Search results for: ionic toxicity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1319

Search results for: ionic toxicity

1259 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces

Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi

Abstract:

Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.

Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption

Procedia PDF Downloads 337
1258 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.

Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy

Procedia PDF Downloads 239
1257 Evaluation of Water-Soluble Ionic Liquids Based on Quaternized Hyperbranched Polyamidoamine and Amino Acids for Chemical Enhanced Oil Recovery

Authors: Rasha Hosny, Ahmed Zahran, Mahmoud Ramzi, Fatma Mahmoud Abdelhafiz, Ammona S. Mohamed, Mahmoud Fathy Mubarak

Abstract:

Ionic liquids' ability to be tuned and stability under challenging environmental conditions are their significant features in enhanced oil recovery. In this study, two amino acid ionic liquids (AAILs) were prepared from quaternized hyperbranched polyamidoamine PAMAM (G0.5 C12) and amino acids (Cysteine and Lysine). The chemical structures of the prepared AAILs were verified by using FTIR and 1H-NMR spectra. These AAILs were tested for solubility, thermal stability, and surface activity in the presence of Egyptian medium crude oils under different PVT parameters after being diluted in several brine solutions of various salt compositions at 10% (w/w) salinity. The measurements reveal that the produced AAILs have good solubility and thermal stability. The effect of different concentrations of AAILs (0.1-5%) and salinity (20000-70000 ppm) on Interfacial tension (IFT) were studied. To test the efficacy of (AAILs) for a CEOR, numerous flooding experiments were carried out in samples of sandstone rock. Rock wettability is important for sandstone rocks, so conduct wettability alteration by contact angle (CA) of (30-55) and IFT of (7-13). The additional oil recovery was largely influenced by ionic liquid concentration, which may be changed by dilution with the formation and injected brines. This research has demonstrated that EOR techniques led to a recovery wt. (22-45%).

Keywords: amino acid ionic liquids, surface activity, critical micelle concentration, interfacial tension, contact angle, chemical enhanced oil recovery, wettability

Procedia PDF Downloads 101
1256 Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea

Authors: Raghda El-Nagara, Maher I. Nessim, Carmen E. Elshafee, Renee I. Abdallah, Yasser M. Moustafa

Abstract:

Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm.

Keywords: ionic liquids, amphiphilic, oil spill dispersants, dicationic, efficiency test

Procedia PDF Downloads 144
1255 Loss in Efficacy of Viscoelastic Ionic Liquid Surfactants under High Salinity during Surfactant Flooding

Authors: Shilpa K. Nandwani, Mousumi Chakraborty, Smita Gupta

Abstract:

When selecting surfactants for surfactant flooding during enhanced oil recovery, the most important criteria is that the surfactant system should reduce the interfacial tension between water and oil to ultralow values. In the present study, a mixture of ionic liquid surfactant and commercially available binding agent sodium tosylate has been used as a surfactant mixture. Presence of wormlike micelles indicates the possibility of achieving ultralow interfacial tension. Surface tension measurements of the mixed surfactant system have been studied. The emulsion size distribution of the mixed surfactant system at varying salinities has been studied. It has been found that at high salinities the viscoelastic surfactant system loses their efficacy and degenerate. Hence the given system may find application in low salinity reservoirs, providing good mobility to the flood during tertiary oil recovery process.

Keywords: ionic liquis, interfacial tension, Na-tosylate, viscoelastic surfactants

Procedia PDF Downloads 248
1254 Antioxidant and Acute Toxicity of Stem Extracts of the Ficus Iteophylla

Authors: Muhammad Mukhtar

Abstract:

The aim of this study is to evaluate the antioxidant activity and acute toxicity of the extracts of Ficus iteophylla by reactions with 1, 1-diphenyl-2-picryhydrazyl radical (DPPH) and method developed by Lork 1983, respectively. Stem bark of Ficus iteophylla was collected, air dried, pulverized to fine powdered and sequentially extracted using acetone, methanol and water in order of increasing polarity. The result shows strong radical scavenging activity against DPPH for all the extracts when compared with ascorbic acid. The LD50 of 316 mg/kg was calculated for all the three extras, and the values were found to be within the practically toxic range, and therefore, care should be taken when using the plants in traditional medicine.

Keywords: antioxidant, acute toxicity, Ficus iteophylla

Procedia PDF Downloads 155
1253 Acute Oral Toxicity Study of Mystroxylon aethiopicum Root Bark Aqueous Extract in Albino Mice

Authors: Mhuji Kilonzo

Abstract:

Acute oral toxicity of Mystroxylon aethiopicum root bark aqueous was evaluated in albino mice of either sex. In this study, five groups of mice were orally treated with doses of 1000, 2000, 3000, 4000 and 5000 mg/kg body weight of the crude extract. The mortality, signs of toxicity and body weights were observed individually for two weeks. At the end of the two weeks study, all animals were sacrificed, and the hematological and biochemical parameters, as well as organ weights relative to body weight of each animal, were determined. No mortality, signs of toxicity and abnormalities in vital organs were observed in the entire period of study for both treated and control groups of mice. Additionally, there were no significant changes (p > 0.05) in the blood hematology and biochemical analysis. However, the body weights of all mice increased significantly. The Mystroxylon aethiopicum root bark aqueous extract were found to have a high safe margin when administered orally. Hence, the extract can be utilized for pharmaceutical formulations.

Keywords: acute oral toxicity, albino mice, Mystroxylon aethiopicum, safety

Procedia PDF Downloads 282
1252 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water

Authors: Mohamed A. Deyab, Ahmed E. Awadallah

Abstract:

Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.

Keywords: hydrogen production, Mg, wastewater, ionic liquid

Procedia PDF Downloads 148
1251 Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids

Authors: M. Masłowski, M. Zaborski

Abstract:

Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties.

Keywords: magnetorheological elastomers, iron oxides, ionic liquids, dispersion

Procedia PDF Downloads 324
1250 Degumming of Eri Silk Fabric with Ionic Liquid

Authors: Shweta K. Vyas, Rakesh Musale, Sanjeev R. Shukla

Abstract:

Eri silk is a non mulberry silk which is obtained without killing the silkworms and hence it is also known as Ahmisa silk. In the present study, the results on degumming of eri silk with alkaline peroxide have been compared with those obtained by using ionic liquid (IL) 1-Butyl-3-methylimidazolium chloride [BMIM]Cl. Experiments were designed to find out the optimum processing parameters for degumming of eri silk by response surface methodology. The statistical software, Design-Expert 6.0 was used for regression analysis and graphical analysis of the responses obtained by running the set of designed experiments. Analysis of variance (ANOVA) was used to estimate the statistical parameters. The polynomial equation of quadratic order was employed to fit the experimental data. The quality and model terms were evaluated by F-test. Three dimensional surface plots were prepared to study the effect of variables on different responses. The optimum conditions for IL treatment were selected from predicted combinations and the experiments were repeated under these conditions to determine the reproducibility.

Keywords: silk degumming, ionic liquid, response surface methodology, ANOVA

Procedia PDF Downloads 583
1249 Solid Polymer Electrolyte Prepared From Nostoc Commune Cyanobacteria Exopolysaccharides

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

A wide range of bacteria synthesizes and secretes polymeric substances composed of a mixture of high-molecular-mass heteropolysaccharides. Nostoc commune cyanobacteria grow in colonial spherules of 10-20 mm in diameter. These spherules are filled with an internal gel made from a variety of polysaccharides known as Nostoc commune exopolysaccharides (NCE). In this paper, we report the use of these exopolysaccharides as a raw material for the preparation of a solid polymer electrolyte. Ammonium iodide and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) salts were used to provide NCE films with ionic conductivity. In addition, a carboxymethylation treatment was used to further increase the conductivity of NCE films. The structural characterization of the NCE films was assessed by FTIR, XRD, and DSC tests. Broadband dielectric spectroscopy (BDS) and dielectric thermal analysis (DETA) were used to evaluate the ionic conductivity of the samples. The results showed that NCE can be used to prepare solid polymer electrolyte films and that carboxymethylation improves their ionic conductivity. These NCE films can be used in the development of novel energy storage devices such as flat batteries or supercapacitors.

Keywords: polymer electrolyte, Nostoc commune, cyanobacteria, exopolysaccharides

Procedia PDF Downloads 205
1248 Determination of Acid Volatile Sulfides–Simultaneously Extracted Metal Relationship and Toxicity in Contaminated Sediment Layer in Mid-Black Sea Coasts

Authors: Arife Simsek, Gulfem Bakan

Abstract:

Sediment refers to the accumulation of varying amounts of sediment material in natural waters and the formation of bottom sludge. Sediments are the most important sources of pollutants as well as important future sources and carriers of pollutants. The accumulation of pollutants in sediments can cause serious environmental problems for the surrounding areas. Heavy metals (such as Cr, Cd, Al, Pb, Cu, Al, Zn) disrupt the water quality, affect the useful use of sediment, affect the ecosystem and have a toxic effect on the life of the sediment layer. This effect, which accumulates in the aquatic organisms, can enter the human body with the food chain and affect health seriously. Potential metal toxicity can be determined by comparing acid volatile sulfides (AVS) – simultaneously extracted metal (SEM) ratio in anoxic sediments to determine the effect of metals. Determination of the concentration of SEM and AVS is useful in screening sediments for potential toxicity due to the high metal concentration. In the case of SEM/AVS < 0 (anoxic sediment); in terms of AVS biomass production, its toxicity can be controlled. No toxic effects may be observed when SEM / AVS < 0. SEM / AVS > 0 (in the case of oxic sediment); metals with sensitive fraction such as Cu, As, Ag, Zn are stored. In this study, AVS and SEM measurements of sediment samples collected from five different points in the district of Tekkeköy in Samsun province were performed. The SEM - AVS ratio was greater than 0 in all samples. Therefore, it is necessary to test the toxicity against the risks that may occur in the ecosystem.

Keywords: AVS-SEM, Black Sea, heavy metal, sediment, toxicity

Procedia PDF Downloads 132
1247 Sulfonic Acid Functionalized Ionic Liquid in Combinatorial Approach: A Recyclable and Water Tolerant-Acidic Catalyst for Friedlander Quinoline Synthesis

Authors: Jafar Akbari

Abstract:

Quinolines are very important compounds partially because of their pharmacological properties which include wide applications in medicinal chemistry. notable among them are antimalarial drugs, anti-inflammatory agents, antiasthamatic, antibacterial, antihypertensive, and tyrosine kinase inhibiting agents. Despite quinoline usage in pharmaceutical and other industries, comparatively few methods for their preparation have been reported.The Friedlander annulation is one of the simplest and most straightforward methods for the synthesis of poly substituted quinolines. Although, modified methods employing lewis or br¢nsted acids have been reported for the synthesis of quinolines, the development of water stable acidic catalyst for quinoline synthesis is quite desirable. One of the most remarkable features of ionic liquids is that the yields can be optimized by changing the anions or the cations. Recently, sulfonic acid functionalized ionic liquids were used as solvent-catalyst for several organic reactions. We herein report the one pot domino approach for the synthesis of quinoline derivatives in Friedlander manner using TSIL as a catalyst. These ILs are miscible in water, and their homogeneous system is readily separated from the reaction product, combining advantages of both homogeneous and heterogeneous catalysis. In this reaction, the catalyst plays a dual role; it ensures an effective condensation and cyclization of 2-aminoaryl ketone with second carbonyl group and it also promotes the aromatization to the final product. Various types of quinolines from 2-aminoaryl ketones and β-ketoesters/ketones were prepared in 85-98% yields using the catalytic system of SO3-H functionalized ionic liquid/H2O. More importantly, the catalyst could be easily recycled for five times without loss of much activity.

Keywords: antimalarial drugs, green chemistry, ionic liquid, quinolines

Procedia PDF Downloads 205
1246 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 251
1245 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 124
1244 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 412
1243 DNA Methylation 6mA and Histone Methylation Involved in Multi-/Trans-Generational Reproductive Effects in Caenorhabditis elegans Induced by Atrazine

Authors: Jiechen Yin, Xiang Hong, Ran Liu

Abstract:

Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied to our best knowledge. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. L1 larvae were exposed to different concentrations (0.0004–40 mg/L) of ATR for 48 h. Successive generations (F1 to F5) were fed without ATR and consecutive exposure. The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of the gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0–F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, reproductive toxicity not development toxicity was transmitted to several generations (F1–F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes related to DNA methylation 6mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6mA modifiers may establish these epigenetic marks in progeny.

Keywords: ATR, Caenorhabditis elegans, multi-/trans-generation, reproductive toxicity

Procedia PDF Downloads 62
1242 Syntheses of Anionic Poly(urethanes) with Imidazolium, Phosphonium, and Ammonium as Counter-cations and Their Evaluation for CO2 Separation

Authors: Franciele L. Bernard, Felipe Dalla Vecchia, Barbara B. Polesso, Jose A. Donato, Marcus Seferin, Rosane Ligabue, Jailton F. do Nascimento, Sandra Einloft

Abstract:

The increasing level of carbon dioxide concentration in the atmosphere related to fossil fuels processing and utilization are contributing to global warming phenomena considerably. Carbon capture and storage (CCS) technologies appear as one of the key technologies to reduce CO2 emissions mitigating the effects of climate change. Absorption using amines solutions as solvents have been extensively studied and used in industry for decades. However, solvent degradation and equipment corrosion are two of the main problems in this process. Poly (ionic liquid) (PIL) is considered as a promising material for CCS technology, potentially more environmentally friendly and lesser energy demanding than traditional material. PILs possess a unique combination of ionic liquids (ILs) features, such as affinity for CO2, thermal and chemical stability and adjustable properties, coupled with the intrinsic properties of the polymer. This study investigated new Poly (ionic liquid) (PIL) based on polyurethanes with different ionic liquids cations and its potential for CO2 capture. The PILs were synthesized by the addition of diisocyante to a difunctional polyol, followed by an exchange reaction with the ionic Liquids 1-butyl-3-methylimidazolium chloride (BMIM Cl); tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB). These materials were characterized by Fourier transform infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H-NMR), Atomic force microscopy (AFM), Tensile strength analysis, Field emission scanning electron microscopy (FESEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC). The PILs CO2 sorption capacity were gravimetrically assessed in a Magnetic Suspension Balance (MSB). It was found that the ionic liquids cation influences in the compounds properties as well as in the CO2 sorption. The best result for CO2 sorption (123 mgCO2/g at 30 bar) was obtained for the PIL (PUPT-TBA). The higher CO2 sorption in PUPT-TBA is probably linked to the fact that the tetraalkylammonium cation having a higher positive density charge can have a stronger interaction with CO2, while the imidazolium charge is delocalized. The comparative CO2 sorption values of the PUPT-TBA with different ionic liquids showed that this material has greater capacity for capturing CO2 when compared to the ILs even at higher temperature. This behavior highlights the importance of this study, as the poly (urethane) based PILs are cheap and versatile materials.

Keywords: capture, CO2, ionic liquids, ionic poly(urethane)

Procedia PDF Downloads 230
1241 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters

Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić

Abstract:

The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.

Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water

Procedia PDF Downloads 96
1240 The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles

Authors: Marta Paszkiewicz, Justyna Łuczak, Martyna Marchelek, Adriana Zaleska-Medynska

Abstract:

In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds.

Keywords: heterogeneous photocatalysis, IL-assisted synthesis, ionic liquids, TiO2

Procedia PDF Downloads 264
1239 Sustainable Separation of Nicotine from Its Aqueous Solutions

Authors: Zoran Visak, Joana Lopes, Vesna Najdanovic-Visak

Abstract:

Within this study, the separation of nicotine from its aqueous solutions, using inorganic salt sodium chloride or ionic liquid (molten salt) ECOENG212® as salting-out media, was carried out. Thus, liquid-liquid equilibria of the ternary solutions (nicotine+water+NaCl) and (nicotine+water+ECOENG212®) were determined at ambient pressure, 0.1 MPa, at three temperatures. The related phase diagrams were constructed in two manners: by adding the determined cloud-points and by the chemical analysis of phases in equilibrium (tie-line data). The latter were used to calculate two important separation parameters - partition coefficients of nicotine and separation factors. The impacts of the initial compositions of the mother solutions and of temperature on the liquid-liquid phase separation and partition coefficients were analyzed and discussed. The results obtained clearly showed that both investigated salts are good salting-out media for the efficient and sustainable separation of nicotine from its solutions with water. However, when compared, sodium chloride exhibited much better separation performance than the ionic liquid.

Keywords: nicotine, liquid-liquid separation, inorganic salt, ionic liquid

Procedia PDF Downloads 302
1238 Protective Effect of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats

Authors: Aman Upaganlawar, Upasana Khairnar, Chandrashekhar Upasani

Abstract:

The present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride-induced spleen toxicity in rats. Male Wistar rats of either sex (200-250g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o), ascorbic acid (40 mg/kg/day, p.o), and combination of protocatechuic acid (20 mg/kg/day, p.o) and ascorbic acid (20 mg/kg/day, p.o) followed by aniline hydrochloride. At the end of treatment period, serum and tissue parameters were evaluated. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (Hemoglobin content, Red Blood Cells, White Blood Cells and Total iron content), tissue parameters (Lipid peroxidation, Reduced glutathione, Nitric oxide content) compared to control group. Histopathology of aniline hydrochloride-induced spleen showed significant damage compared to control rats. Treatment with Protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride-induced spleen toxicity. In conclusion Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride-induced splenic toxicity in rats.

Keywords: aniline, spleen toxicity, protocatechuic acid, ascorbic acid, antioxidants

Procedia PDF Downloads 349
1237 Analysis of in Vitro Biocompatibility Studies of Silicate-Based Bioceramic Cements: A Scoping Review

Authors: Olphiara Rodolpheza Alexandre, Carla David, Rafael Guerra Lund, Nadia Ferreira

Abstract:

Due to the increasing demand for biomaterials in the dental field, especially in endodontics, calcium silicate-based cements (CSCs) have gained prominence because of their biocompatibility and tissue regeneration capabilities. Originating from Mineral Trioxide Aggregate (MTA), the first bioceramic in endodontics derived from Portland cement, these materials are becoming increasingly prevalent in the market. For any drug released to the market, pharmacovigilance must ensure the absence of adverse health effects on consumers through rigorous toxicological testing. Although these materials have undergone in vitro and in vivo testing, such tests have typically been conducted over a limited period. Some effects may only become apparent after several years, and these studies are generally carried out on a non-specific population. However, the variety of calcium silicate-based products, including cement and sealers, raises questions about their toxicity, particularly considering potential long-term effects not addressed in existing studies. While the scientific literature includes comparative studies on the toxicity of these materials, the consistency of their conclusions is often controversial. Therefore, this project aims to map the scientific evidence from in vitro biocompatibility studies, including those investigating the toxicity of calcium silicate-based bioceramics.

Keywords: toxicity, toxicity test, bioceramics, calcium silicate, genotoxicity

Procedia PDF Downloads 18
1236 The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces

Authors: Fathiah Mohamed Zuki, Robert George Edyvean

Abstract:

Electrostatic interaction energy (∆EEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (∆EVDW) and acid base (∆EAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential, however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focuses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion.

Keywords: XDLVO, electrostatic interaction energy, zeta potential, P. putida, mineral

Procedia PDF Downloads 437
1235 Toxicity Identification and Evaluation for the Effluent from Seawater Desalination Facility in Korea Using D. magna and V. fischeri

Authors: Sung Jong Lee, Hong Joo Ha, Chun Sang Hong

Abstract:

In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a Seawater desalination facility in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (24,215 ~ 29,562 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach, and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Acknowledgement: This research was supported by a grant (16IFIP-B089911-03) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: TIE, D. magna, V. fischeri, seawater desalination facility

Procedia PDF Downloads 254
1234 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 108
1233 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 56
1232 Antibacterial Activities, Chemical Constitutes and Acute Toxicity of Peganum Harmala L. Essential Oil

Authors: Samy Selim

Abstract:

Natural products are still major sources of innovative therapeutic agents for various conditions, including infectious diseases. Peganum harmala L. oil had wide range uses as traditional medicinal plants. The current study was designed to evaluate the antibacterial activity of P. harmala essential oil. The chemical constitutes and toxicity of these oils was also determined to obtain further information on the correlation between the chemical contents and antibacterial activity. The antibacterial effect of the essential oils of P. harmala oil was studied against some foodborne pathogenic bacteria species. The oil of plant was subjected to gas chromatography-mass spectrometry (GC/MS). The impact of oils administration on the change in rate of weight gain and complete blood picture in hamsters were investigated. P. harmala oil had strong antibacterial effect against bacterial species especially at minimum inhibitory concentration (MIC) less than 75.0 μg/ml. From the oil of P. harmala, forty one compounds were identified, and the major constituent was 1-hexyl-2-nitrocyclohexane (9.07%). Acute toxicity test was performed on hamsters and showed complete survival after 14 days, and there were no toxicity symptoms occurred. This study demonstrated that these essential oils seemed to be destitute of toxic effect which could compromise the medicinal use of these plants in folk medicine.

Keywords: analysis mass spectrometry, antibacterial activities, acute toxicity, chemical constitutes, gas chromatography, weight gain, Peganum harmala

Procedia PDF Downloads 477
1231 In silico and Toxicity Study of the Combination of Roselle (Hibiscus sabdariffa L.) and Garlic (Allium sativum L.) as Antihypertensive Herbs

Authors: Doni Dermawan

Abstract:

Hypertension is a disease with a high prevalence in Indonesia. The prevalence of hypertension in Indonesia is based on the Basic Health Research (Riskesdas) in 2013 which amounted to 25.8%. Medicinal plants have been widely used to treat hypertension including roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) by a mechanism as angiotensin converting enzyme (ACE) inhibitor. The purpose of this research is to analyze the in silico (molecular studies) of pharmacological effects and toxicity of roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) as well as a combination of both are used as antihypertensive herbs. The results of study showed that roselle (Hibiscus sabdariffa L.) and garlic (Allium sativum L.) have great potential as antihypertensive herbs based on the affinity and stability of active substances to specific receptor with a much better value than a of antihypertensive drugs (lisinopril). Toxicity values determined by the method of AST, ALT and ALP in which the three values obtained indicate the presence of acute toxic effects that need to be considered in determining the dose of the extract of roselle and garlic as antihypertensives.

Keywords: Allium sativum, antihypertensive, Hibiscus sabdariffa, in silico, toxicity

Procedia PDF Downloads 334
1230 Safety Risks of Gaseous Toxic Compounds Released from Li Batteries

Authors: Jan Karl, Ondrej Suchy, Eliska Fiserova, Milan Ruzicka

Abstract:

The evolving electromobility and all the electronics also bring an increase of danger with used Li-batteries. Li-batteries have been used in many industries, and currently many types of the batteries are available. Batteries have different compositions that affect their behavior. In the field of Li-battery safety, there are some areas of little discussion, such as extinguishing of fires caused by Li-batteries as well as toxicity of gaseous compounds released from Li batteries, transport or storage. Technical Institute of Fire Protection, which is a part of Fire Brigades of the Czech Republic, is dealing with the safety of Li batteries. That is the reason why we are dealing with toxicity of gaseous compounds released under conditions of fire, mechanical damage, overcharging and other emergencies that may occur. This is necessary for protection of intervening of fire brigade units, people in the vicinity and other envirnomental consequences. In this work, different types of batteries (Li-ion, Li-Po, LTO, LFP) with different kind of damage were tested, and the toxicity and total amount of released gases were studied. These values were evaluated according to their environmental hazard. FTIR spectroscopy was used for the evaluation of toxicity. We used a FTIR gas cell for continuous measurement. The total amount of released gases was determined by collecting the total gas phase through the absorbers and then determining the toxicants absorbed into the solutions. Based on the obtained results, it is possible to determine the protective equipment necessary for the event of an emergency with a Li-battery, to define the environmental load and the immediate danger in an emergency.

Keywords: Li-battery, toxicity, gaseous toxic compounds, FTIR spectroscopy

Procedia PDF Downloads 143