Search results for: Physics informed machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9864

Search results for: Physics informed machine learning

9804 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 234
9803 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 149
9802 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 37
9801 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 51
9800 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 93
9799 Literature Review: Adversarial Machine Learning Defense in Malware Detection

Authors: Leidy M. Aldana, Jorge E. Camargo

Abstract:

Adversarial Machine Learning has gained importance in recent years as Cybersecurity has gained too, especially malware, it has affected different entities and people in recent years. This paper shows a literature review about defense methods created to prevent adversarial machine learning attacks, firstable it shows an introduction about the context and the description of some terms, in the results section some of the attacks are described, focusing on detecting adversarial examples before coming to the machine learning algorithm and showing other categories that exist in defense. A method with five steps is proposed in the method section in order to define a way to make the literature review; in addition, this paper summarizes the contributions in this research field in the last seven years to identify research directions in this area. About the findings, the category with least quantity of challenges in defense is the Detection of adversarial examples being this one a viable research route with the adaptive approach in attack and defense.

Keywords: Malware, adversarial, machine learning, defense, attack

Procedia PDF Downloads 75
9798 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 526
9797 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 38
9796 Real Estate Price Classification Using Machine Learning Techniques

Authors: Hadeel Sulaiman Alamri, Mohamed Maher Ben Ismail, Ouiem Bchir

Abstract:

Abstract— The continued advances in Artificial Intelligence (AI) and Machine Learning (ML) have boosted the interest of tax authorities in developing smart solutions as efficient alternatives to their actual fraud detection mechanisms. In particular, the real estate data collected by the administrations promoted the efforts to develop advanced analytics models aimed at detecting fraudulent real estate transactions. Specifically, supervised and unsupervised Machine Learning techniques have been associated with the available large datasets to improve overall taxpayer compliance. This research introduces a machine-learning approach intended to classify land and building prices in Saudi Arabia. Specifically, it intends to group real estate transactions reported into homogeneous groups based on relevant features. Moreover, the proposed solution classifies the lands and buildings prices in Saudi city, neighborhood, and schema. In fact, the outcomes of the clustering task are fed into a supervised machine learning process to categorize future real estate transactions into “Fair”, “Under-valued” or “Over-valued” classes. In particular, the experimental findings indicate that associating clustering algorithms with Random Forest (RF) model yields an accuracy of 99%.

Keywords: classification, clustering, machine learning, real estate price

Procedia PDF Downloads 6
9795 Modern Approaches to Kidney Stone Detection with Using Machine Learning

Authors: Jayashree Katti, Harsh Warkari, Prachi Yadav, Bhagyashri Chaudhari

Abstract:

Approximately ten percent of individuals globally suffer from kidney stones, which can cause major side effects, including renal damage and blockage of the urinary tract. Traditional detection techniques depend on the manual evaluation of CT or X-ray images, which is not easy and may contain errors. With the aim to enhance kidney stone detection using medical imaging, this research explores various machine learning methods, such as Convolutional Neural Networks (CNN). By reviewing many machine learning algorithms, like ensemble techniques, Decision Tree, Random Forest, and Support Vector Machines (SVM), this study shows that machine learning tends to improve accuracy and reduce kidney stone detection time. According to the results of the earlier research, ensemble methods produced a classification accuracy of 97.95%, whereas the Decision Tree Classifier obtained an F1 score of 85.3%. Ensemble approaches gave a classification accuracy of 97.95%. Advanced techniques utilizing transfer learning, such as ALEXNET, achieved an accuracy rate of 96%.

Keywords: kidney stones, machine learning, medical imaging, CNN, transfer learning, decision tree, ensemble methods, random forest, SVM, ALEXNET

Procedia PDF Downloads 7
9794 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)

Authors: Medjadj Tarek, Ghribi Hayet

Abstract:

This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).

Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management

Procedia PDF Downloads 97
9793 An Investigation on Physics Teachers’ Views Towards Context Based Learning Approach

Authors: Medine Baran, Abdulkadir Maskan, Mehmet Ikbal Yetişir, Mukadder Baran, Azmi Türkan, Şeyma Yaşar

Abstract:

The purpose of this study was to determine the views of physics teachers from several secondary schools in Turkey towards context-based learning approach. In the study, the context-based learning opinion questionnaire developed by the researchers for use as the data collection tool was piloted with 250 physics teachers. The questionnaire examined by the researchers and field experts was initially made up of 53 items. Following the evaluation process of the questionnaire, it included 37 items. In this way, the reliability and validity process of the measurement tool was completed. In the end, the finalized questionnaire was applied to 144 physics teachers from several secondary schools in different cities in Turkey (F:73, M:71). In the study, the participants were determined based on ease of reaching them. The results revealed no remarkable difference between the views of the physics teachers with respect to their gender, region and school. However, when the items in the questionnaire were considered, it was found that the participants interestingly agreed on some of the choices in the items. Depending on this, it was found that there were high levels of differences between the frequencies of those who agreed and those who disagreed with the 16 items in the questionnaire. Therefore, as the following phase of the present study, further research has been planned using the same questions. Based on these questions, which received opposite responses, physics teachers will be asked for their views about the results of the study using the interview technique, one of qualitative research techniques. In this way, the results will be evaluated both by the researchers and by the participants, and the problems and difficulties will be determined. As a result, related suggestions can be put forward.

Keywords: context bases learning, physics teachers, views

Procedia PDF Downloads 377
9792 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 216
9791 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 277
9790 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 157
9789 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 206
9788 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 98
9787 Use of Fractal Geometry in Machine Learning

Authors: Fuad M. Alkoot

Abstract:

The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.

Keywords: fractal geometry, machine learning, classifier, fractal dimension

Procedia PDF Downloads 221
9786 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 60
9785 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 232
9784 An Approximation Technique to Automate Tron

Authors: P. Jayashree, S. Rajkumar

Abstract:

With the trend of virtual and augmented reality environments booming to provide a life like experience, gaming is a major tool in supporting such learning environments. In this work, a variant of Voronoi heuristics, employing supervised learning for the TRON game is proposed. The paper discusses the features that would be really useful when a machine learning bot is to be used as an opponent against a human player. Various game scenarios, nature of the bot and the experimental results are provided for the proposed variant to prove that the approach is better than those that are currently followed.

Keywords: artificial Intelligence, automation, machine learning, TRON game, Voronoi heuristics

Procedia PDF Downloads 470
9783 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 33
9782 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 272
9781 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat

Authors: Fani Firmahandari

Abstract:

The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.

Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students

Procedia PDF Downloads 362
9780 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 339
9779 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 15
9778 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches

Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand

Abstract:

Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.

Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis

Procedia PDF Downloads 80
9777 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits

Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.

Abstract:

With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.

Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme

Procedia PDF Downloads 137
9776 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis

Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho

Abstract:

This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.

Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis

Procedia PDF Downloads 189
9775 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 128