Search results for: Bertrand-Chebyshev theorem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 154

Search results for: Bertrand-Chebyshev theorem

94 Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller

Authors: Hossein Kheiri, Bashir Naderi, Mohamad Reza Niknam

Abstract:

In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method.

Keywords: Lyapunov stability, synchronization, chaos, optimal control, adaptive control

Procedia PDF Downloads 487
93 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity

Authors: Jai Prakash Verma, Khushboo Verma

Abstract:

In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.

Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity

Procedia PDF Downloads 249
92 The Faithful Extension of Constant Height and Constant Width Between Finite Posets

Authors: Walied Hazim Sharif

Abstract:

The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for h w -inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-exrensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets is given to implement the presented theorems.

Keywords: faithful extension, poset, extension, inextension, height, width, hw-extensive, hw-inextensive

Procedia PDF Downloads 385
91 A Secure Digital Signature Scheme with Fault Tolerance Based on the Improved RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. In this paper, we propose a secure and efficient digital signature scheme with fault tolerance based on the improved RSA system. The proposed scheme for the RSA cryptosystem contains three prime numbers and overcome several attacks possible on RSA. By using the Chinese Reminder Theorem (CRT) the proposed scheme has a speed improvement on the RSA decryption side and it provides high security also.

Keywords: digital signature, fault tolerance, RSA, security analysis

Procedia PDF Downloads 476
90 Generating Links That Are Both Quasi-Alternating and Almost Alternating

Authors: Hamid Abchir, Mohammed Sabak2

Abstract:

We construct an infinite family of links which are both almost alternating and quasi-alternating from a given either almost alternating diagram representing a quasi-alternating link, or connected and reduced alternating tangle diagram. To do that we use what we call a dealternator extension which consists in replacing the dealternator by a rational tangle extending it. We note that all non-alternating and quasi-alternating Montesinos links can be obtained in that way. We check that all the obtained quasi-alternating links satisfy Conjecture 3.1 of Qazaqzeh et al. (JKTR 22 (6), 2013), that is the crossing number of a quasi-alternating link is less than or equal to its determinant. We also prove that the converse of Theorem 3.3 of Qazaqzeh et al. (JKTR 24 (1), 2015) is false.

Keywords: quasi-alternating links, almost alternating links, tangles, determinants

Procedia PDF Downloads 160
89 Faithful Extension of Constant Height and Constant Width between Finite Posets

Authors: Walied Hazim Sharif

Abstract:

The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for hw-inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-extensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets are given to implement the presented theorems.

Keywords: faithful extension, poset, extension, inextension, height, width, hw-extensive, hw-inextensive

Procedia PDF Downloads 260
88 Subclass of Close-To-Convex Harmonic Mappings

Authors: Jugal K. Prajapat, Manivannan M.

Abstract:

In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let B⁰H (α, β) denote the class of sense-preserving harmonic mappings f=h+g ̅ in the open unit disk D and satisfying the condition |z h״(z)+α (h׳(z)-1) | ≤ β - |z g″(z)+α g′(z)| (α > -1, β > 0). We have proved that B⁰H (α, β) is close-to-convex in D. We also prove that the functions in B⁰H (α, β) are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class B⁰H (α, β) of harmonic mapping are obtained.

Keywords: analytic, univalent, starlike, convex and close-to-convex

Procedia PDF Downloads 175
87 Ant Colony Optimization Control for Multilevel STATCOM

Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa

Abstract:

Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.

Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)

Procedia PDF Downloads 556
86 Basis Theorem of Equivalence of Explicit-Type Iterations for the Class of Multivalued Phi-Quasi-Contrative Maps in Modular Function Spaces

Authors: Hudson Akewe

Abstract:

We prove that the convergence of explicit Mann, explicit Ishikawa, explicit Noor, explicit SP, explicit multistep and explicit multistep-SP fixed point iterative procedures are equivalent for the classes of multi-valued phi-contraction, phi-Zamfirescu and phi-quasi-contractive mappings in the framework of modular function spaces. Our results complement equivalence results on normed and metric spaces in the literature as they elegantly cut out the triangle inequality.

Keywords: multistep iterative procedures, multivalued mappings, equivalence results, fixed point

Procedia PDF Downloads 132
85 Weak Solutions Of Stochastic Fractional Differential Equations

Authors: Lev Idels, Arcady Ponosov

Abstract:

Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.

Keywords: delay equations, operator methods, stochastic noise, weak solutions

Procedia PDF Downloads 209
84 On the Inequality between Queue Length and Virtual Waiting Time in Open Queueing Networks under Conditions of Heavy Traffic

Authors: Saulius Minkevicius, Edvinas Greicius

Abstract:

The paper is devoted to the analysis of queueing systems in the context of the network and communications theory. We investigate the inequality in an open queueing network and its applications to the theorems in heavy traffic conditions (fluid approximation, functional limit theorem, and law of the iterated logarithm) for a queue of customers in an open queueing network.

Keywords: fluid approximation, heavy traffic, models of information systems, open queueing network, queue length of customers, queueing theory

Procedia PDF Downloads 286
83 Response Solutions of 2-Dimensional Elliptic Degenerate Quasi-Periodic Systems With Small Parameters

Authors: Song Ni, Junxiang Xu

Abstract:

This paper concerns quasi-periodic perturbations with parameters of 2-dimensional degenerate systems. If the equilibrium point of the unperturbed system is elliptic-type degenerate. Assume that the perturbation is real analytic quasi-periodic with diophantine frequency. Without imposing any assumption on the perturbation, we can use a path of equilibrium points to tackle with the Melnikov non-resonance condition, then by the Leray-Schauder Continuation Theorem and the Kolmogorov-Arnold-Moser technique, it is proved that the equation has a small response solution for many sufficiently small parameters.

Keywords: quasi-periodic systems, KAM-iteration, degenerate equilibrium point, response solution

Procedia PDF Downloads 86
82 Science behind Quantum Teleportation

Authors: Ananya G., B. Varshitha, Shwetha S., Kavitha S. N., Praveen Kumar Gupta

Abstract:

Teleportation is the ability to travel by just reappearing at some other spot. Though teleportation has never been achieved, quantum teleportation is possible. Quantum teleportation is a process of transferring the quantum state of a particle onto another particle, under the circumstance that one does not get to know any information about the state in the process of transformation. This paper presents a brief overview of quantum teleportation, discussing the topics like Entanglement, EPR Paradox, Bell's Theorem, Qubits, elements for a successful teleport, some examples of advanced teleportation systems (also covers few ongoing experiments), applications (that includes quantum cryptography), and the current hurdles for future scientists interested in this field. Finally, major advantages and limitations to the existing teleportation theory are discussed.

Keywords: teleportation, quantum teleportation, quantum entanglement, qubits, EPR paradox, bell states, quantum particles, spooky action at a distance

Procedia PDF Downloads 117
81 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli

Abstract:

In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.

Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound

Procedia PDF Downloads 430
80 A Proof of the Fact that a Finite Morphism is Proper

Authors: Ying Yi Wu

Abstract:

In this paper, we present a proof of the fact that a finite morphism is proper. We show that a finite morphism is universally closed and of finite type, which are the conditions for properness. Our proof is based on the theory of schemes and involves the use of the projection formula and the base change theorem. We first show that a finite morphism is of finite type and then proceed to show that it is universally closed. We use the fact that a finite morphism is also an affine morphism, which allows us to use the theory of coherent sheaves and their modules. We then show that the map induced by a finite morphism is flat and that the module it induces is of finite type. We use these facts to show that a finite morphism is universally closed. Our proof is constructive, and we provide details for each step of the argument.

Keywords: finite, morphism, schemes, projection.

Procedia PDF Downloads 109
79 Non Linear Dynamic Analysis of Cantilever Beam with Breathing Crack Using XFEM

Authors: K. Vigneshwaran, Manoj Pandey

Abstract:

In this paper, breathing crack is considered for the non linear dynamic analysis. The stiffness of the cracked beam is found out by using influence coefficients. The influence coefficients are calculated by using Castigliano’s theorem and strain energy release rate (SERR). The equation of motion of the beam was derived by using Hamilton’s principle. The stiffness and natural frequencies for the cracked beam has been calculated using XFEM and Eigen approach. It is seen that due to presence of cracks, the stiffness and natural frequency changes. The mode shapes and the FRF for the uncracked and breathing cracked cantilever beam also obtained and compared.

Keywords: breathing crack, XFEM, mode shape, FRF, non linear analysis

Procedia PDF Downloads 344
78 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

Authors: Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

Keywords: conservation laws, diffusion equations, Cahn-Hilliard equations, evolving surfaces

Procedia PDF Downloads 494
77 A Quadratic Approach for Generating Pythagorean Triples

Authors: P. K. Rahul Krishna, S. Sandeep Kumar, Jayanthi Sunder Raj

Abstract:

The article explores one of the important relations between numbers-the Pythagorean triples (triplets) which finds its application in distance measurement, construction of roads, towers, buildings and wherever Pythagoras theorem finds its application. The Pythagorean triples are numbers, that satisfy the condition “In a given set of three natural numbers, the sum of squares of two natural numbers is equal to the square of the other natural number”. There are numerous methods and equations to obtain the triplets, which have their own merits and demerits. Here, quadratic approach for generating triples uses the hypotenuse leg difference method. The advantage is that variables are few and finally only three independent variables are present.

Keywords: arithmetic progression, hypotenuse leg difference method, natural numbers, Pythagorean triplets, quadratic equation

Procedia PDF Downloads 206
76 A Lightweight Authentication and Key Exchange Protocol Design for Smart Homes

Authors: Zhifu Li, Lei Li, Wanting Zhou, Yuanhang He

Abstract:

This paper proposed a lightweight certificate-less authentication and key exchange protocol (Light-CL-PKC) based on elliptic curve cryptography and the Chinese Remainder Theorem for smart home scenarios. Light-CL-PKC can efficiently reduce the computational cost of both sides of authentication by forgoing time-consuming bilinear pair operations and making full use of point-addition and point-multiplication operations on elliptic curves. The authentication and key exchange processes in this system are also completed in a a single round of communication between the two parties. The analysis result demonstrates that it can significantly minimize the communication overhead of more than 32.14% compared with the referenced protocols, while the runtime for both authentication and key exchange have also been significantly reduced.

Keywords: authentication, key exchange, certificateless public key cryptography, elliptic curve cryptography

Procedia PDF Downloads 98
75 A Study on Approximate Controllability of Impulsive Integrodifferential Systems with Non Local Conditions

Authors: Anandhi Santhosh

Abstract:

In order to describe various real-world problems in physical and engineering sciences subject to abrupt changes at certain instants during the evolution process, impulsive differential equations has been used to describe the system model. In this article, the problem of approximate controllability for nonlinear impulsive integrodifferential equations with state-dependent delay is investigated. We study the approximate controllability for nonlinear impulsive integrodifferential system under the assumption that the corresponding linear control system is approximately controllable. Using methods of functional analysis and semigroup theory, sufficient conditions are formulated and proved. Finally, an example is provided to illustrate the proposed theory.

Keywords: approximate controllability, impulsive differential system, fixed point theorem, state-dependent delay

Procedia PDF Downloads 383
74 Polar Bergman Polynomials on Domain with Corners

Authors: Laskri Yamina, Rehouma Abdel Hamid

Abstract:

In this paper we present a new class named polar of monic orthogonal polynomials with respect to the area measure supported on G, where G is a bounded simply-connected domain in the complex planeℂ. We analyze some open questions and discuss some ideas properties related to solving asymptotic behavior of polar Bergman polynomials over domains with corners and asymptotic behavior of modified Bergman polynomials by affine transforms in variable and polar modified Bergman polynomials by affine transforms in variable. We show that uniform asymptotic of Bergman polynomials over domains with corners and by Pritsker's theorem imply uniform asymptotic for all their derivatives.

Keywords: Bergman orthogonal polynomials, polar rthogonal polynomials, asymptotic behavior, Faber polynomials

Procedia PDF Downloads 445
73 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations

Authors: Wieslaw Marszalek, Zdzislaw Trzaska

Abstract:

Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.

Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits

Procedia PDF Downloads 470
72 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model

Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma

Abstract:

An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.

Keywords: Black-Scholes partial differential equations, Ito process, option price valuation, partial differential equations

Procedia PDF Downloads 145
71 Formal Verification for Ethereum Smart Contract Using Coq

Authors: Xia Yang, Zheng Yang, Haiyong Sun, Yan Fang, Jingyu Liu, Jia Song

Abstract:

The smart contract in Ethereum is a unique program deployed on the Ethereum Virtual Machine (EVM) to help manage cryptocurrency. The security of this smart contract is critical to Ethereum’s operation and highly sensitive. In this paper, we present a formal model for smart contract, using the separated term-obligation (STO) strategy to formalize and verify the smart contract. We use the IBM smart sponsor contract (SSC) as an example to elaborate the detail of the formalizing process. We also propose a formal smart sponsor contract model (FSSCM) and verify SSC’s security properties with an interactive theorem prover Coq. We found the 'Unchecked-Send' vulnerability in the SSC, using our formal model and verification method. Finally, we demonstrate how we can formalize and verify other smart contracts with this approach, and our work indicates that this formal verification can effectively verify the correctness and security of smart contracts.

Keywords: smart contract, formal verification, Ethereum, Coq

Procedia PDF Downloads 691
70 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 223
69 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity

Procedia PDF Downloads 279
68 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays

Authors: Sabri Arik

Abstract:

In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.

Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis

Procedia PDF Downloads 527
67 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs

Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli

Abstract:

We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.

Keywords: diffusion processes, metric graphs, invariant measure, reversibility

Procedia PDF Downloads 172
66 Stereotypical Perception as an Influential Factor in the Judicial Decision Making Process for Shoplifting Cases Presided over in the UK

Authors: Mariam Shah

Abstract:

Stereotypes are not generally considered to be an acceptable influence upon any decision making process, particularly those involving judicial decision making outcomes. Yet, we are confronted with an uncomfortable truth that stereotypes may be operating to influence judicial outcomes. Variances in sentencing outcomes are not easily explained away by criminological, psychological, or sociological theorem, but may be answered via qualitative research produced within the field of phenomenology. This paper will examine the current literature pertaining to the effect of stereotypes on the criminal justice system within the UK, and will also discuss what the implications are for stereotypical influences upon decision making in the criminal justice system. This paper will give particular focus to shoplifting offences dealt with in UK criminal courts, but this research has long reaching implications for the criminal process more generally.

Keywords: decision making, judicial decision making, phenomenology, shoplifting, stereotypes

Procedia PDF Downloads 333
65 Integrated Nested Laplace Approximations For Quantile Regression

Authors: Kajingulu Malandala, Ranganai Edmore

Abstract:

The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.

Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation

Procedia PDF Downloads 163