Search results for: quantum yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2880

Search results for: quantum yield

2040 Genetic Advance versus Environmental Impact toward Sustainable Protein, Wet Gluten and Zeleny Sedimentation in Bread and Durum Wheat

Authors: Gordana Branković, Dejan Dodig, Vesna Pajić, Vesna Kandić, Desimir Knežević, Nenad Đurić

Abstract:

The wheat grain quality properties are influenced by genotype, environmental conditions and genotype × environment interaction (GEI). The increasing request of more nutritious wheat products will direct future breeding programmes. Therefore, the aim of investigation was to determine: i) variability of the protein content (PC), wet gluten content (WG) and Zeleny sedimentation volume (ZS); ii) components of variance, heritability in a broad sense (hb2), and expected genetic advance as percent of mean (GAM) for PC, WG, and ZS; iii) correlations between PC, WG, ZS, and most important agronomic traits; in order to assess expected breeding success versus environmental impact for these quality traits. The plant material consisted of 30 genotypes of bread wheat (Triticum aestivum L. ssp. aestivum) and durum wheat (Triticum durum Desf.). The trials were sown at the three test locations in Serbia: Rimski Šančevi, Zemun Polje and Padinska Skela during 2010-2011 and 2011-2012. The experiments were set as randomized complete block design with four replications. The plot consisted of five rows of 1 m2 (5 × 0.2 m × 1 m). PC, WG and ZS were determined by the use of Near infrared spectrometry (NIRS) with the Infraneo analyser (Chopin Technologies, France). PC, WG and ZS, in bread wheat, were in the range 13.4-16.4%, 22.8-30.3%, and 39.4-67.1 mL, respectively, and in durum wheat, in the range 15.3-18.1%, 28.9-36.3%, 37.4-48.3 mL, respectively. The dominant component of variance for PC, WG, and ZS, in bread wheat, was genotype with the genetic variance/GEI variance (VG/VG × E) relation of 3.2, 2.9 and 1.0, respectively, and in durum wheat was GEI with the VG/VG × E relation of 0.70, 0.69 and 0.49, respectively. hb2 and GAM values for PC, WG and ZS, in bread wheat, were 94.9% and 12.6%, 93.7% and 18.4%, and 86.2% and 28.1%, respectively, and in durum wheat, 80.7% and 7.6%, 79.7% and 10.2%, and 74% and 11.2%, respectively. The most consistent through six environments, statistically significant correlations, for bread wheat, were between PC and spike length (-0.312 to -0.637); PC, WG, ZS and grain number per spike (-0.320 to -0.620; -0.369 to -0.567; -0.301 to -0.378, respectively); PC and grain thickness (0.338 to 0.566), and for durum wheat, were between PC, WG, ZS and yield (-0.290 to -0.690; -0.433 to -0.753; -0.297 to -0.660, respectively); PC and plant height (-0.314 to -0.521); PC, WG and spike length (-0.298 to -0.597; -0.293 to -0.627, respectively); PC, WG and grain thickness (0.260 to 0.575; 0.269 to 0.498, respectively); PC, WG and grain vitreousness (0.278 to 0.665; 0.357 to 0.690, respectively). Breeding success can be anticipated for ZS in bread wheat due to coupled high values for hb2 and GAM, suggesting existence of additive genetic effects, and also for WG in bread wheat, due to very high hb2 and medium high GAM. The small, and medium, negative correlations between PC, WG, ZS, and yield or yield components, indicate difficulties to select simultaneously for high quality and yield, depending on linkage for particular genetic arrangements to be broken by recombination.

Keywords: bread and durum wheat, genetic advance, protein and wet gluten content, Zeleny sedimentation volume

Procedia PDF Downloads 242
2039 Crop Water Productivity for Sunflower under Different Irrigation Regimes and Plant Spacing, at Gezira Clay Soil, Sudan

Authors: R. A. Eman Elsheikh, Bart Schultz, Abraham Mehari Haile, Hussein S. Adam

Abstract:

A field experiment was conducted at Gezira research station farm during the winter season in the third week of November 2012, in WadMedani, Sudan (Lat 14.23 W, Long 33.39 E and altitude 405 m above sea level, in deep cracking alkaline heavy clay Vertisols). The objective of this study was to determine the effect of three different irrigation for 10 days (W1), 15 days (W2) and 20 days (W3) and for two rows of 30 cm (S1) and 40 cm (S2), respectively. The experimental design was split plot with three replicates. The sunflower test variety was Hysun 33 cultivar. The seasonal water applied during the study was 6898, 6647, 5256, 5435, 5214, 5416 m3/ha for W1S1, W1S2, W2S1, W2S2, W3S1 and W3S2 respectively. The seed yield obtained for the above treatment in that sequence was 4208, 5542, 5167, 4579, 2931, 2936 kg/ha. The corresponding computed water productivity was 0.61, 0.82, 0.87, 0.95, 0.54, 0.56 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm row spacing and was irrigated every 10 days (W1S2), followed by W2S1.

Keywords: water productivity, water deficit, sunflower, plant spacing

Procedia PDF Downloads 339
2038 Drought Stress and the Importance of Osmotic Adjustment

Authors: Hooman Rowshanaie

Abstract:

The majority of green plants have 70%-90% water, this amount depend on age of plants, species, tissues of plants and also the environmental conditions that plants growth and development on it. Because of intense plant demanding to achieve the available water for growing and developing, always plants need a water sources and also mechanisms to retention the water and reduction water loss under critical situation and water deficit conditions otherwise the yield of plants would be decreased. Decreasing the yield depend on genotypes, intense of water deficit and also growth stage. Recently the mechanisms and also compound that have major role to water stress adaption of plants would be consideration. Osmotic adjustment is one of the most important mechanisms in terms of this field that many valuable researches focused on it because the majority of organic and inorganic solutes directly or even indirectly have pivotal role in this phenomenon. The contribution of OA to prevent water loss in response to water deficit and resistance to water stress taken to consideration recently and also the organic and inorganic compounds to OA tended has a high rate of significant.

Keywords: water deficit, drought stress, osmotic adjustment, organic compound, inorganic compound, solute

Procedia PDF Downloads 412
2037 How Does Vicia faba-rhizobia Symbiosis Improve Its Performance under Low Phosphorus Availability?

Authors: B. Makoudi, R. Ghanimi, M. Mouradi, A. Kabbadj, M. Farissi, J. J. Drevon, C. Ghoulam

Abstract:

This work focuses on the responses of Vicia fabarhizobia symbiosis to phosphorus deficiency and their contribution to tolerate this constraint. The study was carried out on four faba bean varieties, Aguadulce, Alfia, Luz Otono, and Reina Mora submitted to two phosphorus treatments, deficient and sufficient and cultivated under field and greenhouse hydroaeroponic culture. Plants were harvested at flowering stage for growth, nodulation and phosphorus content assessment. Phosphatases in nodules and rhizospheric soil were analyzed. The impact of phosphorus deficiency on yield component was assessed at maturity stage. Under field conditions, phosphorus deficiency affected negatively nodule biomass and nodule phosphorus content with Alfia and Reina Mora showing the highest biomass reduction. The phosphatase activities in nodules and rhizospheric soil were increased under phosphorus deficiency. At maturity stage, under soil low available phosphorus, the pods number and 100 seeds weight were reduced. The genotypic variation was evident for almost all tested parameters.

Keywords: faba bean, phosphorus, rhizobia, yield

Procedia PDF Downloads 441
2036 Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan

Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Fumitake Nishimura, Jaiyeop Lee

Abstract:

This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community.

Keywords: influent, PMMoV, SARS-CoV-2, wastewater based epidemiology

Procedia PDF Downloads 89
2035 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows

Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava

Abstract:

The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein

Procedia PDF Downloads 260
2034 Olive-Mill Wastewater and Organo-Mineral Fertlizers Application for the Control of Parasitic Weed Phelipanche ramosa L. Pomel in Tomato

Authors: Grazia Disciglio, Francesco Lops, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The parasitic weed specie Phelipanche ramosa (L) Pomel is one of the major constraints in tomato crop in Apulia region (southern Italy). The experimental was considered to investigate the effect of six organic compounds (Olive miller wastewater, Allil isothiocyanate®, Alfa plus K®, Radicon®, Rizosum Max®, Kendal Nem®) on the naturally infested field of tomato growing season in 2016. The randomized block design with 3 replicates was adopted. Tomato seedling were transplant on 19 May 2016. During the growing cycle of the tomato at 74, 81, 93 and 103 days after transplantation (DAT), the number of parasitic shoots (branched plants) that had emerged in each plot was determined. At harvesting on 13 September 2016 the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, fruit colour, pH and titratable acidity. The treatments provided the results show that none of treatments provided complete control against P. ramosa. However, among the products tested Olive miller wastewater, Alfa plus K®, Rizosum Max® and Kendal Nem® products applied to the soil show the number of emerged shoots significantly lower than Radicon® and especially than the Allil isothiocyanate® treatment and the untreated control. Regarding the effect of different treatments on the tomato productive parameters, the marketable yield resulted significantly higher in the same mentioned treatments which gave the lower P. ramosa infestation. No significative differences for the other fruit characteristics were observed.

Keywords: processing tomato crop, Phelipanche ramosa, olive-mill wastewater, organic fertilizers

Procedia PDF Downloads 317
2033 AquaCrop Model Simulation for Water Productivity of Teff (Eragrostic tef): A Case Study in the Central Rift Valley of Ethiopia

Authors: Yenesew Mengiste Yihun, Abraham Mehari Haile, Teklu Erkossa, Bart Schultz

Abstract:

Teff (Eragrostic tef) is a staple food in Ethiopia. The local and international demand for the crop is ever increasing pushing the current price five times compared with that in 2006. To meet this escalating demand increasing production including using irrigation is imperative. Optimum application of irrigation water, especially in semi-arid areas is profoundly important. AquaCrop model application in irrigation water scheduling and simulation of water productivity helps both irrigation planners and agricultural water managers. This paper presents simulation and evaluation of AquaCrop model in optimizing the yield and biomass response to variation in timing and rate of irrigation water application. Canopy expansion, canopy senescence and harvest index are the key physiological processes sensitive to water stress. For full irrigation water application treatment there was a strong relationship between the measured and simulated canopy and biomass with r2 and d values of 0.87 and 0.96 for canopy and 0.97 and 0.74 for biomass, respectively. However, the model under estimated the simulated yield and biomass for higher water stress level. For treatment receiving full irrigation the harvest index value obtained were 29%. The harvest index value shows generally a decreasing trend under water stress condition. AquaCrop model calibration and validation using the dry season field experiments of 2010/2011 and 2011/2012 shows that AquaCrop adequately simulated the yield response to different irrigation water scenarios. We conclude that the AquaCrop model can be used in irrigation water scheduling and optimizing water productivity of Teff grown under water scarce semi-arid conditions.

Keywords: AquaCrop, climate smart agriculture, simulation, teff, water security, water stress regions

Procedia PDF Downloads 394
2032 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 182
2031 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies

Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi

Abstract:

The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.

Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions

Procedia PDF Downloads 184
2030 Effect of Temperature and Time on the Yield of Silica from Rice Husk Ash

Authors: Mohammed Adamu Musa, Shehu Saminu Babba

Abstract:

The technological trend towards waste utilization and cost reduction in industrial processing has attracted use of Rice Husk as a value added material. Both rice husk (RH) and Rice Husk Ash (RHA) has been found suitable for wide range of domestic as well as industrial applications. Therefore, the purpose of this research is to produce high grade sodium silicate from rice husk ash by considering the effect of temperature and time of heating as the process variables. The experiment was performed by heating the rice husk at temperatures 500 °C, 600 °C, 700 °C and 800 °C and time 60min, 90min, 120min and 150min were used to obtain the ash. 1.0M of aqueous sodium hydroxide solution was used to dissolve the silicate from the ash, which contained crude sodium silicate. In addition, the ash was neutralized by adding 5M of HCL until the pH reached 3.5 to give silica gel. At 6000C and 120mins, 94.23% silica was obtained from the RHA. At higher temperatures (700 °C and 800 °C) the percentage yield of silica reduced due to surface melting and carbon fixation in the lattice caused by presence of potassium. For this research, 600 °C is considered to be the optimum temperature for silica production from RHA. Silica produced from RHA can generate aggregate value and can be used in areas such as pulp and paper, plastic and rubber reinforcement industries.

Keywords: burning, rice husk, rice husk ash, silica, silica gel, temperature

Procedia PDF Downloads 230
2029 Optimization of Biomass Components from Rice Husk Treated with Trichophyton Soudanense and Trichophyton Mentagrophyte and Effect of Yeast on the Bio-Ethanol Yield

Authors: Chukwuma S. Ezeonu, Ikechukwu N. E. Onwurah, Uchechukwu U. Nwodo, Chibuike S. Ubani, Chigozie M. Ejikeme

Abstract:

Trichophyton soudanense and Trichophyton mentagrophyte were isolated from the rice mill environment, cultured and used singly and as di-culture in the treatment of measure quantities of preheated rice husk. Optimized conditions studied showed that carboxymethylcellulase (CMCellulase) activity of 57.61 µg/ml/min was optimum for Trichophyton mentagrophyte heat pretreated rice husk crude enzymes at 50oC and 80oC respectively. Duration of 120 hours (5 days) gave the highest CMcellulase activity of 75.84 µg/ml/min for crude enzyme of Trichophyton mentagrophyte heat pretreated rice husk. However, 96 hours (4 days) duration gave maximum activity of 58.21 µg/ml/min for crude enzyme of Trichophyton soudanense heat pretreated rice husk. Highest CMCellulase activities of 67.02 µg/ml/min and 69.02 µg/ml/min at pH of 5 were recorded for crude enzymes of monocultures of Trichophyton soudanense (TS) and Trichophyton mentagrophyte (TM) heat pretreated rice husk respectively. Biomass components showed that rice husk cooled after heating followed by treatment with Trichophyton mentagrophyte gave 44.50 ± 10.90 (% ± Standard Error of Mean) cellulose as the highest yield. Maximum total lignin value of 28.90 ± 1.80 (% ± SEM) was obtained from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM). The hemicellulose content of 30.50 ± 2.12 (% ± SEM) from pre-heated rice husk treated with Trichophyton soudanense (TS); lignin value of 28.90 ± 1.80 from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM); also carbohydrate content of 16.79 ± 9.14 (% ± SEM) , reducing and non-reducing sugar values of 2.66 ± 0.45 and 14.13 ± 8.69 (% ± SEM) were all obtained from for pre- heated rice husk treated with Trichophyton mentagrophyte (TM). All the values listed above were the highest values obtained from each rice husk treatment. The pre-heated rice husk treated with Trichophyton mentagrophyte (TM) fermented with palmwine yeast gave bio-ethanol value of 11.11 ± 0.21 (% ± Standard Deviation) as the highest yield.

Keywords: Trichophyton soudanense, Trichophyton mentagrophyte, biomass, bioethanol, rice husk

Procedia PDF Downloads 671
2028 Nanotechnology: A New Revolution to Increase Agricultural Production

Authors: Reshu Chaudhary, R. S. Sengar

Abstract:

To increase the agricultural production Indian farmer needs to aware of the latest technology i.e. precision farming to maximize the crop yield and minimize the input (fertilizer, pesticide etc.) through monitoring the environmental factors. Biotechnology and information technology have provided lots of opportunities for the development of agriculture. But, still we have to do much more for increasing our agricultural production in order to achieve the target growth of agriculture to secure food, to eliminate poverty and improve living style, to enhance agricultural exports and national income and to improve quality of agricultural products. Nanotechnology can be a great element to satisfy these requirements and to boost the multi-dimensional development of agriculture in order to fulfill the dream of Indian farmers. Nanotechnology is the most rapidly growing area of science and technology with its application in physical science, chemical science, life science, material science and earth science. Nanotechnology is a part of any nation’s future. Research in nanotechnology has extremely high potential to benefit society through application in agricultural sciences. Nanotechnology has greater potential to bring revolution in the agricultural sector.

Keywords: agriculture, biotechnology, crop yield, nanotechnology

Procedia PDF Downloads 352
2027 Management of H. Armigera by Using Various Techniques

Authors: Ajmal Khan Kassi, Humayun Javed, Syed Abdul Qadeem

Abstract:

The study was conducted to find out the best management practices against American bollworm on Okra variety Arka Anamika during 2016. The three different management practices viz. Release of Trichogramma chilonis, hoeing and weeding, clipping and lufenuron insect growth regulator (IGR) which were tested individually and with all possible combinations for the controlling of American bollworm at 3 diverse areas viz. University Research Farm Koont, NARC and Farmer Field Taxila. All the treatment combinations regarding damage of fruit showed significant results. The minimum fruit infestation i.e. 3.20% and 3.58% was recorded with combined treatment (i.e. T. chilonis + hoeing + weeding + lufenuron) in two different localities. This combined treatment also resulted in maximum yield at NARC and Taxila i.e. 57.67 and 62.66 q/ha respectively. This treatment gave the best results to manage H. armigera. On the basis of different integrated pest management techniques, Arka Anamika variety proved to be comparatively resistant against H. armigera in different localities. So this variety is recommended for the cultivation in Pothwar region to get maximum yield.

Keywords: management, american bollworm, arka anamika, okra

Procedia PDF Downloads 46
2026 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis

Procedia PDF Downloads 99
2025 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development

Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez

Abstract:

Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.

Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture

Procedia PDF Downloads 295
2024 Correlations among Their Characteristics and Determination of Some Morphological Characteristics of Perennial Ryegrass Genotypes

Authors: Abdullah Özköse, Ahmet Tamkoç

Abstract:

This study aimed to determine some plant characteristics of perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara and correlations between these characteristics. In order to evaluate for breeding purposes according to Turkey's environmental conditions, perennial ryegrass plants collected from natural pasture of Ankara at 2004 were utilized. The collected seeds of plants were sown in pots and seedlings were prepared in greenhouse. Seedlings were transplanted to the experimental field at 50x50 cm intervals in Randomized Complete Blocks Design in 2005. Data were obtained from the observations and measurements of 568 perennial ryegrasses in 2007 and 2008. Perennial ryegrass plants’ in the spring re-growth time, color, density, growth habit, tendency to inflorescences, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike, and 1000 grain weight were investigated and correlation analyses were made on the data. Correlation coefficients were estimated between all paired combinations of the traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with growth habit and in the spring re-growth time spring.

Keywords: correlation, morphological traits, Lolium perenne

Procedia PDF Downloads 446
2023 Predicting Photovoltaic Energy Profile of Birzeit University Campus Based on Weather Forecast

Authors: Muhammad Abu-Khaizaran, Ahmad Faza’, Tariq Othman, Yahia Yousef

Abstract:

This paper presents a study to provide sufficient and reliable information about constructing a Photovoltaic energy profile of the Birzeit University campus (BZU) based on the weather forecast. The developed Photovoltaic energy profile helps to predict the energy yield of the Photovoltaic systems based on the weather forecast and hence helps planning energy production and consumption. Two models will be developed in this paper; a Clear Sky Irradiance model and a Cloud-Cover Radiation model to predict the irradiance for a clear sky day and a cloudy day, respectively. The adopted procedure for developing such models takes into consideration two levels of abstraction. First, irradiance and weather data were acquired by a sensory (measurement) system installed on the rooftop of the Information Technology College building at Birzeit University campus. Second, power readings of a fully operational 51kW commercial Photovoltaic system installed in the University at the rooftop of the adjacent College of Pharmacy-Nursing and Health Professions building are used to validate the output of a simulation model and to help refine its structure. Based on a comparison between a mathematical model, which calculates Clear Sky Irradiance for the University location and two sets of accumulated measured data, it is found that the simulation system offers an accurate resemblance to the installed PV power station on clear sky days. However, these comparisons show a divergence between the expected energy yield and actual energy yield in extreme weather conditions, including clouding and soiling effects. Therefore, a more accurate prediction model for irradiance that takes into consideration weather factors, such as relative humidity and cloudiness, which affect irradiance, was developed; Cloud-Cover Radiation Model (CRM). The equivalent mathematical formulas implement corrections to provide more accurate inputs to the simulation system. The results of the CRM show a very good match with the actual measured irradiance during a cloudy day. The developed Photovoltaic profile helps in predicting the output energy yield of the Photovoltaic system installed at the University campus based on the predicted weather conditions. The simulation and practical results for both models are in a very good match.

Keywords: clear-sky irradiance model, cloud-cover radiation model, photovoltaic, weather forecast

Procedia PDF Downloads 124
2022 High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors

Authors: Rajesh Kumar Ulaganathan, Yi-Ying Lu, Chia-Jung Kuo, Srinivasa Reddy Tamalampudi, Raman Sankar, Fang Cheng Chou, Yit-Tsong Chen

Abstract:

In this paper, we report the optoelectronic properties of multi-layered GeS nanosheets (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 AW-1 under illumination of 1.5 µW/cm2 at  = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 AW-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the two-dimensional (2D) realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 AW-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104 %) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability with a response time of ~7 ms over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, fast response, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications.

Keywords: germanium sulfide, photodetector, photoresponsivity, external quantum efficiency, specific detectivity

Procedia PDF Downloads 529
2021 Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers

Authors: Mireille Vonlanthen, Pasquale Porcu, Ernesto Rivera

Abstract:

Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium.

Keywords: dendritic molecules, energy transfer, pyrene, ru-trisbipyridine complex

Procedia PDF Downloads 270
2020 Effects of Different Processing Methods of Typha Grass on Feed Intake Milk Yield/Composition and Blood Parameters of Diry Cows

Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Lawan, Aminu Maidala

Abstract:

Abstract 16 healthy lactating cows will be randomly selected for the trial and will be randomly divided in to 4 groups with 4 cows in each. They will be kept under similar management condition (conventional management system). Animals of relatively same weight and age will be used. After 11days for adaptation, feed intake and performance of the experimental animals will be determine. Milk sample will be collected at each milking in the morning and afternoon to determine; Milk yield, Milk fat percentage, Solid not fat percentage, Total solid percentage of milk. Cows dung will be observe to determine; Score 1 very loose watery stool, Score 2 semi solid with undigested raw material, Score 3 semi solid with less undigested raw material, Score 4 solid with very less undigested raw material, Score 5 good dung no undigested raw material. At the end of the experiment, blood samples will be analyzed for full blood counts and differentials {White Blood Cells (WBC), Red Blood Cells (RBC), Hemoglobin (Hb), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), Lymphocytes (LYM), Basophils, Eosinophils and Monocytes Proportion (MXD) and Neutrophils (NEUT)} using automated hematology analyzer. Serum samples will be analyzed for heat shock transcription factors, heat shock proteins and hormones (Serum glucocorticoid, prolactin and cortisol). Moreover, biochemical analysis will also be conducted to check for Total protein (TP), Albumen (ALB), Globulin (GBL), Total cholesterol (TCH), glucose (G), sodium (Na+), potassium (K+), chloride (Cl-) and pH. Keywords: Lactating cows, milk composition, dung score and blood parameters.

Keywords: Lactating cows , Milk yield , Dung score , Blood parameters

Procedia PDF Downloads 172
2019 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions

Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida

Abstract:

A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.

Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition

Procedia PDF Downloads 450
2018 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 51
2017 Experimental Determination of Water Productivity of Improved Cassava Varieties Propagation under Rain-Fed Condition in Tropical Environment

Authors: Temitayo Abayomi Ewemoje, Isaac Olugbemiga Afolayan, Badmus Alao Tayo

Abstract:

Researchers in developing countries have worked on improving cassava resistance to diseases and pests, high yielding and early maturity However, water management has received little or no attention as cassava cultivation in Sub-Saharan Africa depended on available precipitation (rain-fed condition). Therefore the need for water management in Agricultural crop production cannot be overemphasized. As other sectors compete with agricultural sector for fresh water (which is not readily available), there is need to increase water productivity in agricultural production. Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had highest number of nodes. Tuber stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions.Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had the highest number of nodes. Tuber, stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions

Keywords: improved TMS varieties, leaf productivity, rain-fed cassava production, stem productivity, tuber productivity

Procedia PDF Downloads 331
2016 The Possibility of Increase UFA in Milk by Adding of Canola Seed in Holstein Dairy Cow Diets

Authors: H. Mansoori Yarahmadi, A. Aghazadeh, K. Nazeradl

Abstract:

This study was done to evaluate the effects of feeding canola seed for enrichment of UFA and milk performance of early lactation dairy cows. Twelve multi parous Holstein cows (635.3±18 kg BW and 36±9 DIM) were assigned to 1 of 3 treatments: 1- Control (CON) without canola seed, 2- 7.5% raw canola seed (CUT), and 3- 7.5% Heat-treated canola seed (CHT) of the total ration. Diets contained same crude protein, but varied in net energy. Diets were composed by basis of corn silage and alfalfa. Cows were milked twice daily for 4 wk. The inclusion of canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from CHT cows had greater proportions of UFA and MUFA (P < 0.05). Feeding CUT increased PUFA without significant difference. Milk fat from CHT had a greater proportion of C18 UFA and tended to have a higher proportion of other UFA. FCM milk yields, milk fat and protein percentages and total yield of these components were similar between treatments. Milk urea nitrogen was lower in cows fed CON and CHT. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without adverse affecting milk yield or milk composition.

Keywords: canola seed, fatty acid, dairy cow, milk

Procedia PDF Downloads 587
2015 Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation

Authors: A. Bayat, R. Bello-Mendoza, D. G. Wareham

Abstract:

Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition.

Keywords: anaerobic digestion, thermophilic, mesophilic, total solids concentration

Procedia PDF Downloads 124
2014 Recovery of Essential Oil from Zingiber Officinale Var. Bentong Using Ultrasound Assisted-Supercritical Carbon Dioxide Extraction

Authors: Norhidayah Suleiman, Afza Zulfaka

Abstract:

Zingiber officinale var. Bentong has been identified as the source of high added value compound specifically gingerol-related compounds. The extraction of the high-value compound using conventional method resulted in low yield and time consumption. Hence, the motivation for this work is to investigate the effect of the extraction technique on the essential oil from Zingiber officinale var. Bentong rhizome for commercialization purpose in many industries namely, functional food, pharmaceutical, and cosmeceutical. The investigation begins with a pre-treatment using ultrasound assisted in order to enhance the recovery of essential oil. It was conducted at a fixed frequency (20 kHz) of ultrasound with various time (10, 20, 40 min). The extraction using supercritical carbon dioxide (scCO2) were carried out afterward at a specific condition of temperature (50 °C) and pressure (30 MPa). scCO2 extraction seems to be a promising sustainable green method for the extraction of essential oil due to the benefits that CO2 possesses. The expected results demonstrated the ultrasound-assisted-scCO2 produces a higher yield of essential oil compared to solely scCO2 extraction. This research will provide important features for its application in food supplements or phytochemical preparations.

Keywords: essential oil, scCO2, ultrasound assisted, Zingiber officinale Var. Bentong

Procedia PDF Downloads 126
2013 Impact Tensile Mechanical Properties of 316L Stainless Steel at Different Strain Rates

Authors: Jiawei Chen, Jia Qu, Dianwei Ju

Abstract:

316L stainless steel has good mechanical and technological properties, has been widely used in shipbuilding and aerospace manufacturing. In order to understand the effect of strain rate on the yield limit of 316L stainless steel and the constitutive relationship of the materials at different strain rates, this paper used the INSTRON-4505 electronic universal testing machine to study the mechanical properties of the tensile specimen under quasi-static conditions. Meanwhile, the Zwick-Roell RKP450 intelligent oscillometric impact tester was used to test the tensile specimens at different strain rates. Through the above two kinds of experimental researches, the relationship between the true stress-strain and the engineering stress-strain at different strain rates is obtained. The result shows that the tensile yield point of 316L stainless steel increases with the increase of strain rate, and the real stress-strain curve of the 316L stainless steel has a better normalization than that of the engineering stress-strain curve. The real stress-strain curves can be used in the practical engineering of impact stretch to improve its safety.

Keywords: impact stretch, 316L stainless steel, strain rate, real stress-strain, normalization

Procedia PDF Downloads 271
2012 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 110
2011 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 116