocatalysts were conducted at 50 ºC in 50 mM phosphate buffer, pH 6.6, with 0.1 mM MnCl2. The biocatalysts whose supports were coated were named AGA_GLY_PEI_GAL, and those that were not coated were named AGA_GLY_GAL. The coating of the support with PEI considerably improved immobilization yield (2.6-fold), the biocatalyst activity (1.4-fold), and efficiency (2.2-fold). The biocatalyst AGA_GLY_PEI_GAL was better than AGA_GLY_GAL in hydrolysis and transgalactosylation reactions, converting 88.92% of lactose at 5 min of reaction and obtaining a residual concentration of 5.24 g/L. Besides that, it was produced 13.90 g/L lactulose in the same time interval. AGA_GLY_PEI_GAL biocatalyst was stable during the 10 cycles evaluated, converting approximately 80% of lactose and producing 10.95 g/L of lactulose even after the tenth cycle. However, the thermal stability of AGA_GLY_GAL biocatalyst was superior, with a half-life time 5 times higher, probably because the enzyme was immobilized by covalent bonding, which is stronger than adsorption (AGA_GLY_PEI_GAL). Therefore, the strategy of coating the supports with PEI has proven to be effective for the immobilization of β-galactosidase from K. lactis, considerably improving the immobilization parameters, as well as the enzyme, catalyzed reactions. In addition, the use of whey as a raw material for lactulose production has proved to be an industrially advantageous alternative.Keywords: β-galactosidase, immobilization, lactulose, polyethylenimine, whey
Procedia PDF Downloads 11959 Erosion and Deposition of Terrestrial Soil Supplies Nutrients to Estuaries and Coastal Bays: A Flood Simulation Study of Sediment-Nutrient Flux
Authors: Kaitlyn O'Mara, Michele Burford
Abstract:
Estuaries and coastal bays can receive large quantities of sediment from surrounding catchments during flooding or high flow periods. Large river systems that feed freshwater into estuaries can flow through several catchments of varying geology. Human modification of catchments for agriculture, industry and urban use can contaminate soils with excess nutrients, trace metals and other pollutants. Land clearing, especially clearing of riparian vegetation, can accelerate erosion, mobilising, transporting and depositing soil particles into rivers, estuaries and coastal bays. In this study, a flood simulation experiment was used to study the flux of nutrients between soil particles and water during this erosion, transport and deposition process. Granite, sedimentary and basalt surface soils (as well as sub-soils of granite and sedimentary) were collected from eroding areas surrounding the Brisbane River, Australia. The <63 µm size fraction of each soil type was tumbled in freshwater for 3 days, to simulation flood erosion and transport, followed by stationary exposure to seawater for 4 weeks, to simulate deposition into estuaries. Filtered water samples were taken at multiple time points throughout the experiment and analysed for water nutrient concentrations. The highest rates of nutrient release occurred during the first hour of exposure to freshwater and seawater, indicating a chemical reaction with seawater that may act to release some nutrient particles that remain bound to the soil during turbulent freshwater transport. Although released at a slower rate than the first hour, all of the surface soil types showed continual ammonia, nitrite and nitrate release over the 4-week seawater exposure, suggesting that these soils may provide ongoing supply of these nutrients to estuarine waters after deposition. Basalt surface soil released the highest concentrations of phosphates and dissolved organic phosphorus. Basalt soils are found in much of the agricultural land surrounding the Brisbane River and contributed largely to the 2011 Brisbane River flood plume deposit in Moreton Bay, suggesting these soils may be a source of phosphate enrichment in the bay. The results of this study suggest that erosion of catchment soils during storm and flood events may be a source of nutrient supply in receiving waterways, both freshwater and marine, and that the amount of nutrient release following these events may be affected by the type of soil deposited. For example, flooding in different catchments of a river system over time may result in different algal and food web responses in receiving estuaries.Keywords: flood, nitrogen, nutrient, phosphorus, sediment, soil
Procedia PDF Downloads 18558 Bone Mineralization in Children with Wilson’s Disease
Authors: Shiamaa Eltantawy, Gihan Sobhy, Alif Alaam
Abstract:
Wilson disease, or hepatolenticular degeneration, is an autosomal recessive disease that results in excess copper buildup in the body. It primarily affects the liver and basal ganglia of the brain, but it can affect other organ systems. Musculoskeletal abnormalities, including premature osteoarthritis, skeletal deformity, and pathological bone fractures, can occasionally be found in WD patients with a hepatic or neurologic type. The aim was to assess the prevalence of osteoporosis and osteopenia in Wilson’s disease patients. This case-control study was conducted on ninety children recruited from the inpatient ward and outpatient clinic of the Paediatric Hepatology, Gastroenterology, and Nutrition department of the National Liver Institute at Menofia University, aged from 1 to 18 years. Males were 49, and females were 41. Children were divided into three groups: (Group I) consisted of thirty patients with WD; (Group II) consisted of thirty patients with chronic liver disease other than WD; (Group III) consisted of thirty age- and sex-matched healthy The exclusion criteria were patients with hyperparathyroidism, hyperthyroidism, renal failure, Cushing's syndrome, and patients on certain drugs such as chemotherapy, anticonvulsants, or steroids. All patients were subjected to the following: 1- Full history-taking and clinical examination. 2-Laboratory investigations: (FBC,ALT,AST,serum albumin, total protein, total serum bilirubin,direct bilirubin,alkaline phosphatase, prothrombin time, serum critine,parathyroid hormone, serum calcium, serum phosphrus). 3-Bone mineral density (BMD, gm/cm2) values were measured by dual-energy X-ray absorptiometry (DEXA). The results revealed that there was a highly statistically significant difference between the three groups regarding the DEXA scan, and there was no statistically significant difference between groups I and II, but the WD group had the lowest bone mineral density. The WD group had a large number of cases of osteopenia and osteoporosis, but there was no statistically significant difference with the group II mean, while a high statistically significant difference was found when compared to group III. In the WD group, there were 20 patients with osteopenia, 4 patients with osteoporosis, and 6 patients who were normal. The percentages were 66.7%, 13.3%, and 20%, respectively. Therefore, the largest number of cases in the WD group had osteopenia. There was no statistically significant difference found between WD patients on different treatment regimens regarding DEXA scan results (Z-Score). There was no statistically significant difference found between patients in the WD group (normal, osteopenic, or osteoporotic) regarding phosphorus (mg/dL), but there was a highly statistically significant difference found between them regarding ionised Ca (mmol/L). Therefore, there was a decrease in bone mineral density when the Ca level was decreased. In summary, Wilson disease is associated with bone demineralization. The largest number of cases in the WD group in our study had osteopenia (66.7%). Different treatment regimens (zinc monotherapy, Artamin, and zinc) as well as different laboratory parameters have no effect on bone mineralization in WD cases. Decreased ionised Ca is associated with low BMD in WD patients. Children with WD should be investigated for BMD.Keywords: wilson disease, Bone mineral density, liver disease, osteoporosis
Procedia PDF Downloads 6057 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes
Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov
Abstract:
Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of 5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics
Procedia PDF Downloads 28256 Ecosystem Modeling along the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao
Abstract:
Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity
Procedia PDF Downloads 14155 Influence of Dietary Boron on Gut Absorption of Nutrients, Blood Metabolites and Tissue Pathology
Authors: T. Vijay Bhasker, N. K. S Gowda, P. Krishnamoorthy, D. T. Pal, A. K. Pattanaik, A. K. Verma
Abstract:
Boron (B) is a newer trace element and its biological importance and dietary essentiality is unclear in animals. The available literature suggests its putative role in bone mineralization, antioxidant status and steroid hormone synthesis. A feeding trial was conducted in Wister strain (Rattus norvegicus) albino rats for duration of 90 days. A total of 84 healthy weaned (3-4 weeks) experimental rats were randomly divided into 7 dietary groups (4 replicates of three each) viz., A (Basal diet/ Control), B (Basal diet + 5 ppm B), C (Basal diet + 10 ppm B), D (Basal diet + 20 ppm B), E (Basal diet + 40 ppm B), F (Basal diet-Ca 50%), G (Basal diet-Ca 50% + 40 ppm B). Dietary level of calcium (Ca) was maintained at two levels, 100% and 50% of requirement. Sodium borate was used as source of boron along with other ingredients of basal diet while preparing the pelletized diets. All the rats were kept in proper ventilated laboratory animal house maintained at temperature (23±2º C) and humidity (50 to 70%). At the end of experiment digestibility trial was conducted for 5 days to estimate nutrient digestibility and gut absorption of minerals. Eight rats from each group were sacrificed to collect the vital organs (liver, kidney and spleen) to study histopathology. Blood sample was drawn by heart puncture to determine biochemical profile. The average daily feed intake (g/rat/day), water intake (ml/rat/day) and body weight gain (g/rat/day) were similar among the dietary groups. The digestibility (%) of organic matter and crude fat were significantly improved (P < 0.05) was by B supplementation. The gut absorption (%) Ca was significantly increased (P < 0.01) in B supplemented groups compared to control. However, digestibility of dry matter and crude protein, gut absorption of magnesium and phosphorus showed a non-significant increasing trend with B supplementation. The gut absorption (%) of B (P < 0.01) was significantly lowered (P<0.05) in supplemented groups compared to un-supplemented ones. The serum level of triglycerides (mg/dL), HDL-cholesterol (mg/dL) and alanine transaminase (IU/L) were significantly lowered (P < 0.05) in B supplemented groups. While serum level of glucose (mg/dL) and alkaline phosphatase (KA units) showed a non-significant decreasing trend with B supplementation. However the serum levels of total cholesterol (mg/dL) and aspartate transaminase (IU/L) were similar among dietary groups. The histology sections of kidney and spleen revealed no significant changes among the dietary groups and were observed to be normal in anatomical architecture. However, the liver histology revealed cell degenerative changes with vacuolar degeneration and nuclear condensation in Ca deficient groups. But the comparative degenerative changes were mild in 40 ppm B supplemented Ca deficient group. In conclusion, dietary supplementation of graded levels of boron in rats had a positive effect on metabolism and health by improving nutrient digestibility and gut absorption of Ca. This indicates the beneficial role of dietary boron supplementation.Keywords: boron, calcium, nutrient utilization, histopathology
Procedia PDF Downloads 31854 Piled Critical Size Bone-Biomimetic and Biominerizable Nanocomposites: Formation of Bioreactor-Induced Stem Cell Gradients under Perfusion and Compression
Authors: W. Baumgartner, M. Welti, N. Hild, S. C. Hess, W. J. Stark, G. Meier Bürgisser, P. Giovanoli, J. Buschmann
Abstract:
Perfusion bioreactors are used to solve problems in tissue engineering in terms of sufficient nutrient and oxygen supply. Such problems especially occur in critical size grafts because vascularization is often too slow after implantation ending up in necrotic cores. Biominerizable and biocompatible nanocomposite materials are attractive and suitable scaffold materials for bone tissue engineering because they offer mineral components in organic carriers – mimicking natural bone tissue. In addition, human adipose derived stem cells (ASCs) can potentially be used to increase bone healing as they are capable of differentiating towards osteoblasts or endothelial cells among others. In the present study, electrospun nanocomposite disks of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) were seeded with human ASCs and eight disks were stacked in a bioreactor running with normal culture medium (no differentiation supplements). Under continuous perfusion and uniaxial cyclic compression, load-displacement curves as a function of time were assessed. Stiffness and energy dissipation were recorded. Moreover, stem cell densities in the layers of the piled scaffold were determined as well as their morphologies and differentiation status (endothelial cell differentiation, chondrogenesis and osteogenesis). While the stiffness of the cell free constructs increased over time caused by the transformation of the a-CaP nanoparticles into flake-like apatite, ASC-seeded constructs showed a constant stiffness. Stem cell density gradients were histologically determined with a linear increase in the flow direction from the bottom to the top of the 3.5 mm high pile (r2 > 0.95). Cell morphology was influenced by the flow rate, with stem cells getting more roundish at higher flow rates. Less than 1 % osteogenesis was found upon osteopontin immunostaining at the end of the experiment (9 days), while no endothelial cell differentiation and no chondrogenesis was triggered under these conditions. All ASCs had mainly remained in their original pluripotent status within this time frame. In summary, we have fabricated a critical size bone graft based on a biominerizable bone-biomimetic nanocomposite with preserved stiffness when seeded with human ASCs. The special feature of this bone graft was that ASC densities inside the piled construct varied with a linear gradient, which is a good starting point for tissue engineering interfaces such as bone-cartilage where the bone tissue is cell rich while the cartilage exhibits low cell densities. As such, this tissue-engineered graft may act as a bone-cartilage interface after the corresponding differentiation of the ASCs.Keywords: bioreactor, bone, cartilage, nanocomposite, stem cell gradient
Procedia PDF Downloads 30853 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance
Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi
Abstract:
Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.Keywords: chemical modification, industrial application, value addition, vegetable fibre
Procedia PDF Downloads 33152 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending
Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel
Abstract:
Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear
Procedia PDF Downloads 11151 Insights on the Halal Status of Antineoplastic and Immunomodulating Agents and Nutritional and Dietary Supplements in Malaysia
Authors: Suraiya Abdul Rahman, Perasna M. Varma, Amrahi Buang, Zhari Ismail, Wan Rosalina W. Rosli, Ahmad Rashidi M. Tahir
Abstract:
Background: Muslims has the obligation to ensure that everything they consume including medicines should be halal. With the growing demands for halal medicines in October 2012, Malaysia has launched the world's first Halal pharmaceutical standards called Malaysian Standard MS 2424:2012 Halal Pharmaceuticals-General Guidelines to serve as a basic requirement for halal pharmaceuticals in Malaysia. However, the biggest challenge faced by pharmaceutical companies to comply is finding the origin or source of the ingredients and determine their halal status. Aim: This study aims to determine the halal status of the antineoplastic and immunomodulating agents, and nutritional and dietary supplements by analysing the origin of their active pharmaceutical ingredients (API) and excipients to provide an insight on the common source and halal status of pharmaceutical ingredients and an indication on adjustment required in order to be halal compliance. Method: The ingredients of each product available in a government hospital in central of Malaysia and their sources were determined from the product package leaflets, information obtained from manufacturer, reliable websites and standard pharmaceutical references. The ingredients were categorised as halal, musbooh or haram based on the definition set in MS2424. Results: There were 162 medications included in the study where 123 (76%) were under the antineoplastic and immunomodulating agents group, while 39 (24%) were nutritional and dietary supplements. In terms of the medication halal status, the proportion of halal, musbooh and haram were 40.1% (n=65), 58.6% (n=95) and 1.2% (n=2) respectively. With regards to the API, there were 89 (52%) different active ingredient identified for antineoplastic and immunomodulating agents with the proportion of 89.9% (n=80) halal and 10.1% (n=9) were mushbooh. There were 83 (48%) active ingredient from the nutritional and dietary supplements group with proportion of halal and masbooh were 89.2% (n=74) and 10.8% (n=9) respectively. No haram APIs were identified in all therapeutic classes. There were a total of 176 excipients identified from the products ranges. It was found that majority of excipients are halal with the proportion of halal, masbooh and haram were at 82.4% (n=145), 17% (n=30) and 0.6% (n=1) respectively. With regards of the sources of the excipeints, most of masbooh excipients (76.7%, n = 23) were classified as masbooh because they have multiple possible origin which consist of animals, plant or others. The remaining 13.3% and 10% were classified as masbooh due to their ethanol and land animal origin respectively. The one haram excipient was gelatine of bovine-porcine origin. Masbooh ingredients found in this research were glycerol, tallow, lactose, polysorbate, dibasic sodium phosphate, stearic acid and magnesium stearate. Ethanol, gelatine, glycerol and magnesium stearate were the most common ingredients classified as mushbooh. Conclusion: This study shows that most API and excipients are halal. However the majority of the medicines in these products categories are mushbooh due to certain excipients only, which could be replaced with halal alternative excipients. This insight should encourage the pharmaceutical products manufacturers to go for halal certification to meet the increasing demand for Halal certified medications for the benefit of mankind.Keywords: antineoplastic and immunomodulation agents, halal pharmaceutical, MS2424, nutritional and dietary supplements
Procedia PDF Downloads 30250 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy
Authors: Lina Paola Orozco Marin, Yuliet Montoya Osorio, John Bustamante Osorno
Abstract:
Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models.Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel
Procedia PDF Downloads 19149 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs
Authors: Agata Chelminska, Joanna Goscianska
Abstract:
The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants
Procedia PDF Downloads 18048 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors
Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova
Abstract:
Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF
Procedia PDF Downloads 325