Search results for: generalized Rosenau-RLW equation
1191 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran
Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh
Abstract:
Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.Keywords: evapotranspiration, hargreaves, equation, FAO-Penman method
Procedia PDF Downloads 3951190 The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method
Authors: A. Zerarka, W. Djoudi
Abstract:
The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions.Keywords: coth functions, csch functions, nonlinear partial differential equation, travelling wave solutions
Procedia PDF Downloads 6621189 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium
Authors: D. Srinivasacharya, Nidhi Humnekar
Abstract:
The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media
Procedia PDF Downloads 1101188 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns
Authors: Wajdi Mohamed Ratemi
Abstract:
The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities
Procedia PDF Downloads 3671187 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions
Authors: Matheus Fernando Pereira, Varese Salvador Timoteo
Abstract:
In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source
Procedia PDF Downloads 2391186 An Efficient Algorithm of Time Step Control for Error Correction Method
Authors: Youngji Lee, Yonghyeon Jeon, Sunyoung Bu, Philsu Kim
Abstract:
The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme.Keywords: stiff initial value problem, error correction method, generalized Chebyshev polynomial, node points
Procedia PDF Downloads 5731185 Equation to an Unknown (1980): Visibility, Community, and Rendering Queer Utopia
Authors: Ted Silva
Abstract:
Dietrich de Velsa's Équation à un inconnu / Equation to an Unknown hybridizes art cinema style with the sexually explicit aesthetics of pornography to envision a uniquely queer world unmoored by heteronormative influence. This stylization evokes the memory of a queer history that once approximated such a prospect. With this historical and political context in mind, this paper utilizes formal analysis to assess how the film frames queer sexual encounters as tender acts of care, sometimes literally mending physical wounds. However, Equation to Unknown also highlights the transience of these sexual exchanges. By emphasizing the homogeneity of the protagonist’s sexual conquests, the film reveals that these practices have a darker meaning when the men reject the individualized connection to pursue purely visceral gratification. Given the lack of diversity or even recognizable identifying factors, the men become more anonymous to each other the more they pair up. Ultimately, Equation to an Unknown both celebrates and problematizes its vision of a queer utopia, highlighting areas in the community wherein intimacy and care flourish and locating those spots in which they are neglected.Keywords: pornography studies, queer cinema, French cinema, history
Procedia PDF Downloads 1351184 Generalized Uncertainty Principle Modified Hawking Radiation in Bumblebee Gravity
Authors: Sara Kanzi, Izzet Sakalli
Abstract:
The effect of Lorentz symmetry breaking (LSB) on the Hawking radiation of Schwarzschild-like black hole found in the bumblebee gravity model (SBHBGM) is studied in the framework of quantum gravity. To this end, we consider Hawking radiation spin-0 (bosons) and spin-12particles (fermions), which go in and out through the event horizon of the SBHBGM. We use the modified Klein-Gordon and Dirac equations, which are obtained from the generalized uncertainty principle (GUP) to show how Hawking radiation is affected by the GUP and LSB. In particular, we reveal that independent of the spin of the emitted particles, GUP causes a change in the Hawking temperature of the SBHBGM. Furthermore, we compute the semi-analytic greybody factors (for both bosons and fermions) of the SBHBGM. Thus, we reveal that LSB is effective on the greybody factor of the SBHBGM such that its redundancy decreases the value of the greybody factor. Our findings are graphically depicted.Keywords: bumblebee gravity model, Hawking radiation, generalized uncertainty principle, Lorentz symmetry breaking
Procedia PDF Downloads 1361183 Timing Equation for Capturing Satellite Thermal Images
Authors: Toufic Abd El-Latif Sadek
Abstract:
The Asphalt object represents the asphalted areas, like roads. The best original data of thermal images occurred at a specific time during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects, using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found in this study a general timing equation for capturing satellite thermal images at different locations, depends on a fixed time the sunrise and sunset; Capture Time= Tcap =(TM*TSR) ±TS.Keywords: asphalt, satellite, thermal images, timing equation
Procedia PDF Downloads 3491182 Calculated Structural and Electronic Properties of Mg and Bi
Authors: G. Patricia Abdel Rahim, Jairo Arbey Rodriguez M, María Guadalupe Moreno Armenta
Abstract:
The present study shows the structural, electronic and magnetic properties of magnesium (Mg) and bismuth (Bi) in a supercell (1X1X5). For both materials were studied in five crystalline structures: rock salt (NaCl), cesium chloride (CsCl), zinc-blende (ZB), wurtzite (WZ), and nickel arsenide (NiAs), using the Density Functional Theory (DFT), the Generalized Gradient Approximation (GGA), and the Full Potential Linear Augmented Plane Wave (FP-LAPW) method. By means of fitting the Murnaghan's state equation we determine the lattice constant, the bulk modulus and it's derived with the pressure. Also we calculated the density of states (DOS) and the band structure.Keywords: bismuth, magnesium, pseudo-potential, supercell
Procedia PDF Downloads 8211181 A Model for Operating Rooms Scheduling
Authors: Jose Francisco Ferreira Ribeiro, Alexandre Bevilacqua Leoneti, Andre Lucirton Costa
Abstract:
This paper presents a mathematical model in binary variables 0/1 to make the assignment of surgical procedures to the operating rooms in a hospital. The proposed mathematical model is based on the generalized assignment problem, which maximizes the sum of preferences for the use of the operating rooms by doctors, respecting the time available in each room. The corresponding program was written in Visual Basic of Microsoft Excel, and tested to schedule surgeries at St. Lydia Hospital in Ribeirao Preto, Brazil.Keywords: generalized assignment problem, logistics, optimization, scheduling
Procedia PDF Downloads 2921180 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems
Authors: Nadaniela Egidi, Pierluigi Maponi
Abstract:
The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem
Procedia PDF Downloads 1031179 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 4771178 Leverage Effect for Volatility with Generalized Laplace Error
Authors: Farrukh Javed, Krzysztof Podgórski
Abstract:
We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models
Procedia PDF Downloads 3851177 Single-Molecule Optical Study of Cholesterol-Mediated Dimerization Process of EGFRs in Different Cell Lines
Authors: Chien Y. Lin, Jung Y. Huang, Leu-Wei Lo
Abstract:
A growing body of data reveals that the membrane cholesterol molecules can alter the signaling pathways of living cells. However, the understanding about how membrane cholesterol modulates receptor proteins is still lacking. Single-molecule tracking can effectively probe into the microscopic environments and thermal fluctuations of receptor proteins in a living cell. In this study we applies single-molecule optical tracking on ligand-induced dimerization process of EGFRs in the plasma membranes of two cancer cell lines (HeLa and A431) and one normal endothelial cell line (MCF12A). We tracked individual EGFR and dual receptors, diffusing in a correlated manner in the plasma membranes of live cells. We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to help extracting important information from single-molecule trajectories. From the study, we discovered that ligand-bound EGFRs move from non-raft areas into lipid raft domains. This ligand-induced motion is a common behavior in both cancer and normal cells. By manipulating the total amount of membrane cholesterol with methyl-β-cyclodextrin and the local concentration of membrane cholesterol with nystatin, we further found that the amount of cholesterol can affect the stability of EGFR dimers. The EGFR dimers in the plasma membrane of normal cells are more sensitive to the local concentration changes of cholesterol than EGFR dimers in the cancer cells. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.Keywords: membrane proteins, single-molecule tracking, Cahn-Hilliard equation, EGFR dimers
Procedia PDF Downloads 4181176 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation
Authors: Sarun Phibanchon, Yuttakarn Rattanachai
Abstract:
The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.Keywords: soliton, ion-acoustic waves, plasma, spectral method
Procedia PDF Downloads 4111175 Prediction of Thermodynamic Properties of N-Heptane in the Critical Region
Authors: Sabrina Ladjama, Aicha Rizi, Azzedine Abbaci
Abstract:
In this work, we use the crossover model to formulate a comprehensive fundamental equation of state for the thermodynamic properties for several n-alkanes in the critical region that extends to the classical region. This equation of state is constructed on the basis of comparison of selected measurements of pressure-density-temperature data, isochoric and isobaric heat capacity. The model can be applied in a wide range of temperatures and densities around the critical point for n-heptane. It is found that the developed model represents most of the reliable experimental data accurately.Keywords: crossover model, critical region, fundamental equation, n-heptane
Procedia PDF Downloads 4741174 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model
Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong
Abstract:
This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors
Procedia PDF Downloads 5691173 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop
Abstract:
In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions
Procedia PDF Downloads 4321172 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics
Authors: Surendra Mund
Abstract:
At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions
Procedia PDF Downloads 501171 New High Order Group Iterative Schemes in the Solution of Poisson Equation
Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali
Abstract:
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation
Procedia PDF Downloads 4321170 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data
Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif
Abstract:
Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.Keywords: field data, local scour, scour equation, wide piers
Procedia PDF Downloads 4131169 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation
Authors: A. A. Soliman
Abstract:
The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.Keywords: collocation method, MRLW equation, Quartic B-splines, solitons
Procedia PDF Downloads 3031168 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting
Procedia PDF Downloads 2311167 Study of Composite Beam under the Effect of Shear Deformation
Authors: Hamid Hamli Benzahar
Abstract:
The main goal of this research is to study the deflection of a composite beam CB taking into account the effect of shear deformation. The structure is made up of two beams of different sections, joined together by thin adhesive, subjected to end moments and a distributed load. The fundamental differential equation of CB can be obtained from the total energy equation while considering the shear deformation. The differential equation found will be compared with those found in CB, where the shear deformation is zero. The CB system is numerically modeled by the finite element method, where the numerical results of deflection will be compared with those found theoretically.Keywords: composite beam, shear deformation, moments, finites elements
Procedia PDF Downloads 761166 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions
Authors: Khaled Moaddy
Abstract:
In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions
Procedia PDF Downloads 1321165 Duality in Multiobjective Nonlinear Programming under Generalized Second Order (F, b, φ, ρ, θ)− Univex Functions
Authors: Meraj Ali Khan, Falleh R. Al-Solamy
Abstract:
In the present paper, second order duality for multiobjective nonlinear programming are investigated under the second order generalized (F, b, φ, ρ, θ)− univex functions. The weak, strong and converse duality theorems are proved. Further, we also illustrated an example of (F, b, φ, ρ, θ)− univex functions. Results obtained in this paper extend some previously known results of multiobjective nonlinear programming in the literature.Keywords: duality, multiobjective programming, univex functions, univex
Procedia PDF Downloads 3541164 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media
Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility
Procedia PDF Downloads 2181163 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity
Authors: Manana Chumburidze, David Lekveishvili
Abstract:
We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution
Procedia PDF Downloads 5061162 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation
Authors: Lawrence A. Farinola
Abstract:
Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error
Procedia PDF Downloads 120