Search results for: academic speed and accuracy
8853 Observational Study: The Impact of Neurotypical Peer Interactions on Social and Academic Success in Kindergarteners with down Syndrome in Public Schools
Authors: Brenda Rodriguez
Abstract:
In this observational study, we investigate a neurotypical peer's impact on both the social and academic success of a child with Down Syndrome in a kindergarten setting. The child with Down Syndrome experiences difficulty articulating words clearly and is paired with a classmate in various academic and social contexts over three weeks. Utilizing both qualitative and quantitative data, we aim to document any classroom interactions that may occur. The findings of this study will contribute to understanding how peer relationships facilitate academic achievement and will advance research on inclusive classroom practices.Keywords: academic and social success, down syndrome, inclusive classrooms, peer interaction
Procedia PDF Downloads 268852 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation
Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim
Abstract:
Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time
Procedia PDF Downloads 798851 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection
Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye
Abstract:
The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document
Procedia PDF Downloads 1638850 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 3208849 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan
Authors: Feras Hanandeh, Majdi Shannag
Abstract:
This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.Keywords: data mining, classification, extracting rules, decision tree
Procedia PDF Downloads 4208848 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 1388847 An Interactive Online Academic Writing Resource for Research Students in Engineering
Authors: Eleanor K. P. Kwan
Abstract:
English academic writing, it has been argued, is an acquired language even for English speakers. For research students whose English is not their first language, however, the acquisition process is often more challenging. Instead of hoping that students would acquire the conventions themselves through extensive reading, there is a need for the explicit teaching of linguistic conventions in academic writing, as explicit teaching could help students to be more aware of the different generic conventions in different disciplines in science. This paper presents an interuniversity effort to develop an online academic writing resource for research students in five subdisciplines in engineering, upon the completion of the needs analysis which indicates that students and faculty members are more concerned about students’ ability to organize an extended text than about grammatical accuracy per se. In particular, this paper focuses on the materials developed for thesis writing (also called dissertation writing in some tertiary institutions), as theses form an essential graduation requirement for all research students and this genre is also expected to demonstrate the writer’s competence in research and contributions to the research community. Drawing on Swalesian move analysis of research articles, this online resource includes authentic materials written by students and faculty members from the participating institutes. Highlight will be given to several aspects and challenges of developing this online resource. First, as the online resource aims at moving beyond providing instructions on academic writing, a range of interactive activities need to be designed to engage the users, which is one feature which differentiates this online resource from other equally informative websites on academic writing. Second, it will also include discussion on divergent textual practices in different subdisciplines, which help to illustrate different practices among these subdisciplines. Third, since theses, probably one of the most extended texts a research student will complete, require effective use of signposting devices to facility readers’ understanding, this online resource will also provide both explanation and activities on different components that contribute to text coherence. Finally results from piloting will also be included to shed light on the effectiveness of the materials, which could be useful for future development.Keywords: academic writing, English for academic purposes, online language learning materials, scientific writing
Procedia PDF Downloads 2738846 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data
Authors: Ayudhia P. Gusti, Semin
Abstract:
It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.Keywords: maritime transportation, reducing fuel, shipping log data, speed optimization
Procedia PDF Downloads 5698845 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul
Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt
Abstract:
Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow
Procedia PDF Downloads 3688844 Greening the Academic Library: Analysis of the Effectiveness of Sustainable Online Services Towards Reducing the Environmental Impact of Academic Libraries
Authors: George Clifford Yamson
Abstract:
As institutions across the world become more focused on sustainability, academic libraries are considering ways to reduce their environmental impact. One strategy is the use of sustainable online services, which can reduce the need for physical materials and transportation. This study aims to analyze the effectiveness of sustainable online services in reducing the environmental impact of academic libraries. Using a mixed-methods approach, the survey will be used to solicit information from library staff and users to gather data on their attitudes towards sustainable online services and their usage patterns. A comparative analysis will be conducted on the costs of traditional library services versus sustainable online services. The findings of this study will contribute to the growing body of literature on green academic libraries and provide insights into the potential of sustainable online services to reduce the environmental impact of academic libraries.Keywords: sustainability, environmental sustainability, academic libraries, green printing, green copying, online services
Procedia PDF Downloads 848843 Academic Performance and Therapeutic Breathing
Authors: Abha Gupta, Seema Maira, Smita Sinha
Abstract:
This paper explores using breathing techniques to boost the academic performance of students and describes how teachers can foster the technique in their classrooms. The innovative study examines the differential impact of therapeutic breathing exercises, called pranayama, on students’ academic performance. The paper introduces approaches to therapeutic breathing exercises as an alternative to improve school performance, as well as the self-regulatory behavior, which is known to correlate with academic performance. The study was conducted in a school-wide pranayama program with positive outcomes. The intervention consisted of two breathing exercises, (1) deep breathing, and (2) alternate nostril breathing. It is a quantitative study spanning over a year with about 100 third graders was conducted using daily breathing exercises to investigate the impact of pranayama on academic performance. Significant cumulative gain-scores were found for students who practiced the approach.Keywords: academic performance, pranayama, therapeutic breathing, yoga
Procedia PDF Downloads 4968842 Teaching Academic Vocabulary: A Recent and Old Approach
Authors: Sara Fine-Meltzer
Abstract:
An obvious, but ill-addressed hindrance to reading comprehension in academic English is poor vocabulary. Unfortunately, dealing with the problem is usually delayed until university entrance. It is the contention of this paper that the chore should be confronted much earlier and by using a very old-fashioned method. This presentation is accompanied by vocabulary lists for advanced level university students with explanations concerning the content and justification for the 500-word lists: how they change over time in accordance with evolving styles of academic writing. There are also sample quizzes and methods to ensure that the words are “absorbed” over time. There is a discussion of other vocabulary acquisition methods and conclusions drawn from the drawbacks of such methods. The paper concludes with the rationale for beginning the study of “academic” vocabulary earlier than is generally acceptable.Keywords: academic vocabulary, old-fashioned methods, quizzes, vocabulary lists
Procedia PDF Downloads 1258841 A Comparative Study of Black Carbon Emission Characteristics from Marine Diesel Engines Using Light Absorption Method
Authors: Dongguk Im, Gunfeel Moon, Younwoo Nam, Kangwoo Chun
Abstract:
Recognition of the needs about protecting environment throughout worldwide is widespread. In the shipping industry, International Maritime Organization (IMO) has been regulating pollutants emitted from ships by MARPOL 73/78. Recently, the Marine Environment Protection Committee (MEPC) of IMO, at its 68th session, approved the definition of Black Carbon (BC) specified by the following physical properties (light absorption, refractory, insolubility and morphology). The committee also agreed to the need for a protocol for any voluntary measurement studies to identify the most appropriate measurement methods. Filter Smoke Number (FSN) based on light absorption is categorized as one of the IMO relevant BC measurement methods. EUROMOT provided a FSN measurement data (measured by smoke meter) of 31 different engines (low, medium and high speed marine engines) of member companies at the 3rd International Council on Clean Transportation (ICCT) workshop on marine BC. From the comparison of FSN, the results indicated that BC emission from low speed marine diesel engines was ranged from 0.009 to 0.179 FSN and it from medium and high speed marine diesel engine was ranged 0.012 to 3.2 FSN. In consideration of measured the low FSN from low speed engine, an experimental study was conducted using both a low speed marine diesel engine (2 stroke, power of 7,400 kW at 129 rpm) and a high speed marine diesel engine (4 stroke, power of 403 kW at 1,800 rpm) under E3 test cycle. The results revealed that FSN was ranged from 0.01 to 0.16 and 1.09 to 1.35 for low and high speed engines, respectively. The measurement equipment (smoke meter) ranges from 0 to 10 FSN. Considering measurement range of it, FSN values from low speed engines are near the detection limit (0.002 FSN or ~0.02 mg/m3). From these results, it seems to be modulated the measurement range of the measurement equipment (smoke meter) for enhancing measurement accuracy of marine BC and evaluation on performance of BC abatement technologies.Keywords: black carbon, filter smoke number, international maritime organization, marine diesel engine (two and four stroke), particulate matter
Procedia PDF Downloads 2828840 Chinese Doctoral Students in Canada: The Influence of Financial Status and Cultural Cognition on Academic Performance
Authors: Xuefan Li
Abstract:
Parts of Chinese doctoral students in Canada are facing significant academic pressure. The factors contributing to such pressure are diverse, including financial conditions and cultural differences. Students from various academic disciplines have been interviewed to investigate the factors that Chinese students consider when selecting Canada as a destination for doctoral studies, as well as to identify the challenges they face during their academic pursuits and the associated factors influencing their performance. The findings indicate that their motivations to pursue doctoral study in Canada are concluded as both push and pull factors. Financial conditions and cultural differences are critical factors affecting academic performance, with disciplinary variations in the degree of influence observed.Keywords: Chinese doctoral students, financial status, cultural cognition, academic performance
Procedia PDF Downloads 758839 Academic Entitlement And Grade Negotiation Styles Among Ug Students: A Correlation Study
Authors: Athira M., Prakasha G. S.
Abstract:
The rising prevalence of academic entitlement among school and college students necessitates a comprehensive investigation. This study focuses on discovering gender differentials in academic entitlement and their nexus with diverse grade negotiation behaviors within the undergraduate (UG) student cohort. Grade negotiation behaviors, encompassing a range from amicable discussions to more assertive tactics, are influenced by students' perceptions of their academic entitlement. The research delves into the broader significance of academic entitlement, considering its implications for student-teacher conflicts and the dynamics it introduces into the educational field. Employing a quantitative research approach, data from UG students is meticulously analyzed. Mann-Whitney U tests unveil pronounced gender difference in academic entitlement, with females demonstrating higher entitlement levels. Furthermore, the study unearths significant correlations between academic entitlement and specific negotiation styles, notably yielding and forcing strategies, albeit with minimal impact on academic performance. These findings provide a foundational understanding for educators and institutions to foster equitable learning environments and formulate effective conflict resolution strategies, ultimately elevating the quality of the educational experience. Moreover, this study opens avenues for future research, exploring interventions to enhance negotiation skills and diving deeper into the intricate dimensions of academic entitlement within academic life.Keywords: academic entitlement, grade negotiation, negotiation styles, student-teacher conflict
Procedia PDF Downloads 478838 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture
Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi
Abstract:
Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection
Procedia PDF Downloads 758837 Artificial Neural Network Approach for Modeling Very Short-Term Wind Speed Prediction
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Juan C. Seck-Tuoh-Mora, Norberto Hernandez-Romero, Irving Barragán-Vite
Abstract:
Wind speed forecasting is an important issue for planning wind power generation facilities. The accuracy in the wind speed prediction allows a good performance of wind turbines for electricity generation. A model based on artificial neural networks is presented in this work. A dataset with atmospheric information about air temperature, atmospheric pressure, wind direction, and wind speed in Pachuca, Hidalgo, México, was used to train the artificial neural network. The data was downloaded from the web page of the National Meteorological Service of the Mexican government. The records were gathered for three months, with time intervals of ten minutes. This dataset was used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The model with the best performance contains three hidden layers and 9, 6, and 5 neurons, respectively; and the coefficient of determination obtained was r²=0.9414, and the Root Mean Squared Error is 1.0559. In summary, the ANN approach is suitable to predict the wind speed in Pachuca City because the r² value denotes a good fitting of gathered records, and the obtained ANN model can be used in the planning of wind power generation grids.Keywords: wind power generation, artificial neural networks, wind speed, coefficient of determination
Procedia PDF Downloads 1298836 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 2038835 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1248834 Communicative Roles of English Discourse Markers on Facebook among Umaru Musa Yar’Adua University Members of Academic Staff
Authors: Ibrahim Sani
Abstract:
This paper examines the use of English discourse markers with the aim of investigating their communicative functions on Facebook as used by UMYUK members of academic staff. The paper uses the qualitative approach and relevance theory by Sperber and Wilson (1995) to highlight and examine DMs in different communicative contexts. In the course of data collection, five (5) academic staff from the five faculties of the university who are already Facebook friends of the researcher are used as the participants with their consent. The paper examines the communicative functions of English DMs among UMYUK academic staff on Facebook and reveals a number of communicative functions used in different contexts. One of the major findings indicates that 'contrastive markers' such as 'but', 'however', 'although' etc. are the dominant communicative functions employed by UMYUK academic staff on Facebook with 42% occurrence; it also shows that a single DM can function differently in the same linguistic environment.Keywords: role, communicative, discourse markers, facebook, academic staff
Procedia PDF Downloads 1738833 High-Speed Electrical Drives and Applications: A Review
Authors: Vaishnavi Patil, K. M. Kurundkar
Abstract:
Electrical Drives play a vital role in industry development and applications. Drives have an inevitable part in the needs of various fields such as industry, commercial, and domestic applications. The development of material technology, Power Electronics devices, and accompanying applications led to the focus of industry and researchers on high-speed electrical drives. Numerous articles charted the applications of electrical machines and various converters for high-speed applications. The choice depends on the application under study. This paper goals to highlight high-speed applications, main challenges, and some applications of electrical drives in the field.Keywords: high-speed, electrical machines, drives, applications
Procedia PDF Downloads 728832 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects
Authors: Gehad S. Kaseb, Mona F. Ahmed
Abstract:
Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.Keywords: Arabic, classification, sentiment analysis, tweets
Procedia PDF Downloads 1528831 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts
Authors: Samad Sajjadi
Abstract:
Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.Keywords: machine translations, accuracy, human translation, efficiency
Procedia PDF Downloads 818830 Evaluation of the Families' Psychological Nature and the Relationship between the Academic Success According to the Students' Opinion
Authors: Sebnem Erismen, Ahmet Guneyli, Azize Ummanel
Abstract:
The purpose of this study is to explore the relationship between the students' academic success and families' psychological nature. The study based upon the quantitative research, and descriptive model is used. Relational descriptive model is used while evaluating the relation between families’ psychological nature and the academic success level of the students. A total of 523 secondary school students have participated the study. Personal Information Form, Family Structure Evaluation Form (FSEF) and School Reports were employed as the primary methods of data gathering. ANOVA and LSD Scheffe Test were used for analysing the data. Results of the study indicate that there are differences between the FSEF scores according to the students’ and teachers’ gender; however, no differences between the class level and seniority of the teachers were seen. Regarding the academic success of the students, it was seen that majority of them have high points. It was also seen that the academic success level of the students differentiates regarding to the classroom teachers’ gender and seniority. In conclusion, it was seen that there is a relation between the families’ psychological nature and students' academic success.Keywords: families’ perceived psychological nature, academic success, families effect on the academic success, education
Procedia PDF Downloads 2968829 The Influence of Gender and Harmful Alcohol Consumption on Academic Performance in Spanish University Students
Authors: M. S. Rodríguez, F. Cadaveira, M. F. Páramo
Abstract:
First year university students comprise one of the groups most likely to indulge in hazardous alcohol consumption. The transition from secondary school to university presents a range of academic, social and developmental challenges requiring new responses that will meet the demands of this highly competitive environment. The main purpose of this research was to analyze the influence of gender and hazardous alcohol consumption on academic performance of 300 university students in Spain in a three-year follow-up study. Alcohol consumption was measured using the Alcohol Use Identification Test (AUDIT), and the average university grades were provided by the Academic Management Services of the University. Analysis of variance showed that the level of alcohol consumption significantly affected academic performance. Students undertaking hazardous alcohol consumption obtained the lowest grades during the first three years at university. These effects were particularly marked in the sample of women with a hazardous pattern of alcohol consumption, although the interaction between gender and this type of consumption was not significant. The study highlights the impact of hazardous alcohol consumption on the academic trajectory of university students. The findings confirm that alcohol consumption predicts poor academic performance in first year students and that the low level of performance is maintained throughout the university career.Keywords: academic performance, alcohol consumption, gender, university students
Procedia PDF Downloads 3148828 Analysis of School Burnout and Academic Motivation through Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation.Keywords: school burnout, motivation, structural equation modeling, university
Procedia PDF Downloads 3288827 A Proposed Framework for Digital Librarianship in Academic Libraries
Authors: Daniel Vaati Nzioka, John Oredo, Dorothy Muthoni Njiraine
Abstract:
The service delivery in academic libraries has been regressing due to the failure of Digital Librarians (DLns) to perform optimally. This study aimed at developing a proposed framework for digital librarianship in academic libraries with special emphasis to three selected public academic institutional libraries. The study’s specific objectives were to determine the roles played by the current DLns’ in academic libraries, establish job description of DLns’ in various academic libraries, ascertain DLns best practices, and to implement a viable digital librarianship conceptual framework. The study used a survey research with open-ended questionnaire designed as per the objectives of the study. A purposively selected sample of 30 Library and Information Science (LIS) professionals from the three selected academic libraries in charge of Digital Information Services (DIS) and managing electronic resources were selected and interviewed. A piloted self-administered questionnaire was used to gather information from these respondents. A total of thirty (30) questionnaires to the LIS professionals-ten from each of the three selected academic libraries were administered. The study developed a proposed conceptual framework for DLns’ that details the pertinent issues currently facing academic libraries when hiring DLns. The study recommended that the provided framework be adopted to guide library managers in identifying the needs of staff training and selecting the most adequate training method as well as settling on the best practices to be sent to staff for training and development.Keywords: digital, academic, libraries, framework
Procedia PDF Downloads 1158826 Ergonomic Design of Speed Control Humps/Dips
Authors: Emad Khorshid, Habib Awada
Abstract:
Newly developed Ergonomic speed control hump/Dip designs are conducted. The numerical simulation for the driver-vehicle-hump dynamic system will be performed using computer software. The design problem for which the speed hump or dip should provide: (1) discomfort feeling to the driver if speed is over the specified limit, and (2) normal/good comfort level to the driver (and or other passengers) if the speed is within the limit. For comparison reasons, different vehicles suspension systems (active, semi-active and non-active suspension) are used in the simulation. The measuring of the acceptable range of vibration will be referenced to the British standard BS6841, ISO 2631/1 and the new ISO 2631/5. All these standards are related to human health and comfort level in terms of acceptable range of whole body vibration exposure.Keywords: speed hump, speed dip, ergonomic design, human health, vehicle modeling
Procedia PDF Downloads 3758825 The Relationship between School Belonging, Self-Efficacy and Academic Achievement in Tabriz High School Students
Authors: F. Pari, E. Fathiazar, T. Hashemi, M. Pari
Abstract:
The present study aimed to examine the role of self-efficacy and school belonging in the academic achievement of Tabriz high school students in grade 11. Therefore, using a random cluster method, 377 subjects were selected from the whole students of Tabriz high schools. They filled in the School Belonging Questionnaire (SBQ) and General Self-Efficacy Scale. Data were analyzed using correlational as well as multiple regression methods. Findings demonstrate self-efficacy and school belonging have significant roles in the prediction of academic achievement. On the other hand, the results suggest that considering the gender variable there is no significant difference between self-efficacy and school belonging. On the whole, cognitive approaches could be effective in the explanation of academic achievement.Keywords: school belonging, self-efficacy, academic achievement, high school
Procedia PDF Downloads 3038824 Student Engagement and Perceived Academic Stress: Open Distance Learning in Malaysia
Authors: Ng Siew Keow, Cheah Seeh Lee
Abstract:
Students’ strong engagement in learning increases their motivation and satisfaction to learn, be resilient to combat academic stress. Engagement in learning is even crucial in the open distance learning (ODL) setting, where the adult students are learning remotely, lessons and learning materials are mostly delivered via online platforms. This study aimed to explore the relationship between learning engagement and perceived academic stress levels of adult students who enrolled in ODL learning mode. In this descriptive correlation study during the 2021-2022 academic years, 101 adult students from Wawasan Open University, Malaysia (WOU) were recruited through convenient sampling. The adult students’ online learning engagement levels and perceived academic stress levels were identified through the self-report Online Student Engagement Scale (OSE) and the Perception of Academic Stress Scale (PASS). The Pearson correlation coefficient test revealed a significant positive relationship between online student engagement and perceived academic stress (r= 0.316, p<0.01). The higher scores on PASS indicated lower levels of perceived academic stress. The findings of the study supported the assumption of the importance of engagement in learning in promoting psychological well-being as well as sustainability in online learning in the open distance learning context.Keywords: student engagement, academic stress, open distance learning, online learning
Procedia PDF Downloads 166