Search results for: Google Trends
1975 The Effects of Scientific Studies on the Future Fashion Trends
Authors: Basak Ozkendirci
Abstract:
The discovery of chemical dyes, the development of regenerated fibers, and warp knitting technology have enormous effects on the fashion world. The trends created by the information obtained in the context of various studies today shape the fashion world. Trend analysts must follow scientific developments as well as sociological events, political developments and artwork to obtain healthy data on trends. Digital printing technologies have changed the dynamics of textile printing production and also the style of printed designs. Fashion designers already have started design 3D printed accessories and garments. The research fields like the internet of things, artificial intelligence, hologram technologies, mechatronics, energy storage systems, nanotechnology are seen as the technologies that will change the social life and economy of the future. It is clear that research carried out in these areas will affect the textiles of the future and whereat the trends of fashion. The article aims to create a future vision for trend researchers and designers by giving clues about the changes to be experienced in the fashion world. In the first part of the article, information about the scientific studies that are thought to shape the future is given, and the forecasting about how the inventions that can be obtained from these studies can be adapted at the textile are presented. In the second part of the article, examples of how the new generation of innovative textiles will affect the daily life experience of the user are given.Keywords: biotextiles, fashion trends, nanotextiles, new materials, smart textiles, techno textiles
Procedia PDF Downloads 3381974 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 1251973 Online Classroom Instruction and Collaborative Learning: Problems and Prospects Among Undergraduate Students of Obafemi Awolowo University, Ile-Ife, Nigeria
Authors: Bello Theodora O., Animola Odunayo V., Owoade Johnson T.
Abstract:
With the advent of Covid-19, online classroom instruction became a very important mode of instruction delivery during which learners were engaged in both collaborative and online interactive learning process, but along with it are challenges as well as its deliverables. This study therefore investigated the various online platform used by the students for learning among fresh undergraduate students of Obafemi Awolowo University, Ile-Ife, Osun Sate. It also assessed the student’s perception towards online learning in the university and examined the influence of collaborative learning among the students. Lastly, it examined the problems that are associated with collaborative online learning instruction in the university. These were with a view to providing empirical information on problems and prospects of online classroom instruction among fresh undergraduate physical science students of Obafemi Awolowo University, Ile-Ife. The study employed a descriptive survey research technique. The population comprised all the fresh undergraduates in physical science departments of Obafemi Awolowo University, Ile-Ife. The sample consisted two hundred freshmen in physical science departments of Obafemi Awolowo University, Ile-Ife, who were selected using simple random techniques. During the selection, a questionnaire was used to collect data from the respondents. The data were analyzed using appropriate descriptive of frequency, simple percentage, and mean. Results showed that Google Meet 149(74.5%), Telegram 120(60.0%), and Google Classroom 143(71.5%), are the prominent online classroom instruction used by the students in Obafemi Awolowo University, Ile-Ife. The results also showed that the freshmen’s perception towards online classroom instruction in Obafemi Awolowo University, Ile-Ife is low with cluster mean of 2.97. It further revealed that collaborative learning enhances the learning ability of below average learners more than that of the above average and average students (73.6%). Finally, the result showed that they are affirmative of the problems associated with online classroom instruction in Obafemi Awolowo University, Ile-Ife with cluster mean of 3.01. The result concluded that most Online platform used by the fresher’s students in Obafemi Awolowo University, Ile-Ife are Google Meet, Telegram and Google Classroom. The students have negatives perception towards online classroom instruction and the students are affirmative of the problems associated with online classroom instruction among physical science freshmen in Obafemi Awolowo University, Ile-Ife.Keywords: online, instruction, freshmen, physical science, collaborative
Procedia PDF Downloads 641972 Exploring Research Trends and Topics in Intervention on Metabolic Syndrome Using Network Analysis
Authors: Lee Soo-Kyoung, Kim Young-Su
Abstract:
This study established a network related to metabolic syndrome intervention by conducting a social network analysis of titles, keywords, and abstracts, and it identified emerging topics of research. It visualized an interconnection between critical keywords and investigated their frequency of appearance to construe the trends in metabolic syndrome intervention measures used in studies conducted over 38 years (1979–2017). It examined a collection of keywords from 8,285 studies using text rank analyzer, NetMiner 4.0. The analysis revealed 5 groups of newly emerging keywords in the research. By examining the relationship between keywords with reference to their betweenness centrality, the following clusters were identified. Thus if new researchers refer to existing trends to establish the subject of their study and the direction of the development of future research on metabolic syndrome intervention can be predicted.Keywords: intervention, metabolic syndrome, network analysis, research, the trend
Procedia PDF Downloads 2001971 Keyword Network Analysis on the Research Trends of Life-Long Education for People with Disabilities in Korea
Authors: Jakyoung Kim, Sungwook Jang
Abstract:
The purpose of this study is to examine the research trends of life-long education for people with disabilities using a keyword network analysis. For this purpose, 151 papers were selected from 594 papers retrieved using keywords such as 'people with disabilities' and 'life-long education' in the Korean Education and Research Information Service. The Keyword network analysis was constructed by extracting and coding the keyword used in the title of the selected papers. The frequency of the extracted keywords, the centrality of degree, and betweenness was analyzed by the keyword network. The results of the keyword network analysis are as follows. First, the main keywords that appeared frequently in the study of life-long education for people with disabilities were 'people with disabilities', 'life-long education', 'developmental disabilities', 'current situations', 'development'. The research trends of life-long education for people with disabilities are focused on the current status of the life-long education and the program development. Second, the keyword network analysis and visualization showed that the keywords with high frequency of occurrences also generally have high degree centrality and betweenness centrality. In terms of the keyword network diagram, it was confirmed that research trends of life-long education for people with disabilities are centered on six prominent keywords. Based on these results, it was discussed that life-long education for people with disabilities in the future needs to expand the subjects and the supporting areas of the life-long education, and the research needs to be further expanded into more detailed and specific areas.Keywords: life-long education, people with disabilities, research trends, keyword network analysis
Procedia PDF Downloads 3381970 Trend Analysis of Annual Total Precipitation Data in Konya
Authors: Naci Büyükkaracığan
Abstract:
Hydroclimatic observation values are used in the planning of the project of water resources. Climate variables are the first of the values used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.Keywords: trend analysis, precipitation, hydroclimatology, Konya
Procedia PDF Downloads 2181969 A Qualitative Research of Online Fraud Decision-Making Process
Authors: Semire Yekta
Abstract:
Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.Keywords: online fraud, data mining, manual review, social construction
Procedia PDF Downloads 3431968 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 1151967 Research on Quality Assurance in African Higher Education: A Bibliometric Mapping from 1999 to 2019
Authors: Luís M. João, Patrício Langa
Abstract:
The article reviews the literature on quality assurance (QA) in African higher education studies (HES) conducted through a bibliometric mapping of published papers between 1999 and 2019. Specifically, the article highlights the nuances of knowledge production in four scientific databases: Scopus, Web of Science (WoS), African Journal Online (AJOL), and Google Scholar. The analysis included 531 papers, of which 127 are from Scopus, 30 are from Web of Science, 85 are from African Journal Online, and 259 are from Google Scholar. In essence, 284 authors wrote these papers from 231 institutions and 69 different countries (i.e., Africa=54 and outside Africa=15). Results indicate the existing knowledge. This analysis allows the readers to understand the growth and development of the field during the two-decade period, identify key contributors, and observe potential trends or gaps in the research. The paper employs bibliometric mapping as its primary analytical lens. By utilizing this method, the study quantitatively assesses the publications related to QA in African HES, helping to identify patterns, collaboration networks, and disparities in research output. The bibliometric approach allows for a systematic and objective analysis of large datasets, offering a comprehensive view of the knowledge production in the field. Furthermore, the study highlights the lack of shared resources available to enhance quality in higher education institutions (HEIs) in Africa. This finding underscores the importance of promoting collaborative research efforts, knowledge exchange, and capacity building within the region to improve the overall quality of higher education. The paper argues that despite the growing quantity of QA research in African higher education, there are challenges related to citation impact and access to high-impact publication avenues for African researchers. It emphasises the need to promote collaborative research and resource-sharing to enhance the quality of HEIs in Africa. The analytical lenses of bibliometric mapping and the examination of publication players' scenarios contribute to a comprehensive understanding of the field and its implications for African higher education.Keywords: Africa, bibliometric research, higher education studies, quality assurance, scientific database, systematic review
Procedia PDF Downloads 421966 Time Series Analysis of Air Pollution in Suceava County ( Nord- East of Romania)
Authors: Lazurca Liliana Gina
Abstract:
Different time series analysis of yearly air pollution at Suceava County, Nord-East of Romania, has been performed in this study. The trends in the atmospheric concentrations of the main gaseous and particulate pollutants in urban, industrial and rural environments across Suceava County were estimated for the period of 2008-2014. The non-parametric Mann-Kendall test was used to determine the trends in the annual average concentrations of air pollutants (NO2, NO, NOx, SO2, CO, PM10, O3, C6H6). The slope was estimated using the non-parametric Sen’s method. Trend significance was assumed at the 5% significance level (p < 0.05) in the current study. During the 7 year period, trends in atmospheric concentrations may not have been monotonic, in some instances concentrations of species increased and subsequently decreased. The trend in Suceava County is to keep a low concentration of pollutants in ambient air respecting the limit values.All the results that we obtained show that Romania has taken a lot of regulatory measures to decrease the concentrations of air pollutants in the last decade, in Suceava County the air quality monitoring highlight for the most part of the analyzed pollutants decreasing trends. For the analyzed period we observed considerable improvements in background air in Suceava County.Keywords: pollutant, trend, air quality monitoring, Mann-Kendall
Procedia PDF Downloads 3651965 Gig Economy Development Trends in Georgia
Authors: Nino Grigolaia
Abstract:
The paper discusses the importance of the development of the gig economy in the economy of Georgia, analyzes the trends of the development of the gig economy, and identifies the main challenges in this field. Objective. The objective of the study is to assess the role of the gig economy, identify the main challenges and develop recommendations. Methodologies. Analysis, synthesis, comparison, induction and other methods are used; A desk study has been conducted. Findings. The advantages and disadvantages of the gig economy are identified, and the impact of the changes caused by the development of the gig economy on labor relations and employment is determined. It is argued that the ongoing technological changes have led to the emergence of new global trends in the labor market and increased the inequality of income distribution. Conclusions. Based on the analysis of the gig economy in the world and in Georgia, relevant recommendations are proposed, namely: establishing a new system of regulating the incomes of employees in this field, developing a real social protection mechanism, Development of political and legal instruments for regulation of gig economy and others.Keywords: gig economy, economy of Georgia, digital platforms, labor relations
Procedia PDF Downloads 681964 TimeTune: Personalized Study Plans Generation with Google Calendar Integration
Authors: Chevon Fernando, Banuka Athuraliya
Abstract:
The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.Keywords: personalized learning, study planner, time management, calendar integration
Procedia PDF Downloads 481963 Jurisdictional Issues between Competition Law and Data Protection Law in Protection of Privacy of Online Consumers
Authors: Pankhudi Khandelwal
Abstract:
The revenue models of digital giants such as Facebook and Google, use targeted advertising for revenues. Such a model requires huge amounts of consumer data. While the data protection law deals with the protection of personal data, however, this data is acquired by the companies on the basis of consent, performance of a contract, or legitimate interests. This paper analyses the role that competition law can play in evading these loopholes for the protection of data and privacy of online consumers. Digital markets have certain distinctive features such as network effects and feedback loop, which gives incumbents of these markets a first-mover advantage. This creates a situation where the winner takes it all, thus creating entry barriers and concentration in the market. It has been also seen that this dominant position is then used by the undertakings for leveraging in other markets. This can be harmful to the consumers in form of less privacy, less choice, and stifling innovation, as seen in the cases of Facebook Cambridge Analytica, Google Shopping, and Google Android. Therefore, the article aims to provide a legal framework wherein the data protection law and competition law can come together to provide a balance in regulating digital markets. The issue has become more relevant in light of the Facebook decision by German competition authority, where it was held that Facebook had abused its dominant position by not complying with data protection rules, which constituted an exploitative practice. The paper looks into the jurisdictional boundaries that the data protection and competition authorities can work from and suggests ex ante regulation through data protection law and ex post regulation through competition law. It further suggests a change in the consumer welfare standard where harm to privacy should be considered as an indicator of low quality.Keywords: data protection, dominance, ex ante regulation, ex post regulation
Procedia PDF Downloads 1831962 A Bibliometric Analysis of Research on E-learning in Physics Education: Trends, Patterns, and Future Directions
Authors: Siti Nurjanah, Supahar
Abstract:
E-learning has become an increasingly popular mode of instruction, particularly in the field of physics education, where it offers opportunities for interactive and engaging learning experiences. This research aims to analyze the trends of research that investigated e-learning in physics education. Data was extracted from Scopus's database using the keywords "physics" and "e-learning". Of the 380 articles obtained based on the search criteria, a trend analysis of the research was carried out with the help of RStudio using the biblioshiny package and VosViewer software. Analysis showed that publications on this topic have increased significantly from 2014 to 2021. The publication was dominated by researchers from the United States. The main journal that publishes articles on this topic is Proceedings Frontiers in Education Conference fie. The most widely cited articles generally focus on the effectiveness of Moodle for physics learning. Overall, this research provides an in-depth understanding of the trends and key findings of research related to e-learning in physics.Keywords: bibliometric analysis, physics education, biblioshiny, E-learning
Procedia PDF Downloads 411961 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 1491960 Using Multi-Level Analysis to Identify Future Trends in Small Device Digital Communication Examinations
Authors: Mark A. Spooner
Abstract:
The growth of technological advances in the digital communications industry has dictated the way forensic examination laboratories receive, analyze, and report on digital evidence. This study looks at the trends in a medium sized digital forensics lab that examines small communications devices (i.e., cellular telephones, tablets, thumb drives, etc.) over the past five years. As law enforcement and homeland security organizations budgets shrink, many agencies are being asked to perform more examinations with less resources available. Using multi-level statistical analysis using five years of examination data, this research shows the increasing technological demand trend. The research then extrapolates the current data into the model created and finds a continued exponential growth curve of said demands is well within the parameters defined earlier on in the research.Keywords: digital forensics, forensic examination, small device, trends
Procedia PDF Downloads 1991959 Literary Translation Human vs Machine: An Essay about Online Translation
Authors: F. L. Bernardo, R. A. S. Zacarias
Abstract:
The ways to translate are manifold since textual genres undergoing translations are diverse. In this essay, our goal is to give special attention to the literary genre and to the online translation tool Google Translate (GT), widely used either by nonprofessionals or by scholars, in order to show evidence of the indispensability of human wit in a good translation. Our study has its basis on a literary review of prominent authors, with emphasis on translation categories. Also highlighting the issue of polysemous literary translation, we aim to shed light on the translator’s craft and the fallible nature of online translation. To better illustrate these principles, the methodology consisted on performing a comparative analysis involving the original text Moll Flanders by Daniel Defoe in English to its online translation given by GT and to a translation into Brazilian Portuguese performed by a human. We proceeded to identifying and analyzing the degrees of textual equivalence according to the following categories: volume, levels and order. The results have attested the unsuitability in a translation done by a computer connected to the World Wide Web.Keywords: Google Translator, human translation, literary translation, Moll Flanders
Procedia PDF Downloads 6511958 Early Childhood Care and Education in the North-West of Nigeria: Trends and Challenges
Authors: Muhammad Adamu Kwankwaso
Abstract:
Early childhood is a critical period of rapid physical, cognitive and psycho-social development of a child. The quality of care and Education which a child receives at this crucial age will determine to a great extent the level of his/her physical and cognitive development in the future. In Nigeria, Early Childhood Care and Education (ECCE) is a fundamental aspect or form of Education for children between the age of 3-6. It was started after independence as pre-primary Education or early child development as contained in the 1977 National Policy on Education. The trends towards ECCE in Nigeria and the northwestern part of the country in particular keep up changing as in the case of other part of the world. The current trends are now towards expansions, inclusiveness, redefinition, early literacy, increased government participation and the unprecedented societal response and awareness towards the Education of the younger children. While all hands are on deck to ensure successful implementation of the ECCE programme, it is unfortunate that, ECCE is facing some challenges. This paper therefore, examines the trends in Early Childhood Care and Education and the major challenges in the north west of Nigeria. Some of the major challenges include, inadequate trained ECCE teachers, lack of unified curriculum, teacher pupil’s ratio, and the medium of instructions and inadequate infrastructural and teaching facilities respectively. To improve the situation the paper offered the following recommendations; establishment of more ECCE classes, enforcement for the use of mothers’ tongue or the languages of the immediate community as a medium of instructions, and adequate provision of infrastructural facilities and the unified curriculum across the northwestern States of Nigeria.Keywords: early childhood care, education, trends, challenges
Procedia PDF Downloads 4741957 Horizon Scanning of Disruptive Technology Trends in Marine for 2030 Horizon
Authors: Jose Gonzalez, Fai Cheng, Ivy Fan
Abstract:
Shipping has a mature and ever expanding worldwide market. The future of the marine industry itself is not only irrevocably linked with the global economic, social, and political landscape; it is also subject to the technological developments in different fields. Some of them may have never been linked to the marine industry before. Companies in the marine sector are getting more dependent on technologies to achieve competitive advantage in an increasing open market. Technologies can be fused across different business functions and geopolitical influences. A successful marine business should be prepared to embrace such potential changes that lie ahead. The present paper intends to articulate long-term marine technology strategies from an industrial perspective. Methodology and current development are introduced. The paper will also provide insight into future technological trends demand for major commercial ship types. It may also assist different stakeholders in tailoring their long-term strategies to achieve a Sea Change and to uncap opportunity.Keywords: commercial sector, marine, trends, technology
Procedia PDF Downloads 4091956 A Joinpoint Regression Analysis of Trends in Tuberculosis Notifications in Two Urban Regions in Namibia
Authors: Anna M. N. Shifotoka, Richard Walker, Katie Haighton, Richard McNally
Abstract:
An analysis of trends in Case Notification Rates (CNR) can be used to monitor the impact of Tuberculosis (TB) control interventions over time in order to inform the implementation of current and future TB interventions. A retrospective analysis of trends in TB CNR for two urban regions in Namibia, namely Khomas and Erongo regions, was conducted. TB case notification data were obtained from annual TB reports of the national TB programme, Ministry of Health and Social Services, covering the period from 1997 to 2015. Joinpoint regression was used to analyse trends in CNR for different types of TB groups. A trend was considered to be statistically significant when a p-value was less than 0.05. During the period under review, the crude CNR for all forms of TB declined from 808 to 400 per 100 000 population in Khomas, and from 1051 to 611 per 100 000 population in Erongo. In both regions, significant change points in trends were observed for all types of TB groups examined. In Khomas region, the trend for new smear positive pulmonary TB increased significantly by an annual rate of 4.1% (95% Confidence Interval (CI): 0.3% to 8.2%) during the period 1997 to 2004, and thereafter declined significantly by -6.2% (95%CI: -7.7% to -4.3%) per year until 2015. Similarly, the trend for smear negative pulmonary TB increased significantly by 23.7% (95%CI: 9.7 to 39.5) per year from 1997 to 2004 and thereafter declined significantly by an annual change of -26.4% (95%CI: -33.1% to -19.8%). The trend for all forms of TB CNR in Khomas region increased significantly by 8.1% (95%CI: 3.7 to 12.7) per year from 1997 to 2004 and thereafter declined significantly a rate of -8.7% (95%CI: -10.6 to -6.8). In Erongo region, the trend for smear positive pulmonary TB increased at a rate of 1.2% (95%CI: -1.2% to 3.6%) annually during the earlier years (1997 to 2008), and thereafter declined significantly by -9.3% (95%CI: -13.3% to -5.0%) per year from 2008 to 2015. Also in Erongo, the trend for all forms of TB CNR increased significantly by an annual rate of 4.0% (95%CI: 1.4% to 6.6%) during the years between 1997 to 2006 and thereafter declined significantly by -10.4% (95%CI: -12.7% to -8.0%) per year during 2006 to 2015. The trend for extra-pulmonary TB CNR declined but did not reach statistical significance in both regions. In conclusion, CNRs declined for all types of TB examined in both regions. Further research is needed to study trends for other TB dimensions such as treatment outcomes and notification of drug resistant TB cases.Keywords: epidemiology, Namibia, temporal trends, tuberculosis
Procedia PDF Downloads 1501955 Emerging Research Trends in Routing Protocol for Wireless Sensor Network
Authors: Subhra Prosun Paul, Shruti Aggarwal
Abstract:
Now a days Routing Protocol in Wireless Sensor Network has become a promising technique in the different fields of the latest computer technology. Routing in Wireless Sensor Network is a demanding task due to the different design issues of all sensor nodes. Network architecture, no of nodes, traffic of routing, the capacity of each sensor node, network consistency, service value are the important factor for the design and analysis of Routing Protocol in Wireless Sensor Network. Additionally, internal energy, the distance between nodes, the load of sensor nodes play a significant role in the efficient routing protocol. In this paper, our intention is to analyze the research trends in different routing protocols of Wireless Sensor Network in terms of different parameters. In order to explain the research trends on Routing Protocol in Wireless Sensor Network, different data related to this research topic are analyzed with the help of Web of Science and Scopus databases. The data analysis is performed from global perspective-taking different parameters like author, source, document, country, organization, keyword, year, and a number of the publication. Different types of experiments are also performed, which help us to evaluate the recent research tendency in the Routing Protocol of Wireless Sensor Network. In order to do this, we have used Web of Science and Scopus databases separately for data analysis. We have observed that there has been a tremendous development of research on this topic in the last few years as it has become a very popular topic day by day.Keywords: analysis, routing protocol, research trends, wireless sensor network
Procedia PDF Downloads 2151954 Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information
Authors: I. Nyoman Mahayasa Adiputra
Abstract:
Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar.Keywords: geographic information system, Google fusion table technology, delivery of disease data information, Denpasar city
Procedia PDF Downloads 1291953 The Challenges of Unemployment Situation and Trends in Nigeria
Authors: Simon Oga Egboja
Abstract:
In Africa, particularly in Nigeria, unemployment is a serious issue of concern to every citizen. Hence, this paper focuses on the employment situation and trends in Nigeria. It also investigated the causes why unemployment persists in the country. Prominent among them is the population explosion and rapid expansion of education opportunities all over the country without a corresponding increase in industrial establishment. The paper also discusses the way of reducing the rate of unemployment by encouraging graduates of tertiary institutions in Nigeria to read professional courses and also to indulge in the habit of establishing small-scale enterprises so that after them school they can be self-employed rather than relying solely on government for employment.Keywords: causes, population, remedy, unemployment
Procedia PDF Downloads 2711952 Climate Indices: A Key Element for Climate Change Adaptation and Ecosystem Forecasting - A Case Study for Alberta, Canada
Authors: Stefan W. Kienzle
Abstract:
The increasing number of occurrences of extreme weather and climate events have significant impacts on society and are the cause of continued and increasing loss of human and animal lives, loss or damage to property (houses, cars), and associated stresses to the public in coping with a changing climate. A climate index breaks down daily climate time series into meaningful derivatives, such as the annual number of frost days. Climate indices allow for the spatially consistent analysis of a wide range of climate-dependent variables, which enables the quantification and mapping of historical and future climate change across regions. As trends of phenomena such as the length of the growing season change differently in different hydro-climatological regions, mapping needs to be carried out at a high spatial resolution, such as the 10km by 10km Canadian Climate Grid, which has interpolated daily values from 1950 to 2017 for minimum and maximum temperature and precipitation. Climate indices form the basis for the analysis and comparison of means, extremes, trends, the quantification of changes, and their respective confidence levels. A total of 39 temperature indices and 16 precipitation indices were computed for the period 1951 to 2017 for the Province of Alberta. Temperature indices include the annual number of days with temperatures above or below certain threshold temperatures (0, +-10, +-20, +25, +30ºC), frost days, and timing of frost days, freeze-thaw days, growing or degree days, and energy demands for air conditioning and heating. Precipitation indices include daily and accumulated 3- and 5-day extremes, days with precipitation, period of days without precipitation, and snow and potential evapotranspiration. The rank-based nonparametric Mann-Kendall statistical test was used to determine the existence and significant levels of all associated trends. The slope of the trends was determined using the non-parametric Sen’s slope test. The Google mapping interface was developed to create the website albertaclimaterecords.com, from which beach of the 55 climate indices can be queried for any of the 6833 grid cells that make up Alberta. In addition to the climate indices, climate normals were calculated and mapped for four historical 30-year periods and one future period (1951-1980, 1961-1990, 1971-2000, 1981-2017, 2041-2070). While winters have warmed since the 1950s by between 4 - 5°C in the South and 6 - 7°C in the North, summers are showing the weakest warming during the same period, ranging from about 0.5 - 1.5°C. New agricultural opportunities exist in central regions where the number of heat units and growing degree days are increasing, and the number of frost days is decreasing. While the number of days below -20ºC has about halved across Alberta, the growing season has expanded by between two and five weeks since the 1950s. Interestingly, both the number of days with heat waves and cold spells have doubled to four-folded during the same period. This research demonstrates the enormous potential of using climate indices at the best regional spatial resolution possible to enable society to understand historical and future climate changes of their region.Keywords: climate change, climate indices, habitat risk, regional, mapping, extremes
Procedia PDF Downloads 921951 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms
Authors: Mosaad Khadr
Abstract:
Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula
Procedia PDF Downloads 1701950 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study
Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida
Abstract:
Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.
Procedia PDF Downloads 61949 Trends of Public-Private Partnership Infrastructure in Thailand
Authors: Wasaporn Techapeeraparnich
Abstract:
Bringing private investor involving in providing public infrastructure have been increasingly used worldwide, and there is no exception for developing countries like Thailand. Recently, there is a huge investment opportunity for public-private partnership (PPP) in Thailand, especially in the transportation sector. This paper analyses the development of the PPP since the early beginning of PPP in different service sectors. It also summarizes the development of PPP and its application in terms of usage, opportunities and trends particularly in the transport sector. The results are aimed to draw some lessons learned for future development.Keywords: case study, public-private partnership, transportation, Thailand
Procedia PDF Downloads 4341948 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 351947 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 1131946 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 307