Search results for: charging stations
854 Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road
Authors: Surachai Ampawasuvan, Supornchai Utainarumol
Abstract:
Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment.Keywords: peak rate, trips generation, fuel station, arterial road
Procedia PDF Downloads 411853 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances
Authors: Muhammad Abdullah Arafat, Nahrin Nowrose
Abstract:
Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2 percent increase in average output power is obtained for 10 percent variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.Keywords: coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer
Procedia PDF Downloads 198852 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations
Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska
Abstract:
Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.Keywords: scaffolding, health and safety at work, temperature, wind velocity
Procedia PDF Downloads 173851 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.Keywords: classification, fuzzy logic, tolerance relations, rainfall data
Procedia PDF Downloads 315850 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty
Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus
Abstract:
Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming
Procedia PDF Downloads 180849 Environmental Impact Assessment of Electromagnetic Fields Emitted from Mobile Base Station in Central Area of KSA
Authors: Mohammed Abdullah Alrajhi
Abstract:
The rapid growth in the number of mobile phone subscribers has resulted in an increased number of mobile base stations all over the world. Generally, mobile base stations are existing in huge numbers in populated areas than in non-populated ones to serve the largest number of users. The total number of mobile subscriptions in the Kingdom of Saudi Arabia reached around 50 million at the end of 2014, with a penetration rate of 165.1% according to the quarterly electronic newsletter issued by the Communications and Information Technology Commission. The current investigation was conducted primarily to measure the level of electromagnetic fields emitted from 400 mobile base stations for the purpose of environmental safety and radiation protection in light of national guidelines for public exposure as well as the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The outcomes of this investigation provide valuable comments and recommendation for safety and protection of electromagnetic fields emitted from mobile base stations.Keywords: electromagnetic fields, mobile, safety, protection, ICNIRP
Procedia PDF Downloads 423848 Availability Analysis of a Power Plant by Computer Simulation
Authors: Mehmet Savsar
Abstract:
Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.Keywords: power plants, steam turbines, gas turbines, maintenance, availability, simulation
Procedia PDF Downloads 618847 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems
Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify
Abstract:
Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.Keywords: natural gas, power recovery, reduction stations, turboexpander systems
Procedia PDF Downloads 325846 Wheel Diameter and Width Influence in Variability of Brake Data Measurement at Ministry of Transport Facilities
Authors: Carolina Senabre, Sergio Valero, Emilio Velasco
Abstract:
The brake systems of vehicles are tested periodically by a “brake tester” at Ministry of Transport (MOT) stations. This tester measures the effectiveness of vehicle. This parameter is established by the International Committee of Vehicle Inspection (CITA). In this paper, we present an investigation of the influence of the tire size on the measurements of brake force on three MOT brake testers. We performed an analysis of the vehicle braking capacity test at MOT stations. The influence of varying wheel diameter and width on the measurement of braking at MOT stations has been analyzed. Thereby, the MOT brake tester as a verification system for a vehicle has been evaluated.Keywords: brake tester, ministry of transport facilities, wheel diameter, efficiency
Procedia PDF Downloads 376845 Latent Heat Storage Using Phase Change Materials
Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle
Abstract:
The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger
Procedia PDF Downloads 121844 The Composition, Abundance and Distribution of Zooplankton of Ugbogui River, Ugbogui, Edo State, Nigeria
Authors: Rich Osaretin Iyagbaye, Michael Osasele Omoigberale, Louis Aiwiegbenegbe Iyagbaye
Abstract:
Zooplankton communities of Ugbogui River at Ugbogui, Southwest Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream with a distance of about 2 kilometres between each station. A total 10 species were identified; 5 copepods and 5 cladocerans in the following order of dominance: copepod > cladocera. A total zooplankton population of 272 individuals was recorded during the study period. Copepods and cladocera represented the predominant species (76.73% and 23.89% of the total zooplankton community respectively). Copepods and cladocera were dominated by both cycloid (77%) and bosmids (12.13%), respectively. The dominant copepod and Cladocera species were Tropocyclops prasinus and Bosmina longirostris representing 28.68% and 12.13% of the total zooplankton, respectively. The calculated diversity indices indicated that station 1 (1.992) was more diverse followed by station 4 (1.893), while zooplankton species in station 2 (1.4) were least diverse. Species richness was highest and lowest in stations 4 (2.015) and 2 (1.165) respectively. Community composition was similar at both stations 1 and 4, but varies seasonally across the four stations. Higher number and density was found during the wet season with a trend of declining proportion towards the dry months.Keywords: abundance, diversity, population, species, Ugbogui river, zooplankton
Procedia PDF Downloads 186843 A Framework for Railway Passenger Station Site Selection Using Transit-Oriented Development and Urban Regeneration Approaches
Authors: M. Taghavi Zavareh, H. Saremi
Abstract:
Railway transportation is one of the types of transportation systems which, due to the advantages such as the ability to transport a large number of passengers, environmental protection, low energy consumption, and contribution to tourism, has importance. The existence of suitable and accessible stations is one of the requirements that leads to better performance and plays a significant role in the economic, social, political, and cultural development of urban areas. This paper aims to propose a framework for locating railway passenger stations. This research used descriptive-analytical methods and library tools to answer which definitions and theoretical approaches are suitable for the location of railway passenger stations. The results showed that theoretical approaches such as Transit-Oriented Development and Urban Regeneration are of the utmost importance theoretical bases in the field of research. Moreover, we studied three stations in Iran to find out about real trends and criteria in this research. This study also proposed four major criteria including accessibility, development, rail related and economics, and environmental harmony. Ultimately with an emphasis on the proposed criteria, the study concludes that the combination of Transit-Oriented Development and Urban Regeneration is the most suitable framework to locate railway passenger stations.Keywords: railway passenger station, railway station, site selection, transit-oriented development, urban regeneration
Procedia PDF Downloads 270842 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 26841 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing
Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi
Abstract:
Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.Keywords: assembly line balancing, buffer sizing, Pareto solutions
Procedia PDF Downloads 492840 Numerical Investigation of Thermal Energy Storage System with Phase Change Materials
Authors: Mrityunjay Kumar Sinha, Mayank Srivastava
Abstract:
The position of interface and temperature variation of phase change thermal energy storage system under constant heat injection and radiative heat injection is analysed during charging/discharging process by Heat balance integral method. The charging/discharging process is solely governed by conduction. Phase change material is kept inside a rectangular cavity. Time-dependent fixed temperature and radiative boundary condition applied on one wall, all other walls are thermally insulated. Interface location and temperature variation are analysed by using MATLAB.Keywords: conduction, melting/solidification, phase change materials, Stefan’s number
Procedia PDF Downloads 395839 Ecological and Biological Effects of Pollution and Dredging Activities on Fisheries and Fisheries Products in Niger Delta Ecological Zone
Authors: Ikpesu, Thomas Ohwofasa, Babtunde Ilesanmi
Abstract:
The effects of anthropogenic activities on fish and fisheries products in Niger Delta water bodies were investigated. The rivers were selected based on their close proximity to contaminants and dredging activities. Three stations were chosen per river. The stations chosen to depicting downstream and upstream stations were visited and samples collected on monthly basis. The down streams stations are the polluted and heavily dredged sites, where the upstream station is far, without any evidence of pollution or human activities. During these periods, the fishes of the same species were collected and analyzed for morphological and physiological changes, after which they were returned back to the rivers. The physico-chemicals parameters of these stations were also taken. Morphological changes such as skin ulcerations and other lesions, as well as fungi infections were observed in the down streams fishes. The fish in up streams look healthier and bigger (though the age could not be affirmed) than the downstream fishes. The physico-chemical parameters between the up streams and down streams stations vary significantly (p < 0.01). These anthropogenic effects must have interfere with the normal migration pattern of these fishes, because there were changes in the composition of population and species diversity in the samples sites, with the upstream having true species diversity. The release of pollutants into the water in the Niger Delta areas may triggers off naturally occurring bio toxicity cycles and other fish poisoning. There is risk of biomagnifications of these poisons along the tropic level. This makes the normally valuable food resource dangerous for human consumption and thereby instances of human death caused by such poisoning.Keywords: anthropogenic, dredging, fisheries, niger delta, pollution, rivers
Procedia PDF Downloads 309838 Design of Low-Maintenance Sewer Pump Stations with High-Security Measures for Municipal Applications
Authors: H. V. Smit, V. H. J. de Wet
Abstract:
South African municipalities are dealing with aging and dilapidated infrastructure while faced with challenges in the form of expanding informal settlements, vandalism, theft, and a lack of maintenance which place even more pressure on existing infrastructure. The existing infrastructure was never designed to cater to these challenges, and this becomes evident when evaluating the current state of many municipal sewer pump stations. A need has thus arisen to develop a sewer pump station design concept that will address these challenges and allow for a long-term sustainable solution. This article deals with the design concepts which have been developed for sewer pump stations for an effective reduction in maintenance, improved grit handling, improvement to the operation and maintenance working conditions, and the adoption of high-security design philosophy.Keywords: high security, low maintenance, municipal application, sewer pump station
Procedia PDF Downloads 109837 Evaluation of the Electric Vehicle Impact in Distribution System
Authors: Sania Maghsodloo, Sirus Mohammadi
Abstract:
Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system
Procedia PDF Downloads 552836 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility
Authors: B. Casper
Abstract:
The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning
Procedia PDF Downloads 129835 Determination of Surface Deformations with Global Navigation Satellite System Time Series
Authors: Ibrahim Tiryakioglu, Mehmet Ali Ugur, Caglar Ozkaymak
Abstract:
The development of GNSS technology has led to increasingly widespread and successful applications of GNSS surveys for monitoring crustal movements. However, multi-period GPS survey solutions have not been applied in monitoring vertical surface deformation. This study uses long-term GNSS time series that are required to determine vertical deformations. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create a coordinate time series. With the time series analyses, the GNSS stations’ behavior models (linear, periodical, etc.), the causes of these behaviors, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations shows approximately 50-80 mm/yr vertical movement.Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations
Procedia PDF Downloads 165834 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin
Authors: Goksel Ezgi Guzey, Bihrat Onoz
Abstract:
The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower
Procedia PDF Downloads 129833 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic
Authors: Cheng Zeng, Xia Luo
Abstract:
Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization
Procedia PDF Downloads 176832 Efficiency and Reliability Analysis of SiC-Based and Si-Based DC-DC Buck Converters in Thin-Film PV Systems
Authors: Elaid Bouchetob, Bouchra Nadji
Abstract:
This research paper compares the efficiency and reliability (R(t)) of SiC-based and Si-based DC-DC buck converters in thin layer PV systems with an AI-based MPPT controller. Using Simplorer/Simulink simulations, the study assesses their performance under varying conditions. Results show that the SiC-based converter outperforms the Si-based one in efficiency and cost-effectiveness, especially in high temperature and low irradiance conditions. It also exhibits superior reliability, particularly at high temperature and voltage. Reliability calculation (R(t)) is analyzed to assess system performance over time. The SiC-based converter demonstrates better reliability, considering factors like component failure rates and system lifetime. The research focuses on the buck converter's role in charging a Lithium battery within the PV system. By combining the SiC-based converter and AI-based MPPT controller, higher charging efficiency, improved reliability, and cost-effectiveness are achieved. The SiC-based converter proves superior under challenging conditions, emphasizing its potential for optimizing PV system charging. These findings contribute insights into the efficiency, reliability, and reliability calculation of SiC-based and Si-based converters in PV systems. SiC technology's advantages, coupled with advanced control strategies, promote efficient and sustainable energy storage using Lithium batteries. The research supports PV system design and optimization for reliable renewable energy utilization.Keywords: efficiency, reliability, artificial intelligence, sic device, thin layer, buck converter
Procedia PDF Downloads 63831 Exposure Analysis of GSM Base Stations in Industrial Area
Authors: A. D. Usman, W. F. Wan Ahmad, H. H. Danjuma
Abstract:
Exposure due to GSM frequencies is subject of daily debate. Though regulatory bodies provide guidelines for exposure, people still exercise fear on the possible health hazard that may result due to long term usage. In this study, exposure due to electromagnetic field emitted by GSM base stations in industrial areas was investigated. The aimed was to determine whether industrial area exposure is higher as compared to residential as well as compliance with ICNIRP guidelines. Influence of reflection and absorption with respect to inverse square law was also investigated. Measurements from GSM base stations were performed at various distances in far field region. The highest measured peak power densities as well as the calculated values at GSM 1.8 GHz were 6.05 and 90 mW/m2 respectively. This corresponds to 0.07 and 1% of ICNIRP guidelines. The highest peak power densities as well as the calculated values at GSM 0.9 GHz were 11.92 and 49.7 mW/m2 respectively. These values were 0.3 and 1.1% of ICNIRP guidelines.Keywords: Global System for Mobile Communications (GSM), Electromagnetic Field (EMF), far field, power density, Radiofrequency (RF)
Procedia PDF Downloads 482830 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection
Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld
Abstract:
In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation
Procedia PDF Downloads 269829 Impact of Anthropogenic Climate Change on Hail in Eastern Georgia
Authors: MIkheil Pipia, Nazibrola Beglarashvili
Abstract:
Modern anthropogenic changes in climate can affect the microphysical and electrical properties of clouds, such as the conditions that cause intense hail and lightning. At the same time, the effect of the impact largely depends on the physical-geographical conditions and the ecological situation. It should be noted that the growth of anthropogenic pollution in the atmosphere has a significant impact on the dynamics of hail processes. For the statistical analysis of the number of hail days against the background of modern climate change, the average number of hail days at the stations according to decades was used, which allows to weaken short-term fluctuations and reveal long-term changes. In order to determine the dynamics of hail days in Eastern Georgia, the observation data of some meteorological stations from 1951-2000 were analyzed. In total, the data of 41 meteorological stations of Eastern Georgia about hail for the period of 1961-2018 have been processed.Keywords: climate, meteorology phenomena, anthropocenic influence, hail
Procedia PDF Downloads 77828 Study on the Spatial Vitality of Waterfront Rail Transit Station Area: A Case Study of Main Urban Area in Chongqing
Authors: Lianxue Shi
Abstract:
Urban waterfront rail transit stations exert a dual impact on both the waterfront and the transit station, resulting in a concentration of development elements in the surrounding space. In order to more effectively develop the space around the station, this study focuses on the perspective of the integration of station, city, and people. Taking Chongqing as an example, based on the Arc GIS platform, it explores the vitality of the site from the three dimensions of crowd activity heat, space facilities heat, and spatial accessibility. It conducts a comprehensive evaluation and interpretation of the vitality surrounding the waterfront rail transit station area in Chongqing. The study found that (1) the spatial vitality in the vicinity of waterfront rail transit stations is correlated with the waterfront's functional zoning and the intensity of development. Stations situated in waterfront residential and public spaces are more likely to experience a convergence of people, whereas those located in waterfront industrial areas exhibit lower levels of vitality. (2) Effective transportation accessibility plays a pivotal role in maintaining a steady flow of passengers and facilitating their movement. However, the three-dimensionality of urban space in mountainous regions is a notable challenge, leading to some stations experiencing limited accessibility. This underscores the importance of enhancing the optimization of walking space, particularly the access routes from the station to the waterfront area. (3) The density of spatial facilities around waterfront stations in old urban areas lags behind the population's needs, indicating a need to strengthen the allocation of relevant land and resources in these areas.Keywords: rail transit station, waterfront, influence area, spatial vitality, urban vitality
Procedia PDF Downloads 33827 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations
Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni
Abstract:
This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.Keywords: busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling
Procedia PDF Downloads 254826 Optimized Integration Of Bidirectional Charging Capacities As Mobile Energy Storages
Authors: Luzie Krings, Sven Liebehentze, Maximilian Gehring, Uwe Rüppel
Abstract:
The integration of renewable energy into the energy grid is essential for decarbonization, and leveraging electrified vehicles (EVs) as mobile storage units offers a pathway to address grid challenges. The decentralized nature of EVs and the intermittency of renewable energy sources, such as photovoltaic (PV) and wind power, complicate grid stability. Vehicle-to-Grid (V2G) technology presents a promising solution, enabling EVs to support grid stability through services like redispatch, congestion mitigation, and enhanced renewable energy utilization. Freight transport, contributing 38% of transport emissions, holds significant potential as its aggregated energy storage capacity can stabilize the grid and optimize renewable energy integration. This study introduces a risk-averse optimization model for marketing EV flexibilities in Germany’s energy markets, with a strong focus on improving grid stability and maximizing renewable energy potential. Using a linear optimization framework, the model incorporates technical, regulatory, and operational constraints to simulate EV fleets as scalable energy storage solutions. The integration of proprietary PV and wind energy systems is also modeled to evaluate benefits. Benchmarks compare bidirectional charging with unidirectional charging under dynamic tariffs. The methodology employs the Python-based energypilot tool to optimize participation in Day-Ahead, Intraday, and Redispatch markets, accounting for trading conditions and temporal offsets. Results demonstrate that redispatch utilization substantially supports grid stability, while bidirectional charging increased renewable energy integration by 15% and economic benefits by 20%. Longer charging cycles offered greater financial returns compared to fragmented cycles, emphasizing the potential of fleets with extended idle periods for storing renewable energy. This research highlights the critical role of EVs in stabilizing the grid and utilizing renewable energy effectively by expanding storage capacity. The optimization framework addresses key challenges in energy trading, offering a transferable methodology for broader energy storage applications. This supports the transition to a sustainable energy system by improving environmental outcomes and economic incentives.Keywords: Electric Vehicles, Energy Grid, Energy Storages, Redispatch
Procedia PDF Downloads 11825 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities
Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny
Abstract:
From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.Keywords: sustainability, electric, bus, noise, greencharge
Procedia PDF Downloads 344