Subclass of Close-To-Convex Harmonic Mappings

Authors : Jugal K. Prajapat, Manivannan M.

Abstract : In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let $B^{0}H(\alpha, \beta)$ denote the class of sense-preserving harmonic mappings $f=h+g^{-}$ in the open unit disk D and satisfying the condition $|z h_{\square}(z)+\alpha$ $(h_{\square}(z)-1) | \leq \beta - |z g''(z)+\alpha g'(z)| (\alpha > -1, \beta > 0)$. We have proved that $B^{0}H(\alpha, \beta)$ is close-to-convex in D. We also prove that the functions in $B^{0}H(\alpha, \beta)$ are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class $B^{0}H(\alpha, \beta)$ of harmonic mapping are obtained.

Keywords : analytic, univalent, starlike, convex and close-to-convex

Conference Title : ICCACNFM 2019 : International Conference on Complex Analysis, Complex Numbers and Functions in Mathematics

Conference Location : London, United Kingdom **Conference Dates :** October 23-24, 2019