Search results for: network data mining
27381 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System
Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt
Abstract:
Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC
Procedia PDF Downloads 49627380 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron
Procedia PDF Downloads 38927379 Strategies to Enhance Compliance of Health and Safety Standards at the Selected Mining Industries in Limpopo Province, South Africa: Occupational Health Nurse’s Perspective
Authors: Livhuwani Muthelo
Abstract:
The health and safety of the miners in the South African mining industry are guided by the regulations and standards which are anticipated to promote a healthy work environment and fatalities. It is of utmost importance for the miners to comply with these regulations/standards to protect themselves from potential occupational health and safety risks, accidents, and fatalities. The purpose of this study was to develop and validate strategies to enhance compliance with the Health and safety standards within the mining industries of Limpopo province in South Africa. A mixed-method exploratory sequential research design was adopted. The population consisted of 5350 miners. Purposive sampling was used to select the participants in the qualitative strand and stratified random sampling in the quantitative strand. Semi-structured interviews were conducted among the occupational health nurse practitioners and the health and safety team. Thematic analysis was used to generate an understanding of the interviews. In the quantitative strand, a survey was conducted using a self-administered questionnaire. Data were analysed using SPSS version 26.0. A descriptive statistical test was used in the analysis of data including frequencies, means, and standard deviation. Cronbach's alpha test was used to measure internal consistency. The integrated results revealed that there are diverse experiences related to health and safety standards compliance among the mineworkers. The main findings were challenges related to leadership compliance and also related to the cost of maintaining safety, Miner's behavior-related challenges; the impact of non-compliance on the overall health of the miners was also described, the conflict between production and safety. Health and safety compliance is not just mere compliance with regulations and standards but a culture that warrants the miners and organization to take responsibility for their behavior and actions towards health and safety. Thus taking responsibility for your well-being and other miners.Keywords: perceptions, compliance, health and safety, legislation, standards, miners
Procedia PDF Downloads 10427378 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 37227377 'Call Drop': A Problem for Handover Minimizing the Call Drop Probability Using Analytical and Statistical Method
Authors: Anshul Gupta, T. Shankar
Abstract:
In this paper, we had analyzed the call drop to provide a good quality of service to user. By optimizing it we can increase the coverage area and also the reduction of interference and congestion created in a network. Basically handover is the transfer of call from one cell site to another site during a call. Here we have analyzed the whole network by two method-statistic model and analytic model. In statistic model we have collected all the data of a network during busy hour and normal 24 hours and in analytic model we have the equation through which we have to find the call drop probability. By avoiding unnecessary handovers we can increase the number of calls per hour. The most important parameter is co-efficient of variation on which the whole paper discussed.Keywords: coefficient of variation, mean, standard deviation, call drop probability, handover
Procedia PDF Downloads 49127376 Performance Study of ZigBee-Based Wireless Sensor Networks
Authors: Afif Saleh Abugharsa
Abstract:
The IEEE 802.15.4 standard is designed for low-rate wireless personal area networks (LR-WPAN) with focus on enabling wireless sensor networks. It aims to give a low data rate, low power consumption, and low cost wireless networking on the device-level communication. The objective of this study is to investigate the performance of IEEE 802.15.4 based networks using simulation tool. In this project the network simulator 2 NS2 was used to several performance measures of wireless sensor networks. Three scenarios were considered, multi hop network with a single coordinator, star topology, and an ad hoc on demand distance vector AODV. Results such as packet delivery ratio, hop delay, and number of collisions are obtained from these scenarios.Keywords: ZigBee, wireless sensor networks, IEEE 802.15.4, low power, low data rate
Procedia PDF Downloads 43327375 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks
Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode
Abstract:
The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control
Procedia PDF Downloads 8427374 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 15027373 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 16027372 'The Network' - Cradle to Cradle Engagement Framework for Women in STEM
Authors: Jessica Liqin Kong
Abstract:
Female engineers and scientists face unique challenges in their careers that make the development of professional networks crucial, but also more difficult. Working to overcome these challenges, ‘The Network’ was established in 2013 at the Queensland University of Technology (QUT) in Australia as an alumni chapter with the purpose of evoking continuous positive change for female participation and retention in science, technology, engineering and mathematics (STEM). ‘The Network’ adopts an innovative model for a Women in STEM alumni chapter which was inspired by the cradle to cradle approach to engagement, and the concept of growing and harvesting individual and collective social capital through a variety of initiatives. ‘The Network’ fosters an environment where the values exchanged in social and professional relationships can be capitalized for both current and future women in STEM. The model of ‘The Network’ acts as a simulation and opportunity for participants to further develop their leadership and other soft skills through learning, building and experimenting with ‘The Network’.Keywords: women in STEM, engagement, Cradle-to-Cradle, social capital
Procedia PDF Downloads 28427371 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm
Authors: Cao Xiaopeng, Shi Linkai
Abstract:
The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis
Procedia PDF Downloads 13027370 Environmental Performance Measurement for Network-Level Pavement Management
Authors: Jessica Achebe, Susan Tighe
Abstract:
The recent Canadian infrastructure report card reveals the unhealthy state of municipal infrastructure intensified challenged faced by municipalities to maintain adequate infrastructure performance thresholds and meet user’s required service levels. For a road agency, huge funding gap issue is inflated by growing concerns of the environmental repercussion of road construction, operation and maintenance activities. As the reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to optimal allocation of resources and reduced road user cost. Incorporating environmental sustainability measure into pavement management is solution widely cited and studied. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this study reviewed previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for sustainable network-level pavement management.Keywords: pavement management, sustainability, network-level evaluation, environment measures
Procedia PDF Downloads 21127369 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 27927368 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.Keywords: passive optical networks (PONs), fiber to the premises (FTTx), access network, OTDR
Procedia PDF Downloads 28827367 Multi Criteria Authentication Method in Cognitive Radio Networks
Authors: Shokoufeh Monjezi Kouchak
Abstract:
Cognitive radio network (CRN) is future network .Without this network wireless devices can’t work appropriately in the next decades. Today, wireless devices use static spectrum access methods and these methods don’t use spectrums optimum so we need use dynamic spectrum access methods to solve shortage spectrum challenge and CR is a great device for DSA but first of all its challenges should be solved .security is one of these challenges .In this paper we provided a survey about CR security. You can see this survey in tables 1 to 7 .After that we proposed a multi criteria authentication method in CRN. Our criteria in this method are: sensing results, following sending data rules, position of secondary users and no talk zone. Finally we compared our method with other authentication methods.Keywords: authentication, cognitive radio, security, radio networks
Procedia PDF Downloads 39227366 Algorithmic Fault Location in Complex Gas Networks
Authors: Soban Najam, S. M. Jahanzeb, Ahmed Sohail, Faraz Idris Khan
Abstract:
With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources.Keywords: FLA, fault location analysis, GDN, gas distribution network, GIS, geographic information system, NMS, network Management system, OMS, outage management system, SSGC, Sui Southern gas company, UFG, unaccounted for gas
Procedia PDF Downloads 62627365 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.Keywords: artificial neural networks, milling process, rotational speed, temperature
Procedia PDF Downloads 40527364 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 47527363 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm
Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy
Abstract:
IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.Keywords: IoT, fog networks, data stewardship, dynamic access policy
Procedia PDF Downloads 5927362 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 18927361 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 5627360 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 38227359 Secured Cancer Care and Cloud Services in Internet of Things /Wireless Sensor Network Based Medical Systems
Authors: Adeniyi Onasanya, Maher Elshakankiri
Abstract:
In recent years, the Internet of Things (IoT) has constituted a driving force of modern technological advancement, and it has become increasingly common as its impacts are seen in a variety of application domains, including healthcare. IoT is characterized by the interconnectivity of smart sensors, objects, devices, data, and applications. With the unprecedented use of IoT in industrial, commercial and domestic, it becomes very imperative to harness the benefits and functionalities associated with the IoT technology in (re)assessing the provision and positioning of healthcare to ensure efficient and improved healthcare delivery. In this research, we are focusing on two important services in healthcare systems, which are cancer care services and business analytics/cloud services. These services incorporate the implementation of an IoT that provides solution and framework for analyzing health data gathered from IoT through various sensor networks and other smart devices in order to improve healthcare delivery and to help health care providers in their decision-making process for enhanced and efficient cancer treatment. In addition, we discuss the wireless sensor network (WSN), WSN routing and data transmission in the healthcare environment. Finally, some operational challenges and security issues with IoT-based healthcare system are discussed.Keywords: IoT, smart health care system, business analytics, (wireless) sensor network, cancer care services, cloud services
Procedia PDF Downloads 17727358 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 31727357 The Vision Baed Parallel Robot Control
Abstract:
In this paper, we describe the control strategy of high speed parallel robot system with EtherCAT network. This work deals the parallel robot system with centralized control on the real-time operating system such as window TwinCAT3. Most control scheme and algorithm is implemented master platform on the PC, the input and output interface is ported on the slave side. The data is transferred by maximum 20usecond with 1000byte. EtherCAT is very high speed and stable industrial network. The control strategy with EtherCAT is very useful and robust on Ethernet network environment. The developed parallel robot is controlled pre-design nonlinear controller for 6G/0.43 cycle time of pick and place motion tracking. The experiment shows the good design and validation of the controller.Keywords: parallel robot control, etherCAT, nonlinear control, parallel robot inverse kinematic
Procedia PDF Downloads 57127356 A Predictive MOC Solver for Water Hammer Waves Distribution in Network
Authors: A. Bayle, F. Plouraboué
Abstract:
Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer
Procedia PDF Downloads 23227355 An Assessment of Drainage Network System in Nigeria Urban Areas using Geographical Information Systems: A Case Study of Bida, Niger State
Authors: Yusuf Hussaini Atulukwu, Daramola Japheth, Tabitit S. Tabiti, Daramola Elizabeth Lara
Abstract:
In view of the recent limitations faced by the township concerning poorly constructed and in some cases non - existence of drainage facilities that resulted into incessant flooding in some parts of the community poses threat to life,property and the environment. The research seeks to address this issue by showing the spatial distribution of drainage network in Bida Urban using Geographic information System techniques. Relevant features were extracted from existing Bida based Map using un-screen digitization and x, y, z, data of existing drainages were acquired using handheld Global Positioning System (GPS). These data were uploaded into ArcGIS 9.2, software, and stored in the relational database structure that was used to produce the spatial data drainage network of the township. The result revealed that about 40 % of the drainages are blocked with sand and refuse, 35 % water-logged as a result of building across erosion channels and dilapidated bridges as a result of lack of drainage along major roads. The study thus concluded that drainage network systems in Bida community are not in good working condition and urgent measures must be initiated in order to avoid future disasters especially with the raining season setting in. Based on the above findings, the study therefore recommends that people within the locality should avoid dumping municipal waste within the drainage path while sand blocked or weed blocked drains should be clear by the authority concerned. In the same vein the authority should ensured that contract of drainage construction be awarded to professionals and all the natural drainages caused by erosion should be addressed to avoid future disasters.Keywords: drainage network, spatial, digitization, relational database, waste
Procedia PDF Downloads 33427354 Synergy and Complementarity in Technology-Intensive Manufacturing Networks
Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang
Abstract:
This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.Keywords: city system, complementarity, synergy network, higher-order network
Procedia PDF Downloads 4327353 The Affective Motivation of Women Miners in Ghana
Authors: Adesuwa Omorede, Rufai Haruna Kilu
Abstract:
Affective motivation (motivation that is emotionally laden usually related to affect, passion, emotions, moods) in the workplace stimulates individuals to reinforce, persist and commit to their task, which leads to the individual and organizational performance. This leads individuals to reach goals especially in situations where task are highly challenging and hostile. In such situations, individuals are more disposed to be more creative, innovative and see new opportunities from the loopholes in their workplace. However, when individuals feel displaced and less important, an adverse reaction may suffice which may be detrimental to the organization and its performance. One sector where affective motivation is eminently present and relevant, is the mining industry. Due to its intense work environment; mostly dominated by men and masculinity cultures; and deliberate exclusion of women in this environment which, makes the women working in these environments to feel marginalized. In Ghana, the mining industry is mostly seen as a very physical environment especially underground and mostly considerd as 'no place for a woman'. Despite the fact that these women feel less 'needed' or 'appreciated' in such environments, they still have to juggle between intense work shifts; face violence and other health risks with their families, which put a strain on their affective motivational reaction. Beyond these challenges, however, several mining companies in Ghana today are working towards providing a fair and equal working situation for both men and women miners, by recognizing them as key stakeholders, as well as including them in the stages of mining projects from the planning and designing phase to the evaluation and implementation stage. Drawing from the psychology and gender literature, this study takes a narrative approach to identify and understand the shifting gender dynamics within the mine works in Ghana, occasioning a change in background disposition of miners, which leads to more women taking up mine jobs in the country. In doing so, a qualitative study was conducted using semi-structured interviews from Ghana. Several women working within the mining industries in Ghana shared their experiences and how they felt and still feel in their workplace. In addition, archival documents were gathered to support the findings. The results suggest a change in enrolment regimes in a mining and technology university in Ghana, making room for a more gender equal enrolments in the university. A renowned university that train and feed mine work professional into the industry. The results further acknowledge gender equal and diversity recruitment policies and initiatives among the mining companies of Ghana. This study contributes to the psychology and gender literature by highlighting the hindrances women face in the mining industry as well as highlighting several of their affective reactions towards gender inequality. The study also provides several suggestions for decision makers in the mining industry of what can be done in the future to reduce the gender inequality gap within the industry.Keywords: affective motivation, gender shape shifting, mining industry, women miners
Procedia PDF Downloads 30127352 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 418