Search results for: coupling model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17236

Search results for: coupling model

8506 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
8505 Low Voltage Ride through Capability Techniques for DFIG-Based Wind Turbines

Authors: Sherif O. Zain Elabideen, Ahmed A. Helal, Ibrahim F. El-Arabawy

Abstract:

Due to the drastic increase of the wind turbines installed capacity; the grid codes are increasing the restrictions aiming to treat the wind turbines like other conventional sources sooner. In this paper, an intensive review has been presented for different techniques used to add low voltage ride through capability to Doubly Fed Induction Generator (DFIG) wind turbine. A system model with 1.5 MW DFIG wind turbine is constructed and simulated using MATLAB/SIMULINK to explore the effectiveness of the reviewed techniques.

Keywords: DFIG, grid side converters, low voltage ride through, wind turbine

Procedia PDF Downloads 425
8504 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 181
8503 Development of a Nursing Care Program Based on Anthroposophic External Therapy for the Pediatric Hospital in Brazil and Germany

Authors: Karina Peron, Ricardo Ghelman, Monica Taminato, Katia R. Oliveira, Debora C. A. Rodrigues, Juliana R. C. Mumme, Olga K. M. Sunakozaua, Georg Seifert, Vicente O. Filho

Abstract:

The nurse is the most available health professional for the interventions of support in the integrative approach in hospital environment, therefore a professional group key to changes in the model of care. The central components in the performance of anthroposophic nursing procedures are direct physical contact, promotion of proper rhythm, thermal regulation and the construction of a calm and empathic atmosphere, safe for patients and their caregivers. The procedures of anthroposophic external therapies (AET), basically composed of the application of compresses and the use of natural products, provide an opportunity to intensify the therapeutic results through an innovative, complementary and integrative model in the university hospital. The objective of this work is to report the implementation of a program of nursing techniques (AET) through a partnership between the Pediatric Oncology Sector of the Department of Pediatrics of the Faculty of Medicine of the University of Sao Paulo and Charite University of Berlin, with lecturers from Berlin's Integrative Hospital Havelhöhe and Witten-Herdecke Integrative Hospital, both in Germany. Intensive training activities of the Hospital's nursing staff and a survey on AET needs were developed based on the most prevalent complaints in pediatric oncology patients in the three environments of the Hospital of Pediatric Oncology: Bone Marrow Transplantation Unit, Intensive Care Unit and Division of Internal Patients. We obtained the approval of the clinical protocol of external anthroposophic therapies for nursing care by the Ethics Committee and the Academic Council of the Hospital. With this project, we highlight the key AET needs that will be part of the standard program of pediatric oncology care with appropriate scientific support. The results of the prevalent symptoms were: vomiting, nausea, pain, difficulty in starting sleep, constipation, cold extremities, mood disorder and psychomotor agitation. This project was the pioneer within the Integrative Pediatrics Program, as an innovative concept of Medicine and Integrative Health presented at scientific meetings.

Keywords: integrative health care, integrative nursing, pediatric nursing, pediatric oncology

Procedia PDF Downloads 266
8502 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 54
8501 Family Planning and HIV Integration: A One-stop Shop Model at Spilhaus Clinic, Harare Zimbabwe

Authors: Mercy Marimirofa, Farai Machinga, Alfred Zvoushe, Tsitsidzaishe Musvosvi

Abstract:

The Government of Zimbabwe embarked on integrating family planning with Sexually Transmitted Infection (STI) and Human Immunodeficiency Virus (HIV) services in May 2020 with support from the World Health Organization (WHO). There was high HIV prevalence, incidence rates and STI infections among women attending FP clinics. Spilhaus is a specialized center of excellence clinic which offers a range of sexual reproductive health services. HIV services were limited to testing only, and clients were referred to other facilities for further management. Integration of services requires that all the services be available at one point so that clients will access them during their visit to the facility. Objectives: The study was conducted to assess the impact the one-stop-shop model has made in accessing integrated Family Planning services and sexual reproductive health services compared to the supermarket approach. It also assessed the relationship family planning services have with other sexual reproductive health services. Methods: A secondary data analysis was conducted at Spilhaus clinic in Harare using family planning registers and HIV services registers comparing years 2019 and 2021. A 2 sample t-test was used to determine the difference in clients accessing the services under the two models. A Spearman’s rank correlation was used to determine if accessing family planning services has a relationship with other sexual reproductive health services. Results: In 2019, 7,548 clients visited the Spilhaus clinic compared to 8,265 during the period January to December 2021. The median age for all clients accessing services was 32 years. An increase of 69% in the number of services accessed was recorded from 2019 to 2021. More services were accessed in 2021. There was no difference in the number of clients accessing family planning services cervical cancer, and HIV services. A difference was found in the number of clients who were offered STI screening services. There was also a relationship between accessing family planning services and STI screening services (ρ = 0.729, p-value=0.006). Conclusion: Programming towards SRH services was a great achievement, the use of an integrated approach proved to be cost-effective as it minimised the required resources for separate programs. Clients accessed important health needs at once. The integration of these services provided an opportunity to offer comprehensive information which addressed an individual’s sexual reproductive health needs.

Keywords: intergration, one stop shop, family planning, reproductive health

Procedia PDF Downloads 68
8500 A One Dimensional Particle in Cell Model for Excimer Lamps

Authors: W. Benstaali, A. Belasri

Abstract:

In this work we study a planar lamp filled with neon-xenon gas. We use a one-dimensional particle in a cell with Monte Carlo simulation (PIC-MCC) to investigate the effect xenon concentration on the energy deposited on excitation, ionization and ions. A Xe-Ne discharge is studied for a gas pressure of 400 torr. The results show an efficient Xe20-Ne mixture with an applied voltage of 1.2KV; the xenon excitation energy represents 65% form total energy dissipated in the discharge. We have also studied electrical properties and the energy balance a discharge for Xe50-Ne which needs a voltage of 2kv; the xenon energy is than more important.

Keywords: dielectric barrier discharge, efficiency, excitation, lamps

Procedia PDF Downloads 165
8499 Estimation of Break Points of Housing Price Growth Rate for Top MSAs in Texas Area

Authors: Hui Wu, Ye Li

Abstract:

Applying the structural break estimation method proposed by Perron and Bai (1998) to the housing price growth rate of top 5 MSAs in the Texas area, this paper estimated the structural break date for the growth rate of housing prices index. As shown in the estimation results, the break dates for each region are quite different, which indicates the heterogeneity of the housing market in response to macroeconomic conditions.

Keywords: structural break, housing prices index, ADF test, linear model

Procedia PDF Downloads 150
8498 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 368
8497 A Study on Finite Element Modelling of Earth Retaining Wall Anchored by Deadman Anchor

Authors: K. S. Chai, S. H. Chan

Abstract:

In this paper, the earth retaining wall anchored by discrete deadman anchor to support excavations in sand is modelled and analysed by finite element analysis. A study is conducted to examine how deadman anchorage system helps in reducing the deflection of earth retaining wall. A simplified numerical model is suggested in order to reduce the simulation duration. A comparison between 3-D and 2-D finite element analyses is illustrated.

Keywords: finite element, earth retaining wall, deadman anchor, sand

Procedia PDF Downloads 481
8496 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 354
8495 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 179
8494 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 146
8493 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
8492 A Collaborative Application of Six Sigma and Value Engineering in Supply Chain and Logistics

Authors: Arun Raja, Kevin Thomas, Sreyas Tribhu, S. P. Anbuudayasankar

Abstract:

This paper deals with the application of six sigma methodology in supply chain (SC) and logistics. A detailed cram about how the SC can be improved and its impact on the organization are dealt with and also how the quality plays a vital role in improving SC and logistics are identified. A simulation has been performed using the ARENA software to determine the process efficiency of a bottle manufacturing unit. Further, a Value Stream Mapping (VSM) analysis has been executed on the manufacturing process flow model and the manner by which Value Engineering (VE) holds a significant importance for quality assertion on the products is also studied.

Keywords: supply chain, six sigma, value engineering, logistics, quality

Procedia PDF Downloads 678
8491 Material Supply Mechanisms for Contemporary Assembly Systems

Authors: Rajiv Kumar Srivastava

Abstract:

Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply.

Keywords: assembly systems, kitting, material supply, variety production

Procedia PDF Downloads 226
8490 Comparison of Air Quality in 2019 and 2020 in the Campuses of the University of the Basque Country

Authors: Elisabete Alberdi, Irantzu Álvarez, Nerea Astigarraga, Heber Hernández

Abstract:

The purpose of this research work is to study the emissions of certain substances that contribute to air pollution and, as far as possible, to try to eliminate or reduce them, to avoid damage to both health and the environment. This work focuses on analyzing and comparing air quality in 2019 and 2020 in the Autonomous Community of the Basque Country, especially near the UPV/EHU campuses. We use Geostatistics to develop a spatial model and to analyse the levels of pollutants in those areas where the scope of the monitoring stations is limited. Finally, different more sustainable transport alternatives for users have been proposed.

Keywords: air quality, pollutants, monitoring stations, environment, geostatistics

Procedia PDF Downloads 173
8489 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 28
8488 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure

Authors: Sara Saboonian, Pierre Filion

Abstract:

The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.

Keywords: ecosystem services, green infrastructure, intensification, planning

Procedia PDF Downloads 355
8487 Literature Review and Evaluation of the Internal Marketing Theory

Authors: Hsiao Hsun Yuan

Abstract:

Internal marketing was proposed in 1970s. The theory of the concept has continually changed over the past forty years. This study discussed the following themes: the definition and implication of internal marketing, the progress of its development, and the evolution of its theoretical model. Moreover, the study systematically organized the strategies of the internal marketing theory adopted on enterprise and how they were put into practice. It also compared the empirical studies focusing on how the existent theories influenced the important variables of internal marketing. The results of this study are expected to serve as references for future exploration of the boundary and studies aiming at how internal marketing is applied to different types of enterprises.

Keywords: corporate responsibility, employee organizational performance, internal marketing, internal customer

Procedia PDF Downloads 355
8486 Management and Marketing Implications of Tourism Gravity Models

Authors: Clive L. Morley

Abstract:

Gravity models and panel data modelling of tourism flows are receiving renewed attention, after decades of general neglect. Such models have quite different underpinnings from conventional demand models derived from micro-economic theory. They operate at a different level of data and with different theoretical bases. These differences have important consequences for the interpretation of the results and their policy and managerial implications. This review compares and contrasts the two model forms, clarifying the distinguishing features and the estimation requirements of each. In general, gravity models are not recommended for use to address specific management and marketing purposes.

Keywords: gravity models, micro-economics, demand models, marketing

Procedia PDF Downloads 438
8485 Navigating through Organizational Change: TAM-Based Manual for Digital Skills and Safety Transitions

Authors: Margarida Porfírio Tomás, Paula Pereira, José Palma Oliveira

Abstract:

Robotic grasping is advancing rapidly, but transferring techniques from rigid to deformable objects remains a challenge. Deformable and flexible items, such as food containers, demand nuanced handling due to their changing shapes. Bridging this gap is crucial for applications in food processing, surgical robotics, and household assistance. AGILEHAND, a Horizon project, focuses on developing advanced technologies for sorting, handling, and packaging soft and deformable products autonomously. These technologies serve as strategic tools to enhance flexibility, agility, and reconfigurability within the production and logistics systems of European manufacturing companies. Key components include intelligent detection, self-adaptive handling, efficient sorting, and agile, rapid reconfiguration. The overarching goal is to optimize work environments and equipment, ensuring both efficiency and safety. As new technologies emerge in the food industry, there will be some implications, such as labour force, safety problems and acceptance of the new technologies. To overcome these implications, AGILEHAND emphasizes the integration of social sciences and humanities, for example, the application of the Technology Acceptance Model (TAM). The project aims to create a change management manual, that will outline strategies for developing digital skills and managing health and safety transitions. It will also provide best practices and models for organizational change. Additionally, AGILEHAND will design effective training programs to enhance employee skills and knowledge. This information will be obtained through a combination of case studies, structured interviews, questionnaires, and a comprehensive literature review. The project will explore how organizations adapt during periods of change and identify factors influencing employee motivation and job satisfaction. This project received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND).

Keywords: change management, technology acceptance model, organizational change, health and safety

Procedia PDF Downloads 45
8484 Intellectual Capital and Transparency in Universities: An Empirical Study

Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez

Abstract:

This paper shows the general perceptions of Spanish university stakeholders in relation to the university’s annual reports and the adequacy and potential of intellectual capital reporting. To this end, a questionnaire was designed and sent to every member of the Social Councils of Spanish public universities. It was thought that these participants would provide a good example of the attitude of university stakeholders since they represent the different social groups connected with universities. From the results of this study we are in the position of confirming the need for universities to offer information on intellectual capital in their accounting information model.

Keywords: intellectual capital, disclosure, stakeholders, universities, annual report

Procedia PDF Downloads 500
8483 Design of a Fuzzy Luenberger Observer for Fault Nonlinear System

Authors: Mounir Bekaik, Messaoud Ramdani

Abstract:

We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example.

Keywords: nonlinear system, fuzzy, faults, TS, Lyapunov-Krasovskii, observer

Procedia PDF Downloads 331
8482 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 83
8481 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction

Procedia PDF Downloads 80
8480 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet

Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez

Abstract:

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.

Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles

Procedia PDF Downloads 33
8479 Russian pipeline natural gas export strategy under uncertainty

Authors: Koryukaeva Ksenia, Jinfeng Sun

Abstract:

Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.

Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy

Procedia PDF Downloads 60
8478 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials

Authors: Jonjaua Ranogajec, Ognjen Rudic, Snezana Pasalic, Snezana Vucetic, Damir Cjepa

Abstract:

The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.

Keywords: pilot production, self-cleaning materials, compatibility, cultural heritage

Procedia PDF Downloads 394
8477 Modeling of Crack Growth in Railway Axles under Static Loading

Authors: Zellagui Redouane, Bellaouar Ahmed, Lachi Mohammed

Abstract:

The railway axles are the essential parts in the bogie of train, and its failure creates a big problem in the railway transport; during the work of this parts we noticed a premature deterioration. The aim has been presented a predictive model allowing the identification of the probable causes that are the cause of these premature deterioration. The results are employed for predicting fatigue crack growth in the railway axle, Also we want to present the variation value of stress intensity factor in different positions of elliptical crack tip. The modeling of axle in performed by the SOLID WORKS software and imported into ANSYS.

Keywords: crack growth, static load, railway axle, lifetime

Procedia PDF Downloads 364