Search results for: Intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1562

Search results for: Intelligence

692 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 207
691 The Effect of Artificial Intelligence on Media Production

Authors: Mona Mikhail Shakhloul Gadalla

Abstract:

The brand-new media revolution, which features a huge range of new media technologies like blogs, social networking, visual worlds, and wikis, has had a tremendous impact on communications, traditional media and across different disciplines. This paper gives an evaluation of the impact of recent media technology on the news, social interactions and conventional media in developing and advanced nations. The look points to the reality that there is a widespread impact of recent media technologies on the news, social interactions and the conventional media in developing and developed nations, albeit undoubtedly and negatively. Social interactions have been considerably affected, in addition to news manufacturing and reporting. It's miles reiterated that regardless of the pervasiveness of recent media technologies, it might now not carry a complete decline of conventional media. This paper contributes to the theoretical framework of the new media and will assist in assessing the extent of the effect of the new media in special places.

Keywords: court reporting, offenders in media, quantitative content analysis, victims in mediamedia literacy, ICT, internet, education communication, media, news, new media technologies, social interactions, traditional media

Procedia PDF Downloads 34
690 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
689 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 130
688 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 105
687 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities

Authors: Khalid Obaed Mahmod, Mesut Cevik

Abstract:

The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub-networks in addition to a set of applications and thus be able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence and the technology of the Internet of Things. The work presents the concept of smart cities, the pillars, standards, and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits, and testing them to determine if the city can be considered an ideal smart city or not.

Keywords: factors, indicators, logic gates, pillars, smart city

Procedia PDF Downloads 150
686 A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill

Authors: Mohammadhadi Mirmohammadi, Reza Safian, Hossein Haddad

Abstract:

This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented.

Keywords: derivative-free optimization, Improving Hit and Run method, real-coded genetic algorithm, rolling schedules of tandem cold rolling mill

Procedia PDF Downloads 696
685 Enhancing Academic Achievement of University Student through Stress Management Training: A Study from Southern Punjab, Pakistan

Authors: Rizwana Amin, Afshan Afroze Bhatti

Abstract:

The study was a quasi-experimental pre-post test design including two groups. Data was collected from 127 students through non-probability random sampling from Bahaudin Zakariya University Multan. The groups were given pre-test using perceived stress scale and information about academic achievement was taken by self-report. After screening, 27 participants didn’t meet the criterion. Remaining 100 participants were divided into two groups (experimental and control). Further, 4 students of experimental group denied taking intervention. Then 46 understudies were separated into three subgroups (16, 15 and 15 in each) for training. The experimental groups were given the stress management training, each of experimental group attended one 3-hour training sessions separately while the control group was only given pre-post assessment. The data were analyzed using ANCOVA method (analysis of covariance) t–test. Results of the study indicate that stress training will lead to increased emotional intelligence and academic achievement of students.

Keywords: stress, stress management, academic achievement, students

Procedia PDF Downloads 340
684 Short-Term and Working Memory Differences Across Age and Gender in Children

Authors: Farzaneh Badinloo, Niloufar Jalali-Moghadam, Reza Kormi-Nouri

Abstract:

The aim of this study was to explore the short-term and working memory performances across age and gender in school aged children. Most of the studies have been interested in looking into memory changes in adult subjects. This study was instead focused on exploring both short-term and working memories of children over time. Totally 410 school child participants belonging to four age groups (approximately 8, 10, 12 and 14 years old) among which were 201 girls and 208 boys were employed in the study. digits forward and backward tests of the Wechsler children intelligence scale-revised were conducted respectively as short-term and working memory measures. According to results, there was found a general increment in both short-term and working memory scores across age (p ˂ .05) by which whereas short-term memory performance was shown to increase up to 12 years old, working memory scores showed no significant increase after 10 years old of age. No difference was observed in terms of gender (p ˃ .05). In conclusion, this study suggested that both short-term and working memories improve across age in children where 12 and 10 years of old are likely the crucial age periods in terms of short-term and working memories development.

Keywords: age, gender, short-term memory, working memory

Procedia PDF Downloads 478
683 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 138
682 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
681 A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 264
680 The Biosphere as a Supercomputer Directing and Controlling Evolutionary Processes

Authors: Igor A. Krichtafovitch

Abstract:

The evolutionary processes are not linear. Long periods of quiet and slow development turn to rather rapid emergences of new species and even phyla. During Cambrian explosion, 22 new phyla were added to the previously existed 3 phyla. Contrary to the common credence the natural selection or a survival of the fittest cannot be accounted for the dominant evolution vector which is steady and accelerated advent of more complex and more intelligent living organisms. Neither Darwinism nor alternative concepts including panspermia and intelligent design propose a satisfactory solution for these phenomena. The proposed hypothesis offers a logical and plausible explanation of the evolutionary processes in general. It is based on two postulates: a) the Biosphere is a single living organism, all parts of which are interconnected, and b) the Biosphere acts as a giant biological supercomputer, storing and processing the information in digital and analog forms. Such supercomputer surpasses all human-made computers by many orders of magnitude. Living organisms are the product of intelligent creative action of the biosphere supercomputer. The biological evolution is driven by growing amount of information stored in the living organisms and increasing complexity of the biosphere as a single organism. Main evolutionary vector is not a survival of the fittest but an accelerated growth of the computational complexity of the living organisms. The following postulates may summarize the proposed hypothesis: biological evolution as a natural life origin and development is a reality. Evolution is a coordinated and controlled process. One of evolution’s main development vectors is a growing computational complexity of the living organisms and the biosphere’s intelligence. The intelligent matter which conducts and controls global evolution is a gigantic bio-computer combining all living organisms on Earth. The information is acting like a software stored in and controlled by the biosphere. Random mutations trigger this software, as is stipulated by Darwinian Evolution Theories, and it is further stimulated by the growing demand for the Biosphere’s global memory storage and computational complexity. Greater memory volume requires a greater number and more intellectually advanced organisms for storing and handling it. More intricate organisms require the greater computational complexity of biosphere in order to keep control over the living world. This is an endless recursive endeavor with accelerated evolutionary dynamic. New species emerge when two conditions are met: a) crucial environmental changes occur and/or global memory storage volume comes to its limit and b) biosphere computational complexity reaches critical mass capable of producing more advanced creatures. The hypothesis presented here is a naturalistic concept of life creation and evolution. The hypothesis logically resolves many puzzling problems with the current state evolution theory such as speciation, as a result of GM purposeful design, evolution development vector, as a need for growing global intelligence, punctuated equilibrium, happening when two above conditions a) and b) are met, the Cambrian explosion, mass extinctions, happening when more intelligent species should replace outdated creatures.

Keywords: supercomputer, biological evolution, Darwinism, speciation

Procedia PDF Downloads 164
679 The Impact of Artificial Intelligence on Construction Engineering

Authors: Mina Fawzy Ishak Gad Elsaid

Abstract:

There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.

Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management

Procedia PDF Downloads 45
678 The Impact of Artificial Intelligence on Construction Engineering

Authors: Haneen Joseph Habib Yeldoka

Abstract:

There is a strong link between technology and development. Architecture as a profession is a call to service and society. Maybe next to soldiers, engineers and patriots. However, unlike soldiers, they always remain employees of society under all circumstances. Despite the construction profession's role in society, there appears to be a lack of respect as some projects fail. This paper focuses on the need to improve development engineering performance in developing countries, using engineering education in Nigerian universities as a tool for discussion. A purposeful survey, interviews and focus group discussions were conducted on one hundred and twenty (120) prominent companies in Nigeria. The subject is approached through a large number of projects that companies have been involved in from the planning stage, some of which have been completed and even reached the maintenance and monitoring stage. It has been found that certain factors beyond the control of engineers are hindering the full development and success of the construction sector in developing countries. The main culprit is corruption and its eradication will put the country on a stable path to develop construction and combat poverty.

Keywords: decision analysis, industrial engineering, direct vs. indirect values, engineering management

Procedia PDF Downloads 40
677 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 113
676 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory

Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming

Abstract:

To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.

Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model

Procedia PDF Downloads 411
675 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 154
674 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets

Authors: Yosra Mefteh Rekik

Abstract:

A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.

Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance

Procedia PDF Downloads 438
673 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 161
672 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi

Abstract:

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks

Procedia PDF Downloads 395
671 Augmented Reality Applications for Active Learning in Geometry: Enhancing Mathematical Intelligence at Phra Dabos School

Authors: Nattamon Srithammee, Ratchanikorn Chonchaiya

Abstract:

This study explores the impact of Augmented Reality (AR) technology on mathematics education, focusing on Area and Volume concepts at Phra Dabos School in Thailand. We developed a mobile augmented reality application to present these mathematical concepts innovatively. Using a mixed-methods approach, we assessed the knowledge of 79 students before and after using the application. The results showed a significant improvement in students' understanding of Area and Volume, with average test scores increasing from 3.70 to 9.04 (p < 0.001, Cohen's d = 2.05). Students also reported increased engagement and satisfaction. Our findings suggest that augmented reality technology can be a valuable tool in mathematics education, particularly for enhancing the understanding of abstract concepts like Area and Volume. This study contributes to research on educational technology in STEM education and provides insights for educators and educational technology developers.

Keywords: augmented reality, mathematics education, area and volume, educational technology, STEM education

Procedia PDF Downloads 24
670 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 583
669 Unmasking Virtual Empathy: A Philosophical Examination of AI-Mediated Emotional Practices in Healthcare

Authors: Eliana Bergamin

Abstract:

This philosophical inquiry, influenced by the seminal works of Annemarie Mol and Jeannette Pols, critically examines the transformative impact of artificial intelligence (AI) on emotional caregiving practices within virtual healthcare. Rooted in the traditions of philosophy of care, philosophy of emotions, and applied philosophy, this study seeks to unravel nuanced shifts in the moral and emotional fabric of healthcare mediated by AI-powered technologies. Departing from traditional empirical studies, the approach embraces the foundational principles of care ethics and phenomenology, offering a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. At its core, this research addresses the introduction of AI-powered technologies mediating emotional and care practices in the healthcare sector. By drawing on Mol and Pols' insights, the study offers a focused exploration of the ethical and existential dimensions of AI-mediated emotional caregiving. Anchored in ethnographic research within a pioneering private healthcare company in the Netherlands, this critical philosophical inquiry provides a unique lens into the dynamics of AI-mediated emotional practices. The study employs in-depth, semi-structured interviews with virtual caregivers and care receivers alongside ongoing ethnographic observations spanning approximately two and a half months. Delving into the lived experiences of those at the forefront of this technological evolution, the research aims to unravel subtle shifts in the emotional and moral landscape of healthcare, critically examining the implications of AI in reshaping the philosophy of care and human connection in virtual healthcare. Inspired by Mol and Pols' relational approach, the study prioritizes the lived experiences of individuals within the virtual healthcare landscape, offering a deeper understanding of the intertwining of technology, emotions, and the philosophy of care. In the realm of philosophy of care, the research elucidates how virtual tools, particularly those driven by AI, mediate emotions such as empathy, sympathy, and compassion—the bedrock of caregiving. Focusing on emotional nuances, the study contributes to the broader discourse on the ethics of care in the context of technological mediation. In the philosophy of emotions, the investigation examines how the introduction of AI alters the phenomenology of emotional experiences in caregiving. Exploring the interplay between human emotions and machine-mediated interactions, the nuanced analysis discerns implications for both caregivers and caretakers, contributing to the evolving understanding of emotional practices in a technologically mediated healthcare environment. Within applied philosophy, the study transcends empirical observations, positioning itself as a reflective exploration of the moral implications of AI in healthcare. The findings are intended to inform ethical considerations and policy formulations, bridging the gap between technological advancements and the enduring values of caregiving. In conclusion, this focused philosophical inquiry aims to provide a foundational understanding of the evolving landscape of virtual healthcare, drawing on the works of Mol and Pols to illuminate the essence of human connection, care, and empathy amid technological advancements.

Keywords: applied philosophy, artificial intelligence, healthcare, philosophy of care, philosophy of emotions

Procedia PDF Downloads 58
668 Enhancing Code Security with AI-Powered Vulnerability Detection

Authors: Zzibu Mark Brian

Abstract:

As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.

Keywords: AI, machine language, cord security, machine leaning

Procedia PDF Downloads 36
667 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor

Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan

Abstract:

The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.

Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management

Procedia PDF Downloads 244
666 The Effect of Artificial Intelligence on Autism Attitudes and Laws

Authors: Nermin Noshi Esraeil Abdalla

Abstract:

Inclusive schooling offerings for college kids with Autism stays in its early developmental levels in Thailand. despite many greater youngsters with autism are attending schools since the Thai authorities brought the training Provision for human beings with Disabilities Act in 2008, the services students with autism and their families obtain are typically missing. This quantitative examine used attitude and Preparedness to educate college students with Autism Scale (APTSAS) to investigate 110 number one faculty teachers’ attitude and preparedness to educate college students with autism inside the widespread training school room. Descriptive statistical evaluation of the records discovered that scholar behavior changed into the most good sized factor in constructing teachers’ terrible attitudes students with autism. the majority of teachers additionally indicated that their pre-service schooling did not put together them to fulfill the mastering needs of children with autism especially, folks who are non-verbal. The take a look at is substantial and offers path for enhancing trainer education for inclusivity in Thailand.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 21
665 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt

Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim

Abstract:

A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.

Keywords: expert system, knowledge management, pipeline projects, risk mismanagement

Procedia PDF Downloads 311
664 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 286
663 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET

Authors: Akhil Dubey, Rajnesh Singh

Abstract:

In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.

Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing

Procedia PDF Downloads 416