Search results for: Heck coupling reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3081

Search results for: Heck coupling reaction

3021 UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age

Authors: Kun Chen, Yan Wang, Yangyu Zhao, Shufang Li, Lian Chen, Xiaoyue Guo, Jue Zhang, Jing Fang

Abstract:

The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy.

Keywords: uterine electromyography, fetal heart rate, coupling analysis, wavelet analysis

Procedia PDF Downloads 202
3020 Supplemental VisCo-friction Damping for Dynamical Structural Systems

Authors: Sharad Singh, Ajay Kumar Sinha

Abstract:

Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.

Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping

Procedia PDF Downloads 158
3019 Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions

Authors: Silvana Caglieri

Abstract:

Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol.

Keywords: amides, amines, DFT, MP2

Procedia PDF Downloads 282
3018 Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction

Authors: Mojgan Zendehdel, Safura Molla Mohammad Zamani

Abstract:

In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times.

Keywords: zeolite, magnetic, nanocompsite, esterification

Procedia PDF Downloads 461
3017 An Efficient and Green Procedure for the Synthesis of Highly Substituted Polyhydronaphthalene Derivatives via a One-Pot, Multi-Component Reaction in Aqueous Media

Authors: Adeleh Moshtaghi Zonouz, Issa Eskandari

Abstract:

A simple, efficient, and green one-pot, four-component synthesis of highly substituted polyhydronaphthalenes in aqueous media is described. The method has such advantages as short reaction times, high yields, mild reaction conditions, operational simplicity and environmentally benign.

Keywords: polyhydronaphthalene, 2, 6-dicyanoanilines, multi-component reaction, aqueous media

Procedia PDF Downloads 377
3016 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 156
3015 Computation of Induction Currents in a Set of Dendrites

Authors: R. B. Mishra, Sudhakar Tripathi

Abstract:

In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.

Keywords: currents, dendrites, induction, simulation

Procedia PDF Downloads 394
3014 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: crystalline TiO2, sonochemical mechanism, sol-gel reaction, XRD

Procedia PDF Downloads 456
3013 Synthesis, Characterization, and Quantum Investigations on [3+2] Cycloaddition Reaction of Nitrile Oxide with 1,5-Benzodiazepine

Authors: Samir Hmaimou, Marouane Ait Lahcen, Mohamed Adardour, Mohamed Maatallah, Abdesselam Baouid

Abstract:

Due to (3 + 2) cycloaddition and condensation reaction, a wide range of synthetic routes can be used to obtain biologically active heterocyclic compounds. Condensation and (3+2) cycloaddition reactions in heterocyclic syntheses are versatile due to the wide variety of possible combinations of several atoms of the reactants. In this article, we first outline the synthesis of benzodiazepine 4 with two dipolarophilic centers (C=C and C=N) by condensation reaction. Then, we use it for cycloaddition reactions (3+2) with nitrile oxides to prepare oxadiazole-benzodiazepines and pyrazole-benzodiazepine compounds. ¹H and ¹³C NMR are used to establish all the structures of the synthesized products. These condensation and cycloaddition reactions were then analyzed using density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) theoretical level. In this study, the mechanism of the one-step cycloaddition reaction was investigated. Molecular electrostatic potential (MEP) was used to identify the electrophilic and nucleophilic attack sites of the molecules studied. Additionally, Fukui investigations (electrophilic f- and nucleophilic f+) in the various reaction centers of the reactants demonstrate that, whether in the condensation reaction or cycloaddition, the reaction proceeds through the atomic centers with the most important Fukui functions, which is in full agreement with experimental observations. In the condensation reaction, thermodynamic control of regio, chemo, and stereoselectivity is observed, while those of cycloaddition are subject to kinetic control.

Keywords: cycloaddition reaction, regioselectivity, mechanism reaction, NMR analysis

Procedia PDF Downloads 16
3012 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance

Authors: Qian Zhang, Dongkai Shen, Yan Shi

Abstract:

A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.

Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design

Procedia PDF Downloads 606
3011 Reaction Kinetics for the Pyrolysis of Urea Phosphate

Authors: P. A. Broodryk, A. F. Van Der Merwe, H. W. J. P. Neomagus

Abstract:

The production of the clear liquid fertilizer ammonium polyphosphate (APP) is best achieved by the pyrolysis of urea phosphate, as it produces a product that is free from any of the impurities present in the raw phosphoric acid it was made from. This is a multiphase, multi-step reaction that produces carbon dioxide and ammonia as gasses and ammonium polyphosphate as liquid products. The polyphosphate chain length affects the solubility and thus the applicability of the product as liquid fertiliser, thus proper control of the reaction conditions is thus required for the use of this reaction in the production of fertilisers. This study investigates the reaction kinetics of the aforementioned reaction, describing a mathematical model for the kinetics of the reaction along with the accompanying rate constants. The reaction is initially exothermic, producing only carbon dioxide as a gas product and ammonium diphosphate, at higher temperatures the reaction becomes endothermic, producing ammonia gas as an additional by-product and longer chain polyphosphates, which when condensed too far becomes highly water insoluble. The aim of this study was to (i) characterise the pyrolysis reaction of urea phosphate by determining the mechanisms and the associated kinetic constants, and (ii) to determine the optimum conditions for ammonium diphosphate production. A qualitative investigation was also done to find the rate of hydrolysis of APP as this provides an estimate of the shelf life of an APP clear liquid fertiliser solution.

Keywords: ammonium polyphosphate, kinetics, pyrolysis, urea phosphate

Procedia PDF Downloads 156
3010 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: electric machine, electric motor, electromagnet, efficiency of electric motor

Procedia PDF Downloads 338
3009 Fuzzy Inference Based Modelling of Perception Reaction Time of Drivers

Authors: U. Chattaraj, K. Dhusiya, M. Raviteja

Abstract:

Perception reaction time of drivers is an outcome of human thought process, which is vague and approximate in nature and also varies from driver to driver. So, in this study a fuzzy logic based model for prediction of the same has been presented, which seems suitable. The control factors, like, age, experience, intensity of driving of the driver, speed of the vehicle and distance of stimulus have been considered as premise variables in the model, in which the perception reaction time is the consequence variable. Results show that the model is able to explain the impacts of the control factors on perception reaction time properly.

Keywords: driver, fuzzy logic, perception reaction time, premise variable

Procedia PDF Downloads 304
3008 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 195
3007 Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material.

Keywords: antioxidant property, chitosan, ferulic acid, grafting

Procedia PDF Downloads 459
3006 Design, Synthesis, and Catalytic Applications of Functionalized Metal Complexes and Nanomaterials for Selective Oxidation and Coupling Reactions

Authors: Roghaye Behroozi

Abstract:

The development of functionalized metal complexes and nanomaterials has gained significant attention due to their potential in catalyzing selective oxidation and coupling reactions. These catalysts play a crucial role in various industrial and pharmaceutical processes, enhancing the efficiency, selectivity, and sustainability of chemical reactions. This research aims to design and synthesize new functionalized metal complexes and nanomaterials to explore their catalytic applications in the selective oxidation of alcohols and coupling reactions, focusing on improving yield, selectivity, and catalyst reusability. The study involves the synthesis of a nickel Schiff base complex stabilized within 41-MCM as a heterogeneous catalyst. A Schiff base ligand derived from glycine was used to create a tin (IV) metal complex characterized through spectroscopic techniques and computational analysis. Additionally, iron-based magnetic nanoparticles functionalized with melamine were synthesized for catalytic evaluation. Lastly, a palladium (IV) complex was prepared, and its oxidative stability was analyzed. The nickel Schiff base catalyst showed high selectivity in converting primary and secondary alcohols to aldehydes and ketones, with yields ranging from 73% to 90%. The tin (IV) complex demonstrated accurate structural and electronic properties, with consistent results between experimental and computational data. The melamine-functionalized iron nanoparticles exhibited efficient catalytic activity in producing triazoles, with enhanced reaction speed and reusability. The palladium (IV) complex displayed remarkable stability and low reactivity towards C–C bond formation due to its symmetrical structure. The synthesized metal complexes and nanomaterials demonstrated significant potential as efficient, selective, and reusable catalysts for oxidation and coupling reactions. These findings pave the way for developing environmentally friendly and cost-effective catalytic systems for industrial applications.

Keywords: catalysts, Schiff base complexes, metal-organic frameworks, oxidation reactions, nanoparticles, reusability

Procedia PDF Downloads 15
3005 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled

Abstract:

Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 375
3004 Role of Interlayer Coupling for the Power Factor of CuSbS2 and CuSbSe2

Authors: Najebah Alsaleh, Nirpendra Singh, Udo Schwingenschlogl

Abstract:

The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak.

Keywords: density functional theory, thermoelectric, electronic properties, monolayer

Procedia PDF Downloads 323
3003 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 68
3002 Effectiveness of Damping Devices on Coupling Beams of 15-story Building Based on Nonlinear Analysis Procedures

Authors: Galih Permana, Yuskar Lase

Abstract:

In recent years, damping device has been experimentally studied to replace diagonally reinforced coupling beams, to mitigate rebar congestion problem. This study focuses on evaluating the effectiveness of various damping devices in a high-rise building. The type of damping devices evaluated is Viscoelastic Damper (VCD) and Rotational Friction Damper (RFD), with study case of a 15-story reinforced concrete apartment building with a dual system (column-beam and shear walls). The analysis used is a nonlinear time history analysis with 11 pairs of ground motions matched to the Indonesian response spectrum based on ASCE 41-17 and ASCE 7-16. In this analysis, each damper will be varied with a different position, namely the first model, the damper will be installed on the entire floor and in the second model, the damper will be installed on the 5th floor to the 9th floor, which is the floor with the largest drift. The results show that the model using both dampers increases the level of structural performance both globally and locally in the building, which will reduce the level of damage to the structural elements. But between the two dampers, the coupling beam that uses RFD is more effective than using VCD in improving building performance. The damper on the coupling beam has a good role in dissipating earthquakes and also in terms of ease of installation.

Keywords: building, coupling beam, damper, nonlinear time history analysis

Procedia PDF Downloads 172
3001 Evaluation of Esters Production by Oleic Acid Epoxidation Reaction

Authors: Flavio A. F. Da Ponte, Jackson Q. Malveira, Monica C. G. Albuquerque

Abstract:

In recent years a worldwide interest in renewable resources from the biomass has spurred the industry. In this work the chemical structure of oleic acid chains was modified by homogeneous and heterogeneous catalysis in order to produce esters. The homogeneous epoxidation was carried out at H2O2 to oleic acid unsaturation molar ratio of 20:1. The reaction temperature was 338 K and reaction time 16 h. Formic acid was used as catalyst. For heterogeneous catalysis reaction temperature was 343 K and reaction time 24 h. The esters production was carried out by heterogeneous catalysis of the epoxidized oleic acid and butanol using Mg/SBA-15 as catalyst. The resulting products were confirmed by NMR (1H and 13C) and FTIR spectroscopy. The products were characterized before and after each reaction. The catalysts were characterized by X-ray diffraction, X-ray fluorescence, thermogravimetric analysis (TGA) and BET surface areas. The results were satisfactory for the bioproducts formed.

Keywords: acid oleic, bioproduct, esters, epoxidation

Procedia PDF Downloads 356
3000 Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate

Authors: Ahmed A. Abdel-Khalek, Reham A. Mohamed

Abstract:

The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6].

Keywords: chromium, dimethylglyoxime, kinetics, oxidation, periodate

Procedia PDF Downloads 423
2999 Ag Nanoparticle/Melamine Sulfonic Acid Supported on Alumina: Efficient Catalytic System in Synthesis of Dihydropyrimidines

Authors: Parya Nasehi, Mohammad Kazem Mohammadi

Abstract:

3,4-dihydropyrimidin-2(1H)-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA) supported on alumina. The reaction was carried out at 110 oC for 20 min under solvent free conditions. This method have some advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity.

Keywords: nanoparticle melamine sulfonic acid, Al2O3, Biginelli reaction, 3, 4-dihydropyrimidin-2(1H, solvent free

Procedia PDF Downloads 513
2998 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 436
2997 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 570
2996 2 Stage CMOS Regulated Cascode Distributed Amplifier Design Based On Inductive Coupling Technique in Submicron CMOS Process

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

This paper proposes one stage and two stage CMOS Complementary Regulated Cascode Distributed Amplifier (CRCDA) design based on Inductive and Transformer coupling techniques. Usually, Distributed amplifier is based on inductor coupling between gate and gate of MOSFET and between drain and drain of MOSFET. But this paper propose some new idea, by coupling with differential primary windings of transformer between gate and gate of MOSFET first stage and second stage of regulated cascade amplifier and by coupling with differential secondary windings transformer of MOSFET between drain and drain of MOSFET first stage and second stage of regulated cascade amplifier. This paper also proposes polynomial modeling of Silicon Transformer passive equivalent circuit from Nanyang Technological University which is used to extract frequency response of transformer. Cadence simulation results are used to verify validity of transformer polynomial modeling which can be used to design distributed amplifier without Cadence. 4 parameters of scattering matrix of 2 port of the propose circuit is derived as a function of 4 parameters of impedance matrix.

Keywords: CMOS regulated cascode distributed amplifier, silicon transformer modeling with polynomial, low power consumption, distribute amplification technique

Procedia PDF Downloads 511
2995 Scenario Based Reaction Time Analysis for Seafarers

Authors: Umut Tac, Leyla Tavacioglu, Pelin Bolat

Abstract:

Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities.

Keywords: cognitive abilities, human factor, neurocognitive test battery, reaction time

Procedia PDF Downloads 298
2994 1,8-Naphthalimide Substituted 4,4-Difluoroboradiaza-S-Indacene Dyads: Synthesis, Structure, Properties and Live-Cell Imaging

Authors: Madhurima Poddar, Vinay Sharma, Shaikh M. Mobin, Rajneesh Misra

Abstract:

Three 1,8-naphthalimide (NPI) substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads were synthesized via Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI with the meso-, β- and α-halogenated BODIPYs, respectively. The photophysical and electrochemical data reveals considerable electronic communication between the BODIPY and NPI moieties. The electronic absorption spectrum reveals that the substitution of NPI at α position of BODIPY exhibit better electronic communication between the NPI and the BODIPY units. The electronic structures of all the dyads exhibit planar geometries which are in a good correlation with the structures obtained from single crystal X-ray diffraction. The crystal structures of the dyads exhibit interesting supramolecular interactions. The dyads show good cytocompatibility with the potential of multicolor live-cell imaging; making them excellent candidates for biological applications. The work provides an important strategy of screening the substitution pattern at different position of BODIPYs which will be useful for the design of BODIPY based organic molecules for various optoelectronic applications as well as bio-imaging.

Keywords: bio-imaging studies, cross-coupling, cyclic voltammetry, density functional calculations, fluorescence spectra, single crystal XRD, UV/Vis spectroscopy

Procedia PDF Downloads 145
2993 A New Approach on the Synthesis of Zinc Borates by Ultrasonic Method and Determination of the Zinc Oxide and Boric Acid Optimum Molar Ratio

Authors: A. Ersan, A. S. Kipcak, M. Yildirim, A. M. Erayvaz, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borates are used as a multi-functional flame retardant additive for its high dehydration temperature. In this study, a new method of ultrasonic mixing was used in the synthesis of zinc borates. The reactants of zinc oxide (ZnO) and boric acid (H3BO3) were used at the constant reaction parameters of 90°C reaction temperature and 55 min of reaction time. Several molar ratios of ZnO:H3BO3 (1:1, 1:2, 1:3, 1:4, and 1:5) were conducted for the determination of the optimum reaction ratio. Prior to the synthesis, the characterization of the synthesized zinc borates were made by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). From the results Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized optimum at the molar ratio of 1:3, with a reaction efficiency of 95.2%.

Keywords: zinc borates, ultrasonic mixing, XRD, FT-IR, reaction efficiency

Procedia PDF Downloads 350
2992 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems

Procedia PDF Downloads 376