Search results for: aluminum alloy
1165 Mechanical Analysis and Characterization of Friction Stir Processed Aluminium Alloy
Authors: Jaswinder Kumar, Kulbir Singh Sandhu
Abstract:
Friction stir processing (FSP) is a solid-state surface processing technique. A single-pass FSP was performed on Aluminum alloy at combinations of different tool rotational speeds with cylindrical threaded pin profiled tool. The effect of these parameters on tribological properties was studied. The wear resistance is found to be increased from base metal to a single pass FSP sample. The results revealed that with an increase in tool rotational speed, the wear rate increases. The high heat generation causes matrix softening, which results in an increased wear rate; on the other hand, high heat generation leads to coarse grains, which also affected tribological properties. Furthermore, Microstructure results showed that FSPed alloy has a more refined grain structure as compare to the base material, which may be resulted in enhancement of hardness and resistance to wear in FSP.Keywords: friction stir processing, aluminium alloy, microhardness, microstructure
Procedia PDF Downloads 1091164 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation
Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin
Abstract:
Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties
Procedia PDF Downloads 1191163 Friction Stir Welding of Al-Mg-Mn Aluminum Alloy Plates: A Review
Authors: K. Subbaiah, C. V. Jayakumar
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg-Mn alloys (5000 Series) have been discussed.Keywords: Al-Mg-Mn alloys, friction stir welding, tool pin profile, microstructure and mechanical properties
Procedia PDF Downloads 4411162 Experimental Study of the Microstructure and Properties of Aluminum Alloy Composites Reinforced with Pod Ash Nanoparticles Composites
Authors: A. P .I. Popoola, V. S. Aigbodion, O. S. I. Fayomi
Abstract:
The experimental study of the microstructure and properties of Al-Cu-Mg alloy/bean pod ash (BPA) nanoparticles was investigated. The aluminium matrix composites (AMCs) were produced by varying the BPA nanoparticles from 1-4wt%. The microstructure and phases of the composites produced were examined by SEM/EDS and XRD. Properties such as: hardness, tensile strength, impact energy, fatigue and wear were evaluated. The results showed that tensile strength and hardness values increased by 35 and 44.1% at 4wt% BPA nanoparticles with appreciable impact energy. The fatigue limit of 167MPa, 135 MPa and 75Mpa were obtained for the nano-particle (55nm), micro-particle (100µm) BPA composites and unreinforced alloy respectively. The wear properties of the as-cast Al–3.7%Cu-1.4%Mg/BPA nanoparticle have been improved significantly even with a low weight percent of BPA nanoparticle. The properties of the as-cast aluminium nanoparticles (MMNCs) have been improved significantly even with a low weight percent of nano-sized BPAp.Keywords: bean pod ash nanoparticles, al-cu-mg alloy, mechanical properties, wear, microstructures
Procedia PDF Downloads 2661161 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe
Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud
Abstract:
In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.Keywords: Ti5Al-2.5Fe, mechanical alloying, hot pressing, sintering
Procedia PDF Downloads 2801160 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy
Authors: Jemal Ebrahim Dessie, Lukács Zsolt
Abstract:
High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper
Procedia PDF Downloads 1001159 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint
Authors: Richard Colwell, Thomas Englert
Abstract:
In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface
Procedia PDF Downloads 2181158 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress
Procedia PDF Downloads 3761157 Corrosion Fatigue of Al-Mg Alloy 5052 in Sodium Chloride Solution Contains Some Inhibitors
Authors: Khalid Ahmed Eldwaib
Abstract:
In this study, Al-Mg alloy 5052 was used as the testing material. Corrosion fatigue life was studied for the alloy in 3.5% NaCl (pH=1, 3, 5, 7, 9, and 11), and 3.5% NaCl (pH=1) with inhibitors. The compound inhibitors were composed mainly of phosphate (PO4³-), adding a certain proportion of other nontoxic inhibitors so as to select alternatives to environmentally hazardous chromate (Cr2O7²-). The inhibitors were sodium dichromate Na2Cr2O7, sodium phosphate Na3PO4, sodium molybdate Na2MoO4, and sodium citrate Na3C6H5O7. The total amount of inhibiting pigments was at different concentrations (250,500,750, and 1000 ppm) in the solutions. Corrosion fatigue behavior was studied by using plane-bending corrosion fatigue machine with stress ratio R=0.5 and under the constant frequency of 13.3 Hz. Results show that in 3.5% NaCl the highest fatigue life (number of cycles to failure Nf) is obtained at pH=5 where the oxide film on aluminum has very low solubility, and the lowest number of cycles is obtained at pH=1, where the media is too aggressive (extremely acidic). When the concentration of inhibitor increases the cycles to failure increase. The surface morphology and fracture section of the specimens had been characterized through scanning electron microscope (SEM).Keywords: Al-Mg alloy 5052, corrosion, fatigue, inhibitors
Procedia PDF Downloads 4601156 Influence of the Growth Rate on Eutectic Microstructures and Physical Properties of Aluminum–Silicon-Cobalt Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
Al-12.6wt.%Si-%2wt.Co alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate at constant temperature gradient using by Bridgman–type growth apparatus. The values of microstructures (λ) was measured from transverse sections of the samples. The microhardness (HV), ultimate tensile strength (σ) and electrical resistivity (ρ) of the directional solidification samples were also measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: directional solidification, Al-Si-Co alloy, mechanical properties, electrical properties
Procedia PDF Downloads 2891155 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas
Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider
Abstract:
Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.Keywords: friction stir welding, tungsten inert gaz, aluminum, microstructure
Procedia PDF Downloads 2761154 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates
Authors: K. Subbaiah
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties
Procedia PDF Downloads 4661153 Morphological, Mechanical, and Tribological Properties Investigations of CMTed Parts of Al-5356 Alloy
Authors: Antar Bouhank, Youcef Beellal, Samir Adjel, Abdelmadjid Ababsa
Abstract:
This paper investigates the impact of 3D printing parameters using the cold metal transfer (CMT) technique on the morphological, mechanical, and tribological properties of walls and massive parts made from aluminum alloy. The parameters studied include current intensity, torch movement speed, printing increment, and the flow rate of shielding gas. The manufactured parts, using the technique mentioned above, are walls and massive parts with different filling strategies, using grid and zigzag patterns and at different current intensities. The main goal of the article is to find out the welding parameters suitable for having parts with low defects and improved properties from the previously mentioned properties point of view. It has been observed from the results thus obtained that the high current intensity causes rapid solidification, resulting in high porosity and low hardness values. However, the high current intensity can cause very rapid solidification, which increases the melting point, and the part remains in the most stable shape. Furthermore, the results show that there is an evident relationship between hardness, coefficient of friction and wear test where the high intensity is, the low hardness is. The same note is for the coefficient of friction. The micrography of the walls shows a random granular structure with fine grain boundaries with a different grain size. Some interesting results are presented in this paper.Keywords: aluminum alloy, porosity, microstructures, hardness
Procedia PDF Downloads 461152 Selecting a Material for an Aircraft Diesel Engine Block
Authors: Ksenia Siadkowska, Tytus Tulwin, Rafał Sochaczewski
Abstract:
Selecting appropriate materials is presently a complex task as material databases cover tens of thousands of different types of materials. Product designing proceeds in numerous stages and in most of them there are open questions with not only one correct solution but better and worse ones. This paper overviews the Diesel engine body construction materials mentioned in the literature and discusses a certain practical method to select materials for a cylinder head and a Diesel engine block as a prototype. The engine body, depending on its purpose, is most frequently iron or aluminum. If it is important to optimize parts to achieve low weight, aluminum alloys are usually applied, especially in the automotive and aviation industries. In the latter case, weight is even more important so new types of magnesium alloys which are even lighter than aluminum ones are developed and used. However, magnesium alloys are, for example, more flammable and not enough strong so, for safety reasons, this type of material is not used solely in engine bodies. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: aluminum alloy, cylinder head, Diesel engine, materials selection
Procedia PDF Downloads 3951151 Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints
Authors: Bintao Wu, Xiangfang Xu, Yugang Miao,Duanfeng Han
Abstract:
Joining of 1 mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti、TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking.Keywords: bypass-current MIG welding-brazed, Al alloy, Ti alloy, joint characteristics, mechanical properties
Procedia PDF Downloads 2631150 SIF Computation of Cracked Plate by FEM
Authors: Sari Elkahina, Zergoug Mourad, Benachenhou Kamel
Abstract:
The main purpose of this paper is to perform a computations comparison of stress intensity factor 'SIF' evaluation in case of cracked thin plate with Aluminum alloy 7075-T6 and 2024-T3 used in aeronautics structure under uniaxial loading. This evaluation is based on finite element method with a virtual power principle through two techniques: the extrapolation and G−θ. The first one consists to extrapolate the nodal displacements near the cracked tip using a refined triangular mesh with T3 and T6 special elements, while the second, consists of determining the energy release rate G through G−θ method by potential energy derivation which corresponds numerically to the elastic solution post-processing of a cracked solid by a contour integration computation via Gauss points. The SIF obtained results from extrapolation and G−θ methods will be compared to an analytical solution in a particular case. To illustrate the influence of the meshing kind and the size of integration contour position simulations are presented and analyzed.Keywords: crack tip, SIF, finite element method, concentration technique, displacement extrapolation, aluminum alloy 7075-T6 and 2024-T3, energy release rate G, G-θ method, Gauss point numerical integration
Procedia PDF Downloads 3371149 The Effect of Different Surface Cleaning Methods on Porosity Formation and Mechanical Property of AA6xxx Aluminum Gas Metal Arc Welds
Authors: Fatemeh Mirakhorli
Abstract:
Porosity is the main issue during welding of aluminum alloys, and surface cleaning has a critical influence to reduce the porosity level by removing the oxidized surface layer before fusion welding. Developing an optimum and economical surface cleaning method has an enormous benefit for aluminum welding industries to reduce costs related to repairing and repeating welds as well as increasing the mechanical properties of the joints. In this study, several mechanical and chemical surface cleaning methods were examined for butt joint welding of 2 mm thick AA6xxx alloys using ER5556 filler metal. The effects of each method on porosity formation and tensile properties are evaluated. It has been found that, compared to the conventional mechanical cleaning method, the use of chemical cleaning leads to an important reduction in porosity level even after a significant delay between cleaning and welding. The effect of the higher porosity level in the fusion zone to reduce the tensile strength of the welds is shown.Keywords: gas metal arc welding (GMAW), aluminum alloy, surface cleaning, porosity formation, mechanical property
Procedia PDF Downloads 1391148 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-Layer Latticed Shell
Authors: Xu Chen, Zhao Caiqi
Abstract:
In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.Keywords: combination of aluminum honeycomb panel, rod latticed shell, dynamic performence, response spectrum analysis, seismic properties
Procedia PDF Downloads 4731147 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina
Procedia PDF Downloads 1511146 Aluminum Factories, Values and Regeneration Option
Authors: Tereza Bartosikova
Abstract:
This paper describes the values of a specific type of industrial heritage-aluminum factories. It is an especially endangered kind of industrial heritage with only a little attention paid. The paper aims to highlight the uniqueness of these grounds and to specify several options for revitalizations. The research is based on complex aluminum factories mapping in Europe from archives and bibliographic sources and on site. There is analyzed gained information that could offer a new view on the aluminum grounds. Primarily, the data are described according to the works in Žiar nad Hronom, Slovakia. More than a half aluminum grounds have ended up the production, although they can go on further. They are closely connected with some areas identity and their presence has left striking footsteps in the environment. By saving them, the historical continuity, cultural identity of population and also the economic stability of region would be supported.Keywords: aluminum, industrial heritage, regeneration, values
Procedia PDF Downloads 3871145 Effect of Transition Metal Addition on Aging Behavior of Invar Alloy
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight per cent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.Keywords: Invar alloy, transition metals, phase equilibrium, aging behavior, microstructure, hardness
Procedia PDF Downloads 5321144 Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy
Authors: Ju Hyun Won, Seok Hong Min, Tae Kwon Ha
Abstract:
Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs.Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging
Procedia PDF Downloads 4301143 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method
Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev
Abstract:
The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.Keywords: activation energy, aluminum, low temperature diffusion, SiC
Procedia PDF Downloads 2791142 Friction Stir Welding of Aluminum Alloys: A Review
Authors: S. K. Tiwari, Dinesh Kumar Shukla, R. Chandra
Abstract:
Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed.Keywords: aluminum alloys, friction stir welding (FSW), microstructure, Properties.
Procedia PDF Downloads 4181141 Investigation on the Effect of Titanium (Ti) Plus Boron (B) Addition to the Mg-AZ31 Alloy in the as Cast and After Extrusion on Its Metallurgical and Mechanical Characteristics
Authors: Adnan I. O. Zaid, Raghad S. Hemeimat
Abstract:
Magnesium - aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength – to –weight -ratio. Against these preferable characteristics, magnesium is difficult to deform at room temperature therefore it is alloyed with other elements mainly Aluminum and Zinc to add some required properties particularly for their high strength - to -weight ratio. Mg and its alloys oxidize rapidly therefore care should be taken during melting or machining them; but they are not fire hazardous. Grain refinement is an important technology to improve the mechanical properties and the micro structure uniformity of the alloys. Grain refinement has been introduced in early fifties; when Cibula showed that the presence of Ti, and Ti+ B, produced a great refining effect in Al. since then it became an industrial practice to grain refine Al. Most of the published work on grain refinement was directed toward grain refining Al and Zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys has not been previously investigated. This forms the main objective of the research work; where, the effect of Ti addition on the grain size, mechanical behavior, ductility, and the extrusion force & energy consumed in forward extrusion of Mg-AZ31 alloy is investigated and discussed in two conditions, first in the as cast condition and the second after extrusion. It was found that addition of Ti to Mg- AZ31 alloy has resulted in reduction of its grain size by 14%; the reduction in grain size after extrusion was much higher. However the increase in Vicker’s hardness was 3% after the addition of Ti in the as cast condition, and higher values for Vicker’s hardness were achieved after extrusion. Furthermore, an increase in the strength coefficient by 36% was achieved with the addition of Ti to Mg-AZ31 alloy in the as cast condition. Similarly, the work hardening index was also increased indicating an enhancement of the ductility and formability. As for the extrusion process, it was found that the force and energy required for the extrusion were both reduced by 57% and 59% with the addition of Ti.Keywords: cast condition, direct extrusion, ductility, MgAZ31 alloy, super - plasticity
Procedia PDF Downloads 4541140 The Joint Properties for Friction Stir Welding of Aluminium Tubes
Authors: Ahbdelfattah M. Khourshid, T. Elabeidi
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones.Keywords: friction stir welding (FSW), Al alloys, mechanical properties, microstructure
Procedia PDF Downloads 5351139 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys
Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji
Abstract:
Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.Keywords: HEAs, phases model, aluminium, silicon, tensile strength, model
Procedia PDF Downloads 1221138 The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity
Authors: Sevda Engin, Ugur Buyuk, Necmettin Marasli
Abstract:
Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter.Keywords: directional solidification, aluminum alloy, microstructure, electrical properties, tensile test, hardness test
Procedia PDF Downloads 2951137 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation
Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco
Abstract:
420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance
Procedia PDF Downloads 1241136 The Effect of Substrate Surface Roughness for Hot Dip Aluminizing of IN718 Alloy
Authors: Aptullah Karakas, Murat Baydogan
Abstract:
The hot dip aluminizing (HDA) process involves immersing a metallic substrate into a molten aluminum bath for several minutes, and removed from the bath and cooled down to room temperature. After the HDA process, various aluminide layers are formed as a result of interdiffusion between the substrate and the molten aluminum and between the aluminide layers. In order to form a uniform aluminide layer, the specimen must be covered and wet well by the molten aluminum. Surface roughness plays an important role in wettability, and thus, surface preparation is an important stage in determining the final surface roughness. In this study, different roughness values were achieved by grinding the surface with emery papers as 180, 320 and 600 grids. After the surface preparation, the HDA process was performed in a molten Al-Si bath at 700 ᴼC for 10 minutes. After the HDA process, a microstructural examination of the coating was carried out to evaluate the uniformity of the coating and adhesion between the substrate and the coating. According to the results, the best adhesion at the interface was observed on the specimen, which was prepared by 320 grid emery paper having a mean surface roughness (Ra) of 0.097 µm.Keywords: hot-dip aluminizing, microstructure, surface roughness, coating
Procedia PDF Downloads 71