Search results for: protective coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1607

Search results for: protective coating

1547 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength

Procedia PDF Downloads 331
1546 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating

Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang

Abstract:

The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.

Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying

Procedia PDF Downloads 247
1545 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications

Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour

Abstract:

Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.

Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile

Procedia PDF Downloads 64
1544 The Perspective of Smart Thermoregulation in Personal Protective Equipment

Authors: Alireza Saidi

Abstract:

Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.

Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain

Procedia PDF Downloads 83
1543 Fabrication of Highly Roughened Zirconia Surface by a Room Temperature Spray Coating

Authors: Hyeong-Jin Kim, Jong Kook Lee

Abstract:

Zirconia has biological, mechanical and optical properties, so, it used as a dental implant material in human body. But, it is difficult to form directly bonding with living tissues after the procedure and induces the falling away from implanted parts of the body. To improve this phenomenon, it is essential to increase the surface roughness of zirconia implants and induce a forming-ability of strong bonds. In this study, we performed a room temperature spray coating on zirconia specimen to obtain a highly roughened zirconia surface. To get optimal surface roughness, we controlled the distance between the nozzle and the substrate, coating times and powder condition. Bonding microstructure, surface roughness, and chemical composition of the coating layer were observed by SEM, XRD and roughness tester.

Keywords: implant, aerosoldeposition, zirconia, dental

Procedia PDF Downloads 189
1542 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning

Procedia PDF Downloads 285
1541 Factors Related to Protective Behavior on Indoor Pollution among Pregnant Women in Nakhon Pathom Province, Thailand

Authors: Yuri Teraoka, Cheerawit Rattanapan, Aroonsri Mongkolchati

Abstract:

This cross sectional analytic study was carried out to determine factors related to protective behavior on indoor pollution among pregnant women in Nakhon Pathom province, Thailand. A total of 319 pregnant women were enrolled at three antenatal care clinics in community hospital. Data were collected using simple random sampling from April 2015 to May 2015 using a structured self-administration questionnaire by well-trained research assistants. The result showed that around 73% pregnant women showed low level of low protective behavior on indoor pollution. Chi-square and multiple logistic regression were used to examine the factors and protective behavior on indoor pollution. After adjusting for confounding factors, this study found that tobacco smoking before pregnancy (AOR=2.15, 95% CI: 0.78-5.95) and low environmental health hazard (AOR=1.94, 95% CI: 1.09-3.49) were significant factors related to protective behavior on indoor pollution among pregnant women (p-value < 0.05). In conclusion, this study suggested that environmental health education campaign and environmental implementation program among pregnant woman are needed.

Keywords: Thailand, environmental health, protective behavior, pregnant women

Procedia PDF Downloads 337
1540 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution

Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen

Abstract:

Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.

Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating

Procedia PDF Downloads 147
1539 Effect of Epoxy-ZrP Nanocomposite Top Coating on Inorganic Barrier Layer

Authors: Haesook Kim, Ha Na Ra, Mansu Kim, Hyun Gi Kim, Sung Soo Kim

Abstract:

Epoxy-ZrP (α-zirconium phosphate) nanocomposites were coated on inorganic barrier layer such as sputtering and atomic layer deposition (ALD) to improve the barrier properties and protect the layer. ZrP nanoplatelets were synthesized using a reflux method and exfoliated in the polymer matrix. The barrier properties of coating layer were characterized by measuring water vapor transmission rate (WVTR). The WVTR dramatically decreased after epoxy-ZrP nanocomposite coating, while maintaining the optical properties. It was also investigated the effect of epoxy-ZrP coating on inorganic layer after bending and reliability test. The optimal structure composed of inorganic and epoxy-ZrP nanocomposite layers was used in organic light emitting diodes (OLED) encapsulation.

Keywords: α-zirconium phosphate, barrier properties, epoxy nanocomposites, OLED encapsulation

Procedia PDF Downloads 333
1538 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 102
1537 Corrosion of Fe-(9~37) Wt%Cr Alloys at 700-800 °C in N₂-H₂O-H₂S Mixed Gas

Authors: Min Jung Kim

Abstract:

Fe-(9, 19, 28, 37) wt%Cr alloys were corroded at 700 and 800 °C for 70 h under 1 atm of N₂, 1 atm of N₂/3.2%H₂O-mixed gas, and 1 atm of N₂/3.1%H₂O/2.42%H₂S-mixed gas. The corrosion rate of Fe-9Cr alloy increased with the addition of H₂O and increased further with the addition of H₂S in N₂/H₂O gas. Fe-9Cr alloy was non-protective in all gas types. In contrast, Fe-(19, 28, 37) wt%Cr alloys were protective in N₂ and N₂/H₂O-mixed gas because of the formation of the Cr₂O₃ layer. They were, however, non-protective in N₂/H₂O/H₂S-mixed gas because sulfidation dominated, forming the outer FeS layer and the inner Cr₂S₃ layer containing some FeCr₂S₄.

Keywords: Fe-(9, 19, 28, 37) wt%Cr alloys, corrosion, sulfidation, FeS

Procedia PDF Downloads 404
1536 Cutting Performance of BDD Coating on WC-Co Tools

Authors: Feng Xu, Zhaozhi Liu, Junhua Xu, Xiaolong Tang, Dunwen Zuo

Abstract:

Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.

Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill

Procedia PDF Downloads 417
1535 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango

Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree

Abstract:

Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.

Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4

Procedia PDF Downloads 180
1534 Response of Briquettes Application with Different Coating Materials on Yield and Quality of Cucumber [Cucumis sativus (L.)]

Authors: H. B. Torane, M. C. Kasture, S. S. Prabhudesai, P. B. Sanap, V. N. Palsande, J. J. Palkar

Abstract:

The present investigation entitled “Response of briquettes application with different coating materials on yield and quality of Cucumber [Cucumis sativus (L.)]” was conducted at Central Experiment Center, Wakawali during kharif season 2013. The field experiment was laid out in Factorial Randomized Block Design with three replicate. The four coating materials viz., Co – Non coating, C1 – Wax coating, C2 – Jaggary coating, and C3 – Tar coating was applied to Konkan Annapurna Briquette along with three sub treatments of application time i.e B1 – ½ at sowing, B2 - ½ at sowing and ½ at 30 days after sowing and B3 - 1/3 at sowing, 1/3 at 30 days after sowing and 1/3 at 60 days after sowing. It was observed that the application of tar coated Konkan Annapurna Briquettes (KAB) in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing was found promising to enhancing the cucumber fruit yield, higher vine length, number of fruits vine-1, girth of fruit, length of fruit. It was also observed that the quality of the cucumber fruit increased in terms of ascorbic acid. UB-Godavari forms of briquettes .i.e. are promising source of N, P2O5 and K2O fertilizers as compared to straight fertilizers for enhancing green cucumber fruit yield of Sheetal variety of cucumber in lateritic soil. Amongst the three types of coated briquettes, the tar coated briquettes application was found to be superior for increasing cucumber fruit yield applied in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing @ 5 briquettes per plant at an interval of 30 days after sowing.

Keywords: briquettes, coating, yield, tar, wax and quality

Procedia PDF Downloads 491
1533 Characterization of Nano Coefficient of Friction through Lfm of Superhydrophobic/Oleophobic Coatings Applied on 316l Ss

Authors: Hamza Shams, Sajid Saleem, Bilal A. Siddiqui

Abstract:

This paper investigates the coefficient of friction at nano-levels of commercially available superhydrophobic/oleophobic coatings when applied over 316L SS. 316L Stainless Steel or Marine Stainless Steel has been selected for its widespread uses in structures, marine and biomedical applications. The coatings were investigated in harsh sand-storm and sea water environments. The particle size of the sand during the procedure was carefully selected to simulate sand-storm conditions. Sand speed during the procedure was carefully modulated to simulate actual wind speed during a sand-storm. Sample preparation was carried out using prescribed methodology by the coating manufacturer. The coating’s adhesion and thickness was verified before and after the experiment with the use of Scanning Electron Microscopy (SEM). The value for nano-level coefficient of friction has been determined using Lateral Force Microscopy (LFM). The analysis has been used to formulate a value of friction coefficient which in turn is associative of the amount of wear the coating can bear before the exposure of the base substrate to the harsh environment. The analysis aims to validate the coefficient of friction value as marketed by the coating manufacturers and more importantly test the coating in real-life applications to justify its use. It is expected that the coating would resist exposure to the harsh environment for a considerable amount of time. Further, it would prevent the sample from getting corroded in the process.

Keywords: 316L SS, scanning electron microscopy, lateral force microscopy, marine stainless steel, oleophobic coating, superhydrophobic coating

Procedia PDF Downloads 465
1532 Investigation on Dry Sliding Wear for Laser Cladding of Stellite 6 Produced on a P91 Steel Substrate

Authors: Alain Kusmoko, Druce Dunne, Huijun Li

Abstract:

Stellite 6 was deposited by laser cladding on a chromium bearing substrate (P91) with energy inputs of 1 kW (P91-1) and 1.8 kW (P91-1.8). The chemical compositions and microstructures of these coatings were characterized by atomic absorption spectroscopy, optical microscopy and scanning electron microscopy. The microhardness of the coatings was measured and the wear mechanism of the coatings was assessed using a pin-on-plate (reciprocating) wear testing machine. The results showed less cracking and pore development for Stellite 6 coatings applied to the P91 steel substrate with the lower heat input (P91-1). Further, the Stellite coating for P91-1 was significantly harder than that obtained for P91-1.8. The wear test results indicated that the weight loss for P91-1 was much lower than for P91-1.8. It is concluded that the lower hardness of the coating for P91-1.8, together with the softer underlying substrate structure, markedly reduced the wear resistance of the Stellite 6 coating.

Keywords: friction and wear, laser cladding, P91 steel, Stellite 6 coating

Procedia PDF Downloads 406
1531 Conformal Coating Technology Applicable to Cell Therapeutics Using Click-Reactive Biocompatible Polymers

Authors: Venkat Garigapati

Abstract:

Cell-based therapies are limited due to underlying host immune system activity. Microencapsulation of living cells to overcome this issue has some serious drawbacks, such as limitations of nutrient and oxygen diffusion, which pose a threat to the function and longevity of cells. The conformal coating could overcome the issues which are generally involved in traditional microencapsulation. Some of the theoretical advantages of conformal coating include superior nutrient and oxygen supply to cells, prolonged lifespan, improved drug-secreting cell functionality and an opportunity to load high cell doses in small volumes. Despite several advantages to the conformal coating, there are no suitable methods available to apply to living cells. The ultra-thin conformal coating was achieved utilizing click-reactive methacryloyloxyethyl phosphorylcholine (MPC) polymers, which are capable of specifically reacting one polymer to another at neutral pH in the aqueous isotonic system at the desired temperature suitable for living cells without the need of deleterious initiators. ARPE-19 (Adult Retinal Pigment Epithelial cell line-19) cell-spheroids and rat pancreatic islets were used in the formulation studies. The in vitro studies of coated ARPE-19 cell-spheroids and rat islets indicate that the coat was intact; cells were viable and functioning. The in vitro study results revealed that the conformal coating technology seems promising and in vivo studies are being planned.

Keywords: cells, hydrogel, conformal coating, microencapsulation, insulin

Procedia PDF Downloads 72
1530 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection

Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami

Abstract:

A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.

Keywords: sol gel, coating, corrosion, XPS

Procedia PDF Downloads 108
1529 The Creation of Calcium Phosphate Coating on Nitinol Substrate

Authors: Kirill M. Dubovikov, Ekaterina S. Marchenko, Gulsharat A. Baigonakova

Abstract:

NiTi alloys are widely used as implants in medicine due to their unique properties such as superelasticity, shape memory effect and biocompatibility. However, despite these properties, one of the major problems is the release of nickel after prolonged use in the human body under dynamic stress. This occurs due to oxidation and cracking of NiTi implants, which provokes nickel segregation from the matrix to the surface and release into living tissues. As we know, nickel is a toxic element and can cause cancer, allergies, etc. One of the most popular ways to solve this problem is to create a corrosion resistant coating on NiTi. There are many coatings of this type, but not all of them have good biocompatibility, which is very important for medical implants. Coatings based on calcium phosphate phases have excellent biocompatibility because Ca and P are the main constituents of the mineral part of human bone. This fact suggests that a Ca-P coating on NiTi can enhance osteogenesis and accelerate the healing process. Therefore, the aim of this study is to investigate the structure of Ca-P coating on NiTi substrate. Plasma assisted radio frequency (RF) sputtering was used to obtain this film. This method was chosen because it allows the crystallinity and morphology of the Ca-P coating to be controlled by the sputtering parameters. It allows us to obtain three different NiTi samples with Ca-P coating. XRD, AFM, SEM and EDS were used to study the composition, structure and morphology of the coating phase. Scratch tests were carried out to evaluate the adhesion of the coating to the substrate. Wettability tests were used to investigate the hydrophilicity of the different coatings and to suggest which of them had better biocompatibility. XRD showed that the coatings of all samples were hydroxyapatite, but the matrix was represented by TiNi intermetallic compounds such as B2, Ti2Ni and Ni3Ti. The SEM shows that the densest and defect-free coating has only one sample after three hours of sputtering. Wettability tests show that the sample with the densest coating has the lowest contact angle of 40.2° and the largest free surface area of 57.17 mJ/m2, which is mostly disperse. A scratch test was carried out to investigate the adhesion of the coating to the surface and it was shown that all coatings were removed by a cohesive mechanism. However, at a load of 30N, the indenter reached the substrate in two out of three samples, except for the sample with the densest coating. It was concluded that the most promising sputtering mode was the third, which consisted of three hours of deposition. This mode produced a defect-free Ca-P coating with good wettability and adhesion.

Keywords: biocompatibility, calcium phosphate coating, NiTi alloy, radio frequency sputtering.

Procedia PDF Downloads 45
1528 Integrated Environmental Management System and Environmental Impact Assessment in Evaluation of Environmental Protective Action

Authors: Moustafa Osman

Abstract:

The paper describes and analyses different good practice examples of protective levels, and initiatives actions (“framework conditions”) and encourages the uptake of environmental management systems (EMSs) to small and medium-sized enterprises (SMEs). Most of industries tend to take EMS as tools leading towards sustainability planning. The application of these tools has numerous environmental obligations that neither suggests decision nor recommends what a company should achieve ultimately. These set up clearly defined criteria to evaluate environmental protective action (EEPA) into sustainability indicators. The physical integration will evaluate how to incorporate traditional knowledge into baseline information, preparing impact prediction, and planning mitigation measures in monitoring conditions. Thereby efforts between the government, industry and community led protective action to concern with present needs for future generations, meeting the goal of sustainable development. The paper discusses how to set out distinct aspects of sustainable indicators and reflects inputs, outputs, and modes of impact on the environment.

Keywords: environmental management, sustainability, indicators, protective action

Procedia PDF Downloads 409
1527 Monitoring of Humoral Immune Response of Monovalent and Combined PPR and FMD Serotype 'O' Virus Vaccines in Goats

Authors: Mudassar Hameed, Khushi Muhammad, Aamir Ghafoor, Masood Rabbani, Momena Habib, Jawad Nazir

Abstract:

Comparative efficacy of three formulations (non-adjuvant, gel, and oil adjuvant) of monovalent and combined PPR and FMD virus vaccines was evaluated in goats. All kinds of monovalent PPRV vaccines elicited protective antibody titers at one-month post vaccination (PV) that remained so till six months PV. Monovalent non-adjuvant (NA) FMDV vaccine provoked non-protective antibody titers that declined to undetectable levels after three months. In case of combined vaccines, all of the formulations elicited protective antibody titers against PPRV in vaccinated animals which remained above that limit for six months. However, an exceptional immune response against FMDV was observed in combined NA vaccine group where antibody titers were extremely high and remained above protective level till 4 months PV in animals who received a single vaccine shot and till six months PV in booster group. Although, adjuvant or NA combined vaccines can induce protective antibody titers against both of the viruses within one month PV, but a booster vaccine shot is needed to retain protective antibody level for 6 months duration. Immune response elicited by combined vaccines is comparable or superior to the monovalent vaccines. Hence combined vaccine can be effectively used for the control and prevention of both of the diseases.

Keywords: antibody titer, protective, combined vaccine, non adjuvant

Procedia PDF Downloads 180
1526 Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation

Authors: Ngozi Nwogu, Mohammed Kajama, Emmanuel Anyanwu, Edward Gobina

Abstract:

With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream

Keywords: gas separation, silica membrane, separation factor, membrane layer thickness

Procedia PDF Downloads 381
1525 Studies on Corrosion Resistant Composite Coating for Metallic Surfaces

Authors: Navneetinder Singh, Harprabhjot Singh, Harpreet Singh, Supreet Singh

Abstract:

Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria.

Keywords: polytetrafluoroethylene, PTFE, ceria, coating, corrosion

Procedia PDF Downloads 342
1524 Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

Authors: Zhaozhi Liu, Feng Xu, Junhua Xu, Xiaolong Tang, Ying Liu, Dunwen Zuo

Abstract:

Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.

Keywords: cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill

Procedia PDF Downloads 395
1523 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne

Abstract:

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Keywords: digital image correlation, paint coating thickness, strain

Procedia PDF Downloads 486
1522 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 63
1521 Electrochemical and Microstructure Properties of Chromium-Graphene and SnZn-Graphene Oxide Composite Coatings

Authors: Rekha M. Y., Punith Kumar, Anshul Kamboj, Chandan Srivastava

Abstract:

Coatings plays an important role in providing protection for a substrate and in improving the surface quality. Graphene/graphene oxide (GO) using in coating systems provides an environmental friendly solution towards protection against corrosion. Issues such as, lack of scale, high cost, low quality limits the practical application of graphene/GO as corrosion resistant coating material. One other way to employ these materials for corrosion protection is to incorporate them into coatings that are conventionally used for corrosion protection. Due to the extraordinary properties of graphene/GO, it has been demonstrated that the coatings containing graphene/GO are more corrosion resistant than pure metal/alloy coatings. In the present work, Cr-graphene and SnZn-GO composite coatings were investigated in enhancing the corrosion resistant property when compared to pure Cr coating and pure SnZn coating respectively. All the coatings were electrodeposited over mild-steel substrate. Graphene and GO were synthesized by electrochemical exfoliation method and modified Hummers’ method respectively. In Cr coatings, the microstructural study revealed that the addition of formic acid in the coatings reduced the number of cracks in the coatings. Further addition of graphene in Cr coating enhanced the Cr coating’s morphology. Chemically synthesized ZnO nanoparticles were also embedded in the as-deposited Cr and Cr-graphene coatings to enhance the adhesion of the coating, to improve the surface finish and to increase the corrosion resistant property of the coatings. Diffraction analysis revealed that the addition of graphene also altered the texture of the Cr coatings. In SnZn alloy coatings, the morphological and topographical characterization revealed that the relative smoothness and compactness of the coatings increased with increase in the addition of GO in the coatings. The microstructural investigation revealed large-scale segregation of Zn-rich and Sn-rich phases in the pure SnZn coating. However, in SnZn-GO composite coating the uniform distribution of Zn phase in the Sn-rich matrix was observed. This distribution caused the early and uniform formation of ZnO, which is the corrosion product, yielding better corrosion resistance for the SnZn-GO composite coatings as compared to pure SnZn coating. A significant improvement in corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in the polarization resistance was observed in Cr coating containing graphene and in SnZn coatings containing GO.

Keywords: coatings, corrosion, electrodeposition, graphene, graphene-oxide

Procedia PDF Downloads 153
1520 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Tejinder Singh Sidhu

Abstract:

Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.

Keywords: hot corrosion, coating, HVOF, oxidation

Procedia PDF Downloads 48
1519 Reduction Biofilm Formation Using TiO₂ Coating in Water Cooling Towers

Authors: Turky M. Aldossary, F. R. Almushref

Abstract:

As a component of their heating, ventilation, and air conditioning (HVAC) system, cooling towers are used in almost all buildings. The process of transferring heat in an HVAC system involves water. To avoid pneumatic illnesses, the Occupational Safety and Health Administration (OSHA) has recommended that HVAC systems must be cleaned twice a year. To address the strict environmental requirements at the microscale, a photocatalytic coating, which is hydrophobic and antibacterial, ae used. The effectiveness of water-cooling tower coating systems was examined in this study. The samples were made of stainless steel. In this system, the samples are coated with two different coatings, one with Titanium dioxide (Ti₂O₂) only and the second one with the addition of Copper. The samples were placed in a water splash zone to ensure that there was enough water surrounding them and that there was adequate airflow to prevent them from being constantly immersed. The samples were not tampered with for six months. In conclusion, the addition of copper rendered a better result as the low concentration of other elements such as slates, is observed.

Keywords: biofilm, coating, cooling tower, HVAC

Procedia PDF Downloads 17
1518 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: high-temperature oxidation, iron-chromium-aluminum alloy, alumina protective layer, sintered-metal-fibers

Procedia PDF Downloads 174