Search results for: torque distribution strategy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8989

Search results for: torque distribution strategy

169 Person-Centered Thinking as a Fundamental Approach to Improve Quality of Life

Authors: Christiane H. Kellner, Sarah Reker

Abstract:

The UN-Convention on the Rights of Persons with Disabilities, which Germany also ratified, postulates the necessity of user-centred design, especially when it comes to evaluating the individual needs and wishes of all citizens. Therefore, a multidimensional approach is required. Based on this insight, the structure of the town-like centre in Schönbrunn - a large residential complex and service provider for persons with disabilities in the outskirts of Munich - will be remodelled to open up the community to all people as well as transform social space. This strategy should lead to more equal opportunities and open the way for a much more diverse community. The research project “Index for participation development and quality of life for persons with disabilities” (TeLe-Index, 2014-2016), which is anchored at the Technische Universität München in Munich and at the Franziskuswerk Schönbrunn supports this transformation process called “Vision 2030”. In this context, we have provided academic supervision and support for three projects (the construction of a new school, inclusive housing for children and teenagers with disabilities and the professionalization of employees using person-centred planning). Since we cannot present all the issues of the umbrella-project within the conference framework, we will be focusing on one sub-project more in-depth, namely “The Person-Centred Think Tank” [Arbeitskreis Personenzentriertes Denken; PZD]. In the context of person-centred thinking (PCT), persons with disabilities are encouraged to (re)gain or retain control of their lives through the development of new choice options and the validation of individual lifestyles. PCT should thus foster and support both participation and quality of life. The project aims to establish PCT as a fundamental approach for both employees and persons with disabilities in the institution through in-house training for the staff and, subsequently, training for users. Hence, for the academic support and supervision team, the questions arising from this venture can be summed up as follows: (1) has PCT already gained a foothold at the Franziskuswerk Schönbrunn? And (2) how does it affect the interaction with persons with disabilities and how does it influence the latter’s everyday life? According to the holistic approach described above, the target groups for this study are both the staff and the users of the institution. Initially, we planned to implement the group discussion method for both target-groups. However, in the course of a pretest with persons with intellectual disabilities, it became clear that this type of interview, with hardly any external structuring, provided only limited feedback. In contrast, when the discussions were moderated, there was more interaction and dialogue between the interlocutors. Therefore, for this target-group, we introduced structured group interviews. The insights we have obtained until now will enable us to present the intermediary results of our evaluation. We analysed and evaluated the group interviews and discussions with the help of qualitative content analysis according to Mayring in order to obtain information about users’ quality of life. We sorted out the statements relating to quality of life obtained during the group interviews into three dimensions: subjective wellbeing, self-determination and participation. Nevertheless, the majority of statements were related to subjective wellbeing and self-determination. Thus, especially the limited feedback on participation clearly demonstrates that the lives of most users do not take place beyond the confines of the institution. A number of statements highlighted the fact that PCT is anchored in the everyday interactions within the groups. However, the implementation and fostering of PCT on a broader level could not be detected and thus remain further aims of the project. The additional interviews we have planned should validate the results obtained until now and open up new perspectives.

Keywords: person-centered thinking, research with persons with disabilities, residential complex and service provider, participation, self-determination.

Procedia PDF Downloads 326
168 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils

Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang

Abstract:

For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.

Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics

Procedia PDF Downloads 231
167 Investigating the Association between Escherichia Coli Infection and Breast Cancer Incidence: A Retrospective Analysis and Literature Review

Authors: Nadia Obaed, Lexi Frankel, Amalia Ardeljan, Denis Nigel, Anniki Witter, Omar Rashid

Abstract:

Breast cancer is the most common cancer among women, with a lifetime risk of one in eight of all women in the United States. Although breast cancer is prevalent throughout the world, the uneven distribution in incidence and mortality rates is shaped by the variation in population structure, environment, genetics and known lifestyle risk factors. Furthermore, the bacterial profile in healthy and cancerous breast tissue differs with a higher relative abundance of bacteria capable of causing DNA damage in breast cancer patients. Previous bacterial infections may change the composition of the microbiome and partially account for the environmental factors promoting breast cancer. One study found that higher amounts of Staphylococcus, Bacillus, and Enterobacteriaceae, of which Escherichia coli (E. coli) is a part, were present in breast tumor tissue. Based on E. coli’s ability to damage DNA, it is hypothesized that there is an increased risk of breast cancer associated with previous E. coli infection. Therefore, the purpose of this study was to evaluate the correlation between E. coli infection and the incidence of breast cancer. Holy Cross Health, Fort Lauderdale, provided access to the Health Insurance Portability and Accountability (HIPAA) compliant national database for the purpose of academic research. International Classification of Disease 9th and 10th Codes (ICD-9, ICD-10) was then used to conduct a retrospective analysis using data from January 2010 to December 2019. All breast cancer diagnoses and all patients infected versus not infected with E. coli that underwent typical E. coli treatment were investigated. The obtained data were matched for age, Charlson Comorbidity Score (CCI score), and antibiotic treatment. Standard statistical methods were applied to determine statistical significance and an odds ratio was used to estimate the relative risk. A total of 81286 patients were identified and analyzed from the initial query and then reduced to 31894 antibiotic-specific treated patients in both the infected and control group, respectively. The incidence of breast cancer was 2.51% and present in 2043 patients in the E. coli group compared to 5.996% and present in 4874 patients in the control group. The incidence of breast cancer was 3.84% and present in 1223 patients in the treated E. coli group compared to 6.38% and present in 2034 patients in the treated control group. The decreased incidence of breast cancer in the E. coli and treated E. coli groups was statistically significant with a p-value of 2.2x10-16 and 2.264x10-16, respectively. The odds ratio in the E. coli and treated E. coli groups was 0.784 and 0.787 with a 95% confidence interval, respectively (0.756-0.813; 0.743-0.833). The current study shows a statistically significant decrease in breast cancer incidence in association with previous Escherichia coli infection. Researching the relationship between single bacterial species is important as only up to 10% of breast cancer risk is attributable to genetics, while the contribution of environmental factors including previous infections potentially accounts for a majority of the preventable risk. Further evaluation is recommended to assess the potential and mechanism of E. coli in decreasing the risk of breast cancer.

Keywords: breast cancer, escherichia coli, incidence, infection, microbiome, risk

Procedia PDF Downloads 258
166 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 108
165 Aerofloral Studies and Allergenicity Potentials of Dominant Atmospheric Pollen Types at Some Locations in Northwestern Nigeria

Authors: Olugbenga S. Alebiosu, Olusola H. Adekanmbi, Oluwatoyin T. Ogundipe

Abstract:

Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders such as asthma, allergic rhinitis and atopic dermatitis among hypersensitive individuals. An aeropalynological study was conducted within a one year sampling period with a view to investigating the monthly depositional rate of atmospheric pollen and spores; influence of the immediate vegetation on airborne pollen distribution; allergenic potentials of dominant atmospheric pollen types at selected study locations in Bauchi and Taraba states, Northwestern Nigeria. A tauber-like pollen trap was employed in aerosampling with the sampler positioned at a height of 5 feet above the ground, followed by a monthly collection of the recipient solution for the sampling period. The collected samples were subjected to acetolysis treatment, examined microscopically with the identification of pollen grains and spores using reference materials and published photomicrographs. Plants within the surrounding vegetation were enumerated. Crude protein contents extracted from pollen types found to be commonly dominant at both study locations; Senna siamea, Terminalia cattapa, Panicum maximum and Zea mays were used to sensitize Musmusculus. Histopathological studies of bronchi and lung sections from certain dead M.musculus in the test groups was conducted. Blood samples were collected from the pre-orbital vein of M.musculus and processed for serological and haematological (differential and total white blood cell counts) studies. ELISA was used in determining the levels of serological parameters: IgE and cytokines (TNF-, IL-5, and IL-13). Statistical significance was observed in the correlation between the levels of serological and haematological parameters elicited by each test group, differences between the levels of serological and haematological parameters elicited by each test group and those of the control, as well as at varying sensitization periods. The results from this study revealed dominant airborne pollen types across the study locations; Syzygiumguineense, Tridaxprocumbens, Elaeisguineensis, Mimosa sp., Borreria sp., Terminalia sp., Senna sp. and Poaceae. Nephrolepis sp., Pteris sp. and a trilete fern also produced spores. This study also revealed that some of the airborne pollen types were produced by local plants at the study locations. Bronchi sections of M.musculus after first and second sensitizations, as well as lung section after first sensitization with Senna siamea, showed areas of necrosis. Statistical significance was recorded in the correlation between the levels of some serological and haematological parameters produced by each test group and those of the control, as well as at certain sensitization periods. The study revealed some candidate pollen allergens at the study locations allergy sufferers and also established a complexity of interaction between immune cells, IgE and cytokines at varied periods of mice sensitization and forming a paradigm of human immune response to different pollen allergens. However, it is expedient that further studies should be conducted on these candidate pollen allergens for their allergenicity potential in humans within their immediate environment.

Keywords: airborne, hypersensitive, mus musculus, pollen allergens, respiratory, tauber-like

Procedia PDF Downloads 138
164 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite

Authors: Ganesh V., Asit Kumar Khanra

Abstract:

An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.

Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy

Procedia PDF Downloads 26
163 Malaria Menace in Pregnancy; Hard to Ignore

Authors: Nautiyal Ruchira, Nautiyal Hemant, Chaudhury Devnanda, Bhargava Surbhi, Chauhan Nidhi

Abstract:

Introduction: South East Asian region contributes 2.5 million cases of malaria each year to the global burden of 300 to 500 million of which 76% is reported from India. Government of India launched a national program almost half a century ago, still malaria remains a major public health challenge. Pregnant women are more susceptible to severe malaria and its fetomaternal complications. Inadequate surveillance and under-reporting underestimates the problem. Aim: Present study aimed to analyze the clinical course and pattern of malaria during pregnancy and to study the feto-maternal outcome. Methodology: This is a prospective observational study carried out at Himalayan Institute of Medical Sciences – a tertiary care center in the sub-Himalayan state of Uttarakhand, Northern India. All the pregnant women with malaria and its complications were recruited in the study during 2009 to 2014 which included referred cases from the state of western Uttar Pradesh. A thorough history and clinical examination were carried out to assess maternal and fetal condition. Relevant investigations including haemogram, platelet count, LFT, RFT, and USG was done. Blood slides and rapid diagnostic tests were done to diagnose the type of malaria.The primary outcomes measured were the type of malaria infection, maternal complications associated with malaria, outcome of pregnancy and effect on the fetus. Results: 67 antenatal cases with malaria infection were studied. 71% patients were diagnosed with plasmodium vivax infection, 25% cases were plasmodium falciparum positive and in 3% cases mixed infection was found. 38(56%) patients were primigravida and 29(43%) were multiparous. Most of the patients had already received some treatment from their local doctors and presented with severe malaria with the complications. Thrombocytopenia was the commonest manifestation seen in 35(52%) patients, jaundice in 28%, severe anemia in 18%, and severe oligohydramnios in 10% and renal failure in 6% cases. Regarding pregnancy outcome there were 44 % preterm deliveries, 22% had IUFD and abortions in 6% cases.20% of newborn were low birth weight and 6% were IUGR. There was only one maternal death which occurred due to ARDS in falciparum malaria. Although Plasmodium vivax was the main parasite considering the severity of clinical presentation, all the patients received intensive care. As most of the patients had received chloroquine therapy hence they were treated with IV artesunate followed by oral artemesinin combination therapy. Other therapies in the form of packed RBC’s and platelet transfusions, dialysis and ventilator support were provided when required. Conclusion: Even in areas with annual parasite index (API) less than 2 like ours, malaria in pregnancy could be an alarming problem. Vivax malaria cannot be considered benign in pregnancy because of high incidence of morbidity. Prompt diagnosis and aggressive treatment can reduce morbidity and mortality significantly. Increased community level research, integrating ANC checkups with the distribution of insecticide-treated nets in areas of high endemicity, imparting education and awareness will strengthen the existing control strategies.

Keywords: severe malaria, pregnancy, plasmodium vivax, plasmodium falciparum

Procedia PDF Downloads 282
162 Reducing Road Traffic Accident: Rapid Evidence Synthesis for Low and Middle Income Countries

Authors: Tesfaye Dagne, Dagmawit Solomon, Firmaye Bogale, Yosef Gebreyohannes, Samson Mideksa, Mamuye Hadis, Desalegn Ararso, Ermias Woldie, Tsegaye Getachew, Sabit Ababor, Zelalem Kebede

Abstract:

Globally, road traffic accident (RTA) is causing millions of deaths and injuries every year. It is one of the leading causes of death among people of all age groups and the problem is worse among young reproductive age group. Moreover the problem is increasing with an increasing number of vehicles. The majority of the problem happen in low and middle income countries (LMIC), even if the number of vehicles in these countries is low compared to their population. So, the objective of this paper is to summarize the best available evidence on interventions that can reduce road traffic accidents in low and middle income countries (LMIC). Method: A rapid evidence synthesis approach adapted from the SURE Rapid Response Service was applied to search, appraise and summarize the best available evidence on effective intervention in reducing road traffic injury. To answer the question under review, we searched for relevant studies from databases including PubMed, the Cochrane Library, TRANSPORT, Health system evidence, Epistemonikos, and SUPPORT summary. The following key terms were used for searching: Road traffic accident, RTA, Injury, Reduc*, Prevent*, Minimiz*, “Low and middle-income country”, LMIC. We found 18 articles through a search of different databases mentioned above. After screening for the titles and abstracts of the articles, four of them which satisfy the inclusion criteria were included in the final review. Then we appraised and graded the methodological quality of systematic reviews that are deemed to be highly relevant using AMSTAR. Finding: The identified interventions to reduce road traffic accidents were legislation and enforcement, public awareness/education, speed control/ rumble strips, road improvement, mandatory motorcycle helmet, graduated driver license, street lighting. Legislation and Enforcement: Legislation focusing on mandatory motorcycle helmet usage, banning cellular phone usage when driving, seat belt laws, decreasing the legal blood alcohol content (BAC) level from 0.06 g/L to 0.02 g/L bring the best result where enforcement is there. Public Awareness/Education: focusing on seat belt use, child restraint use, educational training in health centers and schools/universities, and public awareness with media through the distribution of videos, posters/souvenirs, and pamphlets are effective in the short run. Speed Control: through traffic calming bumps, or speed bumps, rumbled strips are effective in reducing accidents and fatality. Mandatory Motorcycle Helmet: is associated with reduction in mortality. Graduated driver’s license (GDL): reduce road traffic injury by 19%. Street lighting: is a low-cost intervention which may reduce road traffic accidents.

Keywords: evidence synthesis, injury, rapid review, reducing, road traffic accident

Procedia PDF Downloads 170
161 Wealth-Based Inequalities in Child Health: A Micro-Level Analysis of Maharashtra State in India

Authors: V. Rekha, Rama Pal

Abstract:

The study examines the degree and magnitude of wealth-based inequalities in child health and its determinants in India. Despite making strides in economic growth, India has failed to secure a better nutritional status for all the children. The country currently faces the double burden of malnutrition as well as the problems of overweight and obesity. Child malnutrition, obesity, unsafe water, sanitation among others are identified as the risk factors for Non-Communicable Diseases (NCDs). Eliminating malnutrition in all its forms will catalyse improved health and economic outcomes. The assessment of the distributive dimension of child health across various segments of the population is essential for effective policy intervention. The study utilises the fourth round of District Level Health Survey for 2012-13 to analyse the inequalities among children in the age group 0-14 years in Maharashtra, a state in the western region of India with a population of 11.24 crores which constitutes 9.3 percent of the total population of India. The study considers the extent of health inequality by state, districts, sector, age-groups, and gender. The z-scores of four child health outcome variables are computed to assess the nutritional status of pre-school and school children using WHO reference. The descriptive statistics, concentration curves, concentration indices, correlation matrix, logistic regression have been used to analyse the data. The results indicate that magnitude of inequality is higher in Maharashtra and child health inequalities manifest primarily among the weaker sections of society. The concentration curves show that there exists a pro-poor inequality in child malnutrition measured by stunting, wasting, underweight, anaemia and a pro-rich overweight inequality. The inequalities in anaemia are observably lower due to the widespread prevalence. Rural areas exhibit a higher incidence of malnutrition, but greater inequality is observed in the urban areas. Overall, the wealth-based inequalities do not vary significantly between age groups. It appears that there is no gender discrimination at the state level. Further, rural-urban differentials in gender show that boys from the rural area and girls living in the urban region experience higher disparities in health. The relative distribution of undernutrition across districts in Maharashtra reveals that malnutrition is rampant and considerable heterogeneity also exists. A negative correlation is established between malnutrition prevalence and human development indicators. The findings of logistic regression analysis reveal that lower economic status of the household is associated with a higher probability of being malnourished. The study recognises household wealth, education of the parent, child gender, and household size as factors significantly related to malnutrition. The results suggest that among the supply-side variables, child-oriented government programmes might be beneficial in tackling nutrition deficit. In order to bridge the health inequality gap, the government needs to target the schemes better and should expand the coverage of services.

Keywords: child health, inequality, malnutrition, obesity

Procedia PDF Downloads 149
160 Rainwater Management: A Case Study of Residential Reconstruction of Cultural Heritage Buildings in Russia

Authors: V. Vsevolozhskaia

Abstract:

Since 1990, energy-efficient development concepts have constituted both a turning point in civil engineering and a challenge for an environmentally friendly future. Energy and water currently play an essential role in the sustainable economic growth of the world in general and Russia in particular: the efficiency of the water supply system is the second most important parameter for energy consumption according to the British assessment method, while the water-energy nexus has been identified as a focus for accelerating sustainable growth and developing effective, innovative solutions. The activities considered in this study were aimed at organizing and executing the renovation of the property in residential buildings located in St. Petersburg, specifically buildings with local or federal historical heritage status under the control of the St. Petersburg Committee for the State Inspection and Protection of Historic and Cultural Monuments (KGIOP) and UNESCO. Even after reconstruction, these buildings still fall into energy efficiency class D. Russian Government Resolution No. 87 on the structure and required content of project documentation contains a section entitled ‘Measures to ensure compliance with energy efficiency and equipment requirements for buildings, structures, and constructions with energy metering devices’. Mention is made of the need to install collectors and meters, which only calculate energy, neglecting the main purpose: to make buildings more energy-efficient, potentially even energy efficiency class A. The least-explored aspects of energy-efficient technology in the Russian Federation remain the water balance and the possibility of implementing rain and meltwater collection systems. These modern technologies are used exclusively for new buildings due to a lack of government directive to create project documentation during the planning of major renovations and reconstruction that would include the collection and reuse of rainwater. Energy-efficient technology for rain and meltwater collection is currently applied only to new buildings, even though research has proved that using rainwater is safe and offers a huge step forward in terms of eco-efficiency analysis and water innovation. Where conservation is mandatory, making changes to protected sites is prohibited. In most cases, the protected site is the cultural heritage building itself, including the main walls and roof. However, the installation of a second water supply system and collection of rainwater would not affect the protected building itself. Water efficiency in St. Petersburg is currently considered only from the point of view of the installation that regulates the flow of the pipeline shutoff valves. The development of technical guidelines for the use of grey- and/or rainwater to meet the needs of residential buildings during reconstruction or renovation is not yet complete. The ideas for water treatment, collection and distribution systems presented in this study should be taken into consideration during the reconstruction or renovation of residential cultural heritage buildings under the protection of KGIOP and UNESCO. The methodology applied also has the potential to be extended to other cultural heritage sites in northern countries and lands with an average annual rainfall of over 600 mm to cover average toilet-flush needs.

Keywords: cultural heritage, energy efficiency, renovation, rainwater collection, reconstruction, water management, water supply

Procedia PDF Downloads 96
159 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 452
158 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 65
157 Role of Indigenous Women in Securing Sustainable Livelihoods in Western Himalayan Region, India

Authors: Haresh Sharma, Jaimini Luharia

Abstract:

The ecology in the Western Himalayan region transforms with the change in altitude. This change is observed in terms of topography, species of flora and fauna and the quality of the soil. The current study focuses on women of indigenous communities of Pangi Valley, which is located in the state of Himachal Pradesh, India. The valley is bifurcated into three different areas –Saichu, Hudan Bhatori, and Sural Bhatori valleys. It is one of the most remote, rugged and difficult to access tribal regions of Chamba district. The altitude of the valley ranges from 2,000 m to 6,000 m above sea level. The Pangi valley is inhabited by ‘Pangwals’ and ‘Bhots’ tribes of the Himalayas who speak their local tribal language called’ Pangwali’. The valley is cut-off from the mainland due to heavy snow and lack of proper roads during peak winters. Due to difficult geographical location, the daily lives of the people are constantly challenged, and they are most of the times deprived of benefits targeted through government programs. However, the indigenous communities earn their livelihood through livestock and forest-based produce while some of them migrate to nearby places for better work. The current study involves snowball sampling methodology for data collection along with in-depth interviews of women members of Self-Help Groups and women farmers. The findings reveal that the lives of these indigenous communities largely depend on forest-based products. So, it creates all the more significance of enhancing, maintaining, and consuming natural resources sustainably. Under such circumstances, the women of the community play a significant role of guardians in conservation and protection of the forests. They are the custodians of traditional knowledge of environment conservation practices that have been followed for many years in the region. The present study also sought to establish a relationship between some of the development initiatives undertaken by the women in the valley that stimulate sustainable mountain economy and conservation practices. These initiatives include cultivation of products like hazelnut, ‘Gucchi’ rare quality mushroom, medicinal plants exclusively found in the region, thereby promoting long term sustainable conservation of agro-biodiversity of the Western Himalayan region. The measures taken by the community women are commendable as they ensure access and distribution of natural resources as well as manage them for future generations. Apart from this, the tribal women have actively formed Self-Help Groups promoting financial inclusion through various activities that augment ownership and accountability towards the overall development of the communities. But, the results also suggest that there’s not enough recognition given to women’s role in forests conservation practices due to several local socio-political reasons. There are not enough research studies done on communities of Pangi Valley due to inaccessibility created out of lack of proper roads and other resources. Also, there emerged a need to concretize indigenous and traditional knowledge of conservation practices followed by women in the community.

Keywords: forest conservation, indigenous community women, sustainable livelihoods, sustainable development, poverty alleviation, Western Himalayas

Procedia PDF Downloads 125
156 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 203
155 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 304
154 Opportunities for Reducing Post-Harvest Losses of Cactus Pear (Opuntia Ficus-Indica) to Improve Small-Holder Farmers Income in Eastern Tigray, Northern Ethiopia: Value Chain Approach

Authors: Meron Zenaselase Rata, Euridice Leyequien Abarca

Abstract:

The production of major crops in Northern Ethiopia, especially the Tigray Region, is at subsistence level due to drought, erratic rainfall, and poor soil fertility. Since cactus pear is a drought-resistant plant, it is considered as a lifesaver fruit and a strategy for poverty reduction in a drought-affected area of the region. Despite its contribution to household income and food security in the area, the cactus pear sub-sector is experiencing many constraints with limited attention given to its post-harvest loss management. Therefore, this research was carried out to identify opportunities for reducing post-harvest losses and recommend possible strategies to reduce post-harvest losses, thereby improving production and smallholder’s income. Both probability and non-probability sampling techniques were employed to collect the data. Ganta Afeshum district was selected from Eastern Tigray, and two peasant associations (Buket and Golea) were also selected from the district purposively for being potential in cactus pear production. Simple random sampling techniques were employed to survey 30 households from each of the two peasant associations, and a semi-structured questionnaire was used as a tool for data collection. Moreover, in this research 2 collectors, 2 wholesalers, 1 processor, 3 retailers, 2 consumers were interviewed; and two focus group discussion was also done with 14 key farmers using semi-structured checklist; and key informant interview with governmental and non-governmental organizations were interviewed to gather more information about the cactus pear production, post-harvest losses, the strategies used to reduce the post-harvest losses and suggestions to improve the post-harvest management. To enter and analyze the quantitative data, SPSS version 20 was used, whereas MS-word were used to transcribe the qualitative data. The data were presented using frequency and descriptive tables and graphs. The data analysis was also done using a chain map, correlations, stakeholder matrix, and gross margin. Mean comparisons like ANOVA and t-test between variables were used. The analysis result shows that the present cactus pear value chain involves main actors and supporters. However, there is inadequate information flow and informal market linkages among actors in the cactus pear value chain. The farmer's gross margin is higher when they sell to the processor than sell to collectors. The significant postharvest loss in the cactus pear value chain is at the producer level, followed by wholesalers and retailers. The maximum and minimum volume of post-harvest losses at the producer level is 4212 and 240 kgs per season. The post-harvest loss was caused by limited farmers skill on-farm management and harvesting, low market price, limited market information, absence of producer organization, poor post-harvest handling, absence of cold storage, absence of collection centers, poor infrastructure, inadequate credit access, using traditional transportation system, absence of quality control, illegal traders, inadequate research and extension services and using inappropriate packaging material. Therefore, some of the recommendations were providing adequate practical training, forming producer organizations, and constructing collection centers.

Keywords: cactus pear, post-harvest losses, profit margin, value-chain

Procedia PDF Downloads 141
153 Imaging Spectrum of Central Nervous System Tuberculosis on Magnetic Resonance Imaging: Correlation with Clinical and Microbiological Results

Authors: Vasundhara Arora, Anupam Jhobta, Suresh Thakur, Sanjiv Sharma

Abstract:

Aims and Objectives: Intracranial tuberculosis (TB) is one of the most devastating manifestations of TB and a challenging public health issue of considerable importance and magnitude world over. This study elaborates on the imaging spectrum of neurotuberculosis on magnetic resonance imaging (MRI) in 29 clinically suspected cases from a tertiary care hospital. Materials and Methods: The prospective hospital based evaluation of MR imaging features of neuro-tuberculosis in 29 clinically suspected cases was carried out in Department of Radio-diagnosis, Indira Gandhi Medical Hospital from July 2017 to August 2018. MR Images were obtained on a 1.5 T Magnetom Avanto machine and were analyzed to identify any abnormal meningeal enhancement or parenchymal lesions. Microbiological and Biochemical CSF analysis was performed in radio-logically suspected cases and the results were compared with the imaging data. Clinical follow up of the patients started on anti-tuberculous treatment was done to evaluate the response to treatment and clinical outcome. Results: Age range of patients in the study was between 1 year to 73 years. The mean age of presentation was 11.5 years. No significant difference in the distribution of cerebral tuberculosis was noted among the two genders. Imaging findings of neuro-tuberculosis obtained were varied and non specific ranging from lepto-meningeal enhancement, cerebritis to space occupying lesions such as tuberculomas and tubercular abscesses. Complications presenting as hydrocephalus (n= 7) and infarcts (n=9) was noted in few of these patients. 29 patients showed radiological suspicion of CNS tuberculosis with meningitis alone observed in 11 cases, tuberculomas alone were observed in 4 cases, meningitis with parenchymal tuberculomas in 11 cases. Tubercular abscess and cerebritis were observed in one case each. Tuberculous arachnoiditis was noted in one patient. Gene expert positivity was obtained in 11 out of 29 radiologically suspected patients; none of the patients showed culture positivity. Meningeal form of the disease alone showed higher positivity rate of gene Xpert (n=5) followed by combination of meningeal and parenchymal forms of disease (n=4). The parenchymal manifestation of disease alone showed least positivity rates (n= 3) with gene xpert testing. All 29 patients were started on anti tubercular treatment based on radiological suspicion of the disease with clinical improvement observed in 27 treated patients. Conclusions: In our study, higher incidence of neuro- tuberculosis was noted in paediatric population with predominance of the meningeal form of the disease. Gene Xpert positivity obtained was low due to paucibacillary nature of cerebrospinal fluid (CSF) with even lower positivity of CSF samples in parenchymal form of the manifestation. MRI showed high accuracy in detecting CNS lesions in neuro-tuberculosis. Hence, it can be concluded that MRI plays a crucial role in the diagnosis because of its inherent sensitivity and specificity and is an indispensible imaging modality. It caters to the need of early diagnosis owing to poor sensitivity of microbiological tests more so in the parenchymal manifestation of the disease.

Keywords: neurotuberculosis, tubercular abscess, tuberculoma, tuberculous meningitis

Procedia PDF Downloads 175
152 An Analytic Cross-Sectional Study on the Association between Social Determinants of Health, Maternal and Child Health-Related Knowledge and Attitudes, and Utilization of Maternal, Newborn, Child Health and Nutrition Strategy-Prescribed Services for M

Authors: Rafael Carlos C. Aniceto, Bryce Abraham M. Anos, Don Christian A. Cornel, Marjerie Brianna S. Go, Samantha Nicole U. Roque, Earl Christian C. Te

Abstract:

Indigenous peoples (IPs) in the Philippines are a vulnerable, marginalized group in terms of health and overall well-being due to social inequities and cultural differences. National standards regarding maternal healthcare are geared towards facility-based delivery with modern medicine, health services, and skilled birth attendants. Standards and procedures of care for pregnant mothers do not take into account cultural differences between indigenous people and the majority of the population. There do exist, however, numerous other factors that cause relatively poorer health outcomes among indigenous peoples (IPs). This analytic cross-sectional study sought to determine the association between social determinants of health (SDH), focusing on status as indigenous peoples, and maternal health-related knowledge and attitudes (KA), and health behavior of the Dumagat-Agta indigenous people of Barangay Catablingan and Barangay San Marcelino, General Nakar, Quezon Province, and their utilization of health facilities for antenatal care, facility-based delivery and postpartum care, which would affect their health outcomes (that were not within the scope of this study). To quantitatively measure the primary/secondary exposures and outcomes, a total of 90 face-to-face interviews with IP and non-IP mothers were done. For qualitative information, participant observation among 6 communities (5 IP and 1 non-IP), 11 key informant interviews (traditional and modern health providers) and 4 focused group discussions among IP mothers were conducted. Primary quantitative analyses included chi-squared, T-test and binary logistic regression, while secondary qualitative analyses involved thematic analysis and triangulation. The researchers spent a total of 15 days in the community to learn the culture and participate in the practices of the Dumagat-Agta more intensively and deeply. Overall, utilization of all MNCHN services measured in the study was lower for IP mothers compared to their non-IP counterparts. After controlling for confounders measured in the study, IP status (primary exposure) was found to be significantly correlated with utilization of and adherence to two MNCHN-prescribed services: number of antenatal care check-ups and place of delivery (secondary outcomes). Findings show that being an indigenous mother leads to unfavorable social determinants of health, and if compounded by a difference in knowledge and attitudes, would then lead to poor levels of utilization of MNCHN-prescribed services. Key themes from qualitative analyses show that factors that affected utilization were: culture, land alienation, social discrimination, socioeconomic status, and relations between IPs and non-IPs, specifically with non-IP healthcare providers. The findings of this study aim to be used to help and guide in policy-making, to provide healthcare that is not only adequate and of quality, but more importantly, that addresses inequities stemming from various social determinants, and which is socio-culturally acceptable to indigenous communities. To address the root causes of health problems of IPs, there must be full recognition and exercise of their collective rights to communal assets, specifically land, and self-determination. This would improve maternal and child health outcomes to one of the most vulnerable and neglected sectors in society today.

Keywords: child health, indigenous people, knowledge-attitudes-practices, maternal health, social determinants of health

Procedia PDF Downloads 198
151 Rationally Designed Dual PARP-HDAC Inhibitor Elicits Striking Anti-leukemic Effects

Authors: Amandeep Thakur, Yi-Hsuan Chu, Chun-Hsu Pan, Kunal Nepali

Abstract:

The transfer of ADP-ribose residues onto target substrates from nicotinamide adenine dinucleotide (NAD) (PARylation) is catalyzed by Poly (ADP-ribose) polymerases (PARPs). Amongst the PARP family members, the DNA damage response in cancer is majorly regulated by PARP1 and PARP2. The blockade of DNA repair by PARP inhibitors leads to the progression of DNA single-strand breaks (induced by some triggering factors) to double-strand breaks. Notably, PARP inhibitors are remarkably effective in cancers with defective homologous recombination repair (HRR). In particular, cancer cells with BRCA mutations are responsive to therapy with PARP inhibitors. The aforementioned requirement for PARP inhibitors to be effective confers a narrow activity spectrum to PARP inhibitors, which hinders their clinical applicability. Thus, the quest to expand the application horizons of PARP inhibitors beyond BRCA mutations is the need of the hour. Literature precedents reveal that HDAC inhibition induces BRCAness in cancer cells and can broaden the therapeutic scope of PARP inhibitors. Driven by such disclosures, dual inhibitors targeting both PARP and HDAC enzymes were designed by our research group to extend the efficacy of PARP inhibitors beyond BRCA-mutated cancers to cancers with induced BRCAness. The design strategy involved the installation of Veliparib, an investigational PARP inhibitor, as a surface recognition part in the HDAC inhibitor pharmacophore model. The chemical architecture of veliparib was deemed appropriate as a starting point for the generation of dual inhibitors by virtue of its size and structural flexibility. A validatory docking study was conducted at the outset to predict the binding mode of the designed dual modulatory chemical architectures. Subsequently, the designed chemical architectures were synthesized via a multistep synthetic route and evaluated for antitumor efficacy. Delightfully, one compound manifested impressive anti-leukemic effects (HL-60 cell lines) mediated via dual inhibition of PARP and class I HDACs. The outcome of the western blot analysis revealed that the compound could downregulate the expression levels of PARP1 and PARP2 and the HDAC isoforms (HDAC1, 2, and 3). Also, the dual PARP-HDAC inhibitor upregulated the protein expression of the acetyl histone H3, confirming its abrogation potential for class I HDACs. In addition, the dual modulator could arrest the cell cycle at the G0/G1 phase and induce autophagy. Further, polymer-based nanoformulation of the dual inhibitor was furnished to afford targeted delivery of the dual inhibitor at the cancer site. Transmission electron microscopy (TEM) results indicate that the nanoparticles were monodispersed and spherical. Moreover, the polymeric nanoformulation exhibited an appropriate particle size. Delightfully, pH-sensitive behavior was manifested by the polymeric nanoformulation that led to selective antitumor effects towards the HL-60 cell lines. In light of the magnificent anti-leukemic profile of the identified dual PARP-HDAC inhibitor, in-vivo studies (pharmacokinetics and pharmacodynamics) are currently being conducted. Notably, the optimistic findings of the aforementioned study have spurred our research group to initiate several medicinal chemistry campaigns to create bifunctional small molecule inhibitors addressing PARP as the primary target.

Keywords: PARP inhibitors, HDAC inhibitors, BRCA mutations, leukemia

Procedia PDF Downloads 32
150 Conservation Challenges of Fish and Fisheries in Lake Tana, Ethiopia

Authors: Shewit Kidane, Abebe Getahun, Wassie Anteneh, Admassu Demeke, Peter Goethals

Abstract:

We have reviewed major findings of scientific studies on Lake Tana fish resources and their threats. The aim was to provide summarized information for all concerned bodies and international readers to get full and comprehensive picture about the lake’s fish resource and conservation problems. The Lake Tana watershed comprise 28 fish species, of which 21 are endemic. Moreover, Lake Tana is the one among the top 250 lake regions of global importance for biodiversity and it is world recognized migratory birds wintering site. Lake Tana together with its adjacent wetlands provide directly and indirectly a livelihood for more than 500,000 people. However, owing to anthropogenic activities, the lake ecosystem as well as fish and attributes of the fisheries sector are severely degraded. Fish species in Lake Tana are suffering due to illegal fishing, damming, habitat/breeding ground degradation, wastewater disposal, introduction of exotic species, and lack of implementing fisheries regulations. Currently, more than 98% of fishers in Lake Tana are using the most destructive monofilament. Indeed, dams, irrigation schemes and hydropower are constructed in response to the emerging development need only. Mitigation techniques such as construction of fish ladders for the migratory fishes are the most forgotten. In addition, water resource developers are likely unaware of both the importance of the fisheries and the impact of dam construction on fish. As a result, the biodiversity issue is often missed. Besides, Lake Tana wetlands, which play vital role to sustain biodiversity, are not wisely utilised in the sense of the Ramsar Convention’s definition. Wetlands are considered as unhealthy and hence wetland conversion for the purpose of recession agriculture is still seen as advanced mode of development. As a result, many wetlands in the lake watershed are shrinking drastically over time and Cyprus papyrus, one of the characteristic features of Lake Tana, has dramatically declined in its distribution with some local extinction. Furthermore, the recently introduced water hyacinth (Eichhornia crassipes) is creating immense problems on the lake ecosystem. Moreover, currently, 1.56 million tons of sediment have deposited into the lake each year and wastes from the industries and residents are directly discharged into the lake without treatment. Recently, sign of eutrophication is revealed in Lake Tana and most coarsely, the incidence of cyanobacteria genus Microcystis was reported from the Bahir Dar Gulf of Lake Tana. Thus, the direct dependency of the communities on the lake water for drinking as well as to wash their body and clothes and its fisheries make the problem worst. Indeed, since it is home to many endemic migratory fish, such kind of unregulated developmental activities could be detrimental to their stocks. This can be best illustrated by the drastic stock reduction (>75% in biomass) of the world unique Labeobarbus species. So, unless proper management is put in place, the anthropogenic impacts can jeopardize the aquatic ecosystems. Therefore, in order to sustainably use the aquatic resources and fulfil the needs of the local people, every developmental activity and resource utilization should be carried out adhering to the available policies.

Keywords: anthropogenic impacts, dams, endemic fish, wetland degradation

Procedia PDF Downloads 254
149 PARP1 Links Transcription of a Subset of RBL2-Dependent Genes with Cell Cycle Progression

Authors: Ewelina Wisnik, Zsolt Regdon, Kinga Chmielewska, Laszlo Virag, Agnieszka Robaszkiewicz

Abstract:

Apart from protecting genome, PARP1 has been documented to regulate many intracellular processes inter alia gene transcription by physically interacting with chromatin bound proteins and by their ADP-ribosylation. Our recent findings indicate that expression of PARP1 decreases during the differentiation of human CD34+ hematopoietic stem cells to monocytes as a consequence of differentiation-associated cell growth arrest and formation of E2F4-RBL2-HDAC1-SWI/SNF repressive complex at the promoter of this gene. Since the RBL2 complexes repress genes in a E2F-dependent manner and are widespread in the genome in G0 arrested cells, we asked (a) if RBL2 directly contributes to defining monocyte phenotype and function by targeting gene promoters and (b) if RBL2 controls gene transcription indirectly by repressing PARP1. For identification of genes controlled by RBL2 and/or PARP1,we used primer libraries for surface receptors and TLR signaling mediators, genes were silenced by siRNA or shRNA, analysis of gene promoter occupation by selected proteins was carried out by ChIP-qPCR, while statistical analysis in GraphPad Prism 5 and STATISTICA, ChIP-Seq data were analysed in Galaxy 2.5.0.0. On the list of 28 genes regulated by RBL2, we identified only four solely repressed by RBL2-E2F4-HDAC1-BRM complex. Surprisingly, 24 out of 28 emerged genes controlled by RBL2 were co-regulated by PARP1 in six different manners. In one mode of RBL2/PARP1 co-operation, represented by MAP2K6 and MAPK3, PARP1 was found to associate with gene promoters upon RBL2 silencing, which was previously shown to restore PARP1 expression in monocytes. PARP1 effect on gene transcription was observed only in the presence of active EP300, which acetylated gene promoters and activated transcription. Further analysis revealed that PARP1 binding to MA2K6 and MAPK3 promoters enabled recruitment of EP300 in monocytes, while in proliferating cancer cell lines, which actively transcribe PARP1, this protein maintained EP300 at the promoters of MA2K6 and MAPK3. Genome-wide analysis revealed a similar distribution of PARP1 and EP300 around transcription start sites and the co-occupancy of some gene promoters by PARP1 and EP300 in cancer cells. Here, we described a new RBL2/PARP1/EP300 axis which controls gene transcription regardless of the cell type. In this model cell, cycle-dependent transcription of PARP1 regulates expression of some genes repressed by RBL2 upon cell cycle limitation. Thus, RBL2 may indirectly regulate transcription of some genes by controlling the expression of EP300-recruiting PARP1. Acknowledgement: This work was financed by Polish National Science Centre grants nr DEC-2013/11/D/NZ2/00033 and DEC-2015/19/N/NZ2/01735. L.V. is funded by the National Research, Development and Innovation Office grants GINOP-2.3.2-15-2016-00020 TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE and OTKA K112336. AR is supported by Polish Ministry of Science and Higher Education 776/STYP/11/2016.

Keywords: retinoblastoma transcriptional co-repressor like 2 (RBL2), poly(ADP-ribose) polymerase 1 (PARP1), E1A binding protein p300 (EP300), monocytes

Procedia PDF Downloads 214
148 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 71
147 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study

Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan

Abstract:

Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.

Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study

Procedia PDF Downloads 174
146 Theoretical Study of the Photophysical Properties and Potential Use of Pseudo-Hemi-Indigo Derivatives as Molecular Logic Gates

Authors: Christina Eleftheria Tzeliou, Demeter Tzeli

Abstract:

Introduction: Molecular Logic Gates (MLGs) are molecular machines that can perform complex work, such as solving logic operations. Molecular switches, which are molecules that can experience chemical changes are examples of successful types of MLGs. Recently, Quintana-Romero and Ariza-Castolo studied experimentally six stable pseudo-hemi-indigo-derived MLGs capable of solving complex logic operations. The MLG design relies on a molecular switch that experiences Z and E isomerism, thus the molecular switch's axis has to be a double bond. The hemi-indigo structure was preferred for the assembly of molecular switches due to its interaction with visible light. Z and E pseudo-hemi-indigo isomers can also be utilized for selective isomerization as they have distinct absorption spectra. Methodology: Here, the photophysical properties of pseudo-hemi-indigo derivatives are examined, i.e., derivatives of molecule 1 with anthracene, naphthalene, phenanthrene, pyrene, and pyrrole. In conjunction with some trials that were conducted, the level of theory mentioned subsequently was determined. The structures under study were optimized in both cis and trans conformations at the PBE0/6-31G(d,p) level of theory. The absorption spectra of the structures were calculated at PBE0/DEF2TZVP. In all cases, the absorption spectra of the studied systems were calculated including up to 50 singlet- and triplet-spin excited electronic states. Transition states (cis → cis, cis → trans, and trans → trans) were obtained in cases where it was possible, with PBE0/6-31G(d,p) for the optimization of the transition states and PBE0/DEF2TZVP for the respective absorption spectra. Emission spectra were obtained for the first singlet state of each molecule in cis both and trans conformations in PBE0/DEF2TZVP as well. All studies were performed in chloroform solvent that was added as a dielectric constant and the polarizable continuum model was also employed. Findings: Shifts of up to 25 nm are observed in the absorption spectra due to cis-trans isomerization, while the transition state is shifted up to about 150 nm. The electron density distribution is also examined, where charge transfer and electron transfer phenomena are observed regarding the three excitations of interest, i.e., H-1 → L, H → L and H → L+1. Emission spectra calculations were also carried out at PBE0/DEF2TZVP for the complete investigation of these molecules. Using protonation as input, selected molecules act as MLGs. Conclusion: Theoretical data so far indicate that both cis-trans isomerization, and cis-cis and trans-trans conformer isomerization affect the UV-visible absorption and emission spectra. Specifically, shifts of up to 30 nm are observed, while the transition state is shifted up to about 150 nm in cis-cis isomerization. The computational data obtained are in agreement with available experimental data, which have predicted that the pyrrole derivative is a MLG at 445 nm and 400 nm using protonation as input, while the anthracene derivative is a MLG that operates at 445 nm using protonation as input. Finally, it was found that selected molecules are candidates as MLG using protonation and light as inputs. These MLGs could be used as chemical sensors or as particular intracellular indicators, among several other applications. Acknowledgements: The author acknowledges the Hellenic Foundation for Research and Innovation for the financial support of this project (Fellowship Number: 21006).

Keywords: absorption spectra, DFT calculations, isomerization, molecular logic gates

Procedia PDF Downloads 30
145 EEG and DC-Potential Level Сhanges in the Elderly

Authors: Irina Deputat, Anatoly Gribanov, Yuliya Dzhos, Alexandra Nekhoroshkova, Tatyana Yemelianova, Irina Bolshevidtseva, Irina Deryabina, Yana Kereush, Larisa Startseva, Tatyana Bagretsova, Irina Ikonnikova

Abstract:

In the modern world the number of elderly people increases. Preservation of functionality of an organism in the elderly becomes very important now. During aging the higher cortical functions such as feelings, perception, attention, memory, and ideation are gradual decrease. It is expressed in the rate of information processing reduction, volume of random access memory loss, ability to training and storing of new information decrease. Perspective directions in studying of aging neurophysiological parameters are brain imaging: computer electroencephalography, neuroenergy mapping of a brain, and also methods of studying of a neurodynamic brain processes. Research aim – to study features of a brain aging in elderly people by electroencephalogram (EEG) and the DC-potential level. We examined 130 people aged 55 - 74 years that did not have psychiatric disorders and chronic states in a decompensation stage. EEG was recorded with a 128-channel GES-300 system (USA). EEG recordings are collected while the participant sits at rest with their eyes closed for 3 minutes. For a quantitative assessment of EEG we used the spectral analysis. The range was analyzed on delta (0,5–3,5 Hz), a theta - (3,5–7,0 Hz), an alpha 1-(7,0–11,0 Hz) an alpha 2-(11–13,0 Hz), beta1-(13–16,5 Hz) and beta2-(16,5–20 Hz) ranges. In each frequency range spectral power was estimated. The 12-channel hardware-software diagnostic ‘Neuroenergometr-KM’ complex was applied for registration, processing and the analysis of a brain constant potentials level. The DC-potential level registered in monopolar leads. It is revealed that the EEG of elderly people differ in higher rates of spectral power in the range delta (р < 0,01) and a theta - (р < 0,05) rhythms, especially in frontal areas in aging. By results of the comparative analysis it is noted that elderly people 60-64 aged differ in higher values of spectral power alfa-2 range in the left frontal and central areas (р < 0,05) and also higher values beta-1 range in frontal and parieto-occipital areas (р < 0,05). Study of a brain constant potential level distribution revealed increase of total energy consumption on the main areas of a brain. In frontal leads we registered the lowest values of constant potential level. Perhaps it indicates decrease in an energy metabolism in this area and difficulties of executive functions. The comparative analysis of a potential difference on the main assignments testifies to unevenness of a lateralization of a brain functions at elderly people. The results of a potential difference between right and left hemispheres testify to prevalence of the left hemisphere activity. Thus, higher rates of functional activity of a cerebral cortex are peculiar to people of early advanced age (60-64 years) that points to higher reserve opportunities of central nervous system. By 70 years there are age changes of a cerebral power exchange and level of electrogenesis of a brain which reflect deterioration of a condition of homeostatic mechanisms of self-control and the program of processing of the perceptual data current flow.

Keywords: brain, DC-potential level, EEG, elderly people

Procedia PDF Downloads 488
144 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations

Authors: Oleg Kabantsev, Karomatullo Umarov

Abstract:

The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1

Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis

Procedia PDF Downloads 211
143 An Innovation Decision Process View in an Adoption of Total Laboratory Automation

Authors: Chia-Jung Chen, Yu-Chi Hsu, June-Dong Lin, Kun-Chen Chan, Chieh-Tien Wang, Li-Ching Wu, Chung-Feng Liu

Abstract:

With fast advances in healthcare technology, various total laboratory automation (TLA) processes have been proposed. However, adopting TLA needs quite high funding. This study explores an early adoption experience by Taiwan’s large-scale hospital group, the Chimei Hospital Group (CMG), which owns three branch hospitals (Yongkang, Liouying and Chiali, in order by service scale), based on the five stages of Everett Rogers’ Diffusion Decision Process. 1.Knowledge stage: Over the years, two weaknesses exists in laboratory department of CMG: 1) only a few examination categories (e.g., sugar testing and HbA1c) can now be completed and reported within a day during an outpatient clinical visit; 2) the Yongkang Hospital laboratory space is dispersed across three buildings, resulting in duplicated investment in analysis instruments and inconvenient artificial specimen transportation. Thus, the senior management of the department raised a crucial question, was it time to process the redesign of the laboratory department? 2.Persuasion stage: At the end of 2013, Yongkang Hospital’s new building and restructuring project created a great opportunity for the redesign of the laboratory department. However, not all laboratory colleagues had the consensus for change. Thus, the top managers arranged a series of benchmark visits to stimulate colleagues into being aware of and accepting TLA. Later, the director of the department proposed a formal report to the top management of CMG with the results of the benchmark visits, preliminary feasibility analysis, potential benefits and so on. 3.Decision stage: This TLA suggestion was well-supported by the top management of CMG and, finally, they made a decision to carry out the project with an instrument-leasing strategy. After the announcement of a request for proposal and several vendor briefings, CMG confirmed their laboratory automation architecture and finally completed the contracts. At the same time, a cross-department project team was formed and the laboratory department assigned a section leader to the National Taiwan University Hospital for one month of relevant training. 4.Implementation stage: During the implementation, the project team called for regular meetings to review the results of the operations and to offer an immediate response to the adjustment. The main project tasks included: 1) completion of the preparatory work for beginning the automation procedures; 2) ensuring information security and privacy protection; 3) formulating automated examination process protocols; 4) evaluating the performance of new instruments and the instrument connectivity; 5)ensuring good integration with hospital information systems (HIS)/laboratory information systems (LIS); and 6) ensuring continued compliance with ISO 15189 certification. 5.Confirmation stage: In short, the core process changes include: 1) cancellation of signature seals on the specimen tubes; 2) transfer of daily examination reports to a data warehouse; 3) routine pre-admission blood drawing and formal inpatient morning blood drawing can be incorporated into an automatically-prepared tube mechanism. The study summarizes below the continuous improvement orientations: (1) Flexible reference range set-up for new instruments in LIS. (2) Restructure of the specimen category. (3) Continuous review and improvements to the examination process. (4) Whether installing the tube (specimen) delivery tracks need further evaluation.

Keywords: innovation decision process, total laboratory automation, health care

Procedia PDF Downloads 422
142 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 179
141 Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice

Authors: Meiling Yu, Nadia Rouatbi, Khuloud T. Al-Jamal

Abstract:

Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology.

Keywords: CRISPR, nanoparticles, brain diseases, administration routes

Procedia PDF Downloads 106
140 Assessment of Efficiency of Underwater Undulatory Swimming Strategies Using a Two-Dimensional CFD Method

Authors: Dorian Audot, Isobel Margaret Thompson, Dominic Hudson, Joseph Banks, Martin Warner

Abstract:

In competitive swimming, after dives and turns, athletes perform underwater undulatory swimming (UUS), copying marine mammals’ method of locomotion. The body, performing this wave-like motion, accelerates the fluid downstream in its vicinity, generating propulsion with minimal resistance. Through this technique, swimmers can maintain greater speeds than surface swimming and take advantage of the overspeed granted by the dive (or push-off). Almost all previous work has considered UUS when performed at maximum effort. Critical parameters to maximize UUS speed are frequently discussed; however, this does not apply to most races. In only 3 out of the 16 individual competitive swimming events are athletes likely to attempt to perform UUS with the greatest speed, without thinking of the cost of locomotion. In the other cases, athletes will want to control the speed of their underwater swimming, attempting to maximise speed whilst considering energy expenditure appropriate to the duration of the event. Hence, there is a need to understand how swimmers adapt their underwater strategies to optimize the speed within the allocated energetic cost. This paper develops a consistent methodology that enables different sets of UUS kinematics to be investigated. These may have different propulsive efficiencies and force generation mechanisms (e.g.: force distribution along with the body and force magnitude). The developed methodology, therefore, needs to: (i) provide an understanding of the UUS propulsive mechanisms at different speeds, (ii) investigate the key performance parameters when UUS is not performed solely for maximizing speed; (iii) consistently determine the propulsive efficiency of a UUS technique. The methodology is separated into two distinct parts: kinematic data acquisition and computational fluid dynamics (CFD) analysis. For the kinematic acquisition, the position of several joints along the body and their sequencing were either obtained by video digitization or by underwater motion capture (Qualisys system). During data acquisition, the swimmers were asked to perform UUS at a constant depth in a prone position (facing the bottom of the pool) at different speeds: maximum effort, 100m pace, 200m pace and 400m pace. The kinematic data were input to a CFD algorithm employing a two-dimensional Large Eddy Simulation (LES). The algorithm adopted was specifically developed in order to perform quick unsteady simulations of deforming bodies and is therefore suitable for swimmers performing UUS. Despite its approximations, the algorithm is applied such that simulations are performed with the inflow velocity updated at every time step. It also enables calculations of the resistive forces (total and applied to each segment) and the power input of the modeled swimmer. Validation of the methodology is achieved by comparing the data obtained from the computations with the original data (e.g.: sustained swimming speed). This method is applied to the different kinematic datasets and provides data on swimmers’ natural responses to pacing instructions. The results show how kinematics affect force generation mechanisms and hence how the propulsive efficiency of UUS varies for different race strategies.

Keywords: CFD, efficiency, human swimming, hydrodynamics, underwater undulatory swimming

Procedia PDF Downloads 223