Search results for: morphological characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3343

Search results for: morphological characterization

2503 Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes

Authors: Alberto Enrique Molina Lozano, María Teresa Cortés Montañez

Abstract:

Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval.

Keywords: PANI, photocurrent, photoresponse, charge separation, recombination

Procedia PDF Downloads 49
2502 A Proposed Algorithm for Obtaining the Map of Subscribers’ Density Distribution for a Mobile Wireless Communication Network

Authors: C. Temaneh-Nyah, F. A. Phiri, D. Karegeya

Abstract:

This paper presents an algorithm for obtaining the map of subscriber’s density distribution for a mobile wireless communication network based on the actual subscriber's traffic data obtained from the base station. This is useful in statistical characterization of the mobile wireless network.

Keywords: electromagnetic compatibility, statistical analysis, simulation of communication network, subscriber density

Procedia PDF Downloads 303
2501 Synthesis, Characterization, Validation of Resistant Microbial Strains and Anti Microbrial Activity of Substitted Pyrazoles

Authors: Rama Devi Kyatham, D. Ashok, K. S. K. Rao Patnaik, Raju Bathula

Abstract:

We have shown the importance of pyrazoles as anti-microbial chemical entities. These compounds have generally been considered significant due to their wide range of pharmacological acivities and their discovery motivates new avenues of research.The proposed pyrazoles were synthesized and evaluated for their anti-microbial activities. The Synthesized compounds were analyzed by different spectroscopic methods.

Keywords: pyrazoles, validation, resistant microbial strains, anti-microbial activities

Procedia PDF Downloads 154
2500 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 218
2499 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 350
2498 Effect of Depressurization Rate in Batch Foaming of Porous Microcellular Polycarbonate on Microstructure Development

Authors: Indrajeet Singh, Abhishek Gandhi, Smita Mohanty, S. K. Nayak

Abstract:

In this article, a focused study has been performed to comprehend the influence of change in depressurization rate on microcellular polycarbonate foamed morphological attributes. The depressurization rate considered in this study were 0.5, 0.05, 0.01 and 0.005 MPa/sec and the physical blowing agent utilized was carbon dioxide owing to its high solubility in polycarbonate at room temperature. The study was performed on two distinct saturation pressures, i.e., 3 MPa and 6 MPa to understand if saturation pressure has any effects on it. It is reported that with increase in depressurization rate, a higher amount of thermodynamic instability was induced which resulted in generation of larger number of smaller sized cells. This article puts forward an understanding of how depressurization rate control could be well exploited during the batch foaming process to develop high quality microcellular foamed products with exceedingly well controlled cell size.

Keywords: depressurization, porous polymer, foaming, microcellular

Procedia PDF Downloads 249
2497 Algebras over an Integral Domain and Immediate Neighbors

Authors: Shai Sarussi

Abstract:

Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.

Keywords: integral domains, Alexandroff topology, immediate neighbors, valuation domains

Procedia PDF Downloads 167
2496 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 99
2495 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 219
2494 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.

Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property

Procedia PDF Downloads 171
2493 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing

Authors: Neha Devi, P. K. Joshi

Abstract:

Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.

Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis

Procedia PDF Downloads 150
2492 Edge Detection and Morphological Image for Estimating Gestational Age Based on Fetus Length Automatically

Authors: Retno Supriyanti, Ahmad Chuzaeri, Yogi Ramadhani, A. Haris Budi Widodo

Abstract:

The use of ultrasonography in the medical world has been very popular including the diagnosis of pregnancy. In determining pregnancy, ultrasonography has many roles, such as to check the position of the fetus, abnormal pregnancy, fetal age and others. Unfortunately, all these things still need to analyze the role of the obstetrician in the sense of image raised by ultrasonography. One of the most striking is the determination of gestational age. Usually, it is done by measuring the length of the fetus manually by obstetricians. In this study, we developed a computer-aided diagnosis for the determination of gestational age by measuring the length of the fetus automatically using edge detection method and image morphology. Results showed that the system is sufficiently accurate in determining the gestational age based image processing.

Keywords: computer aided diagnosis, gestational age, and diameter of uterus, length of fetus, edge detection method, morphology image

Procedia PDF Downloads 288
2491 Study of Rheological, Physic-Mechanical and Morphological Properties of Nitrile Butadiene Rubber Loaded with Organo-Bentonite

Authors: Doaa S. Mahmoud, Nivin M. Ahmed, Salwa H. El-Sabbagh

Abstract:

The rheometric characteristics and physicomechanical properties of bentonite / acrylonitrile-butadiene rubber (NBR) were investigated. The influences of adding bentonite (Bt) and / or modified bentonite (organo-Bt) to the rubber were observed. Scanning electron microscopy (SEM) showed that the rubber chains may be confined within the interparticle space and the Bt particles presented a physical dispersion in NBR matrix. Bentonite (Bt) was modified with tetra butyl phosphonium bromide (TBP) in order to produce organo-Bt. The modification was carried out at 0.5, 1 and 2 cation exchange capacity (CEC) of bentonite. Results showed that the maximum torque of organo-Bt / NBR composite increases at high bentonite loading. The scorch time (tS2) and cure time (tC90) of the organo-Bt / NBR composites decreased simultaneously relative to those of the neat NBR. The prepared composite exhibited significant improvement in mechanical compared with that of neat NBR.

Keywords: acrylonitrile-butadiene rubber, bentonite, composites, physico-mechanical properties

Procedia PDF Downloads 253
2490 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique

Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François

Abstract:

Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.

Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus

Procedia PDF Downloads 355
2489 European Standardization in Nanotechnologies and Relation with International Work: The Standardization Can Help Industry and Regulators in Developing Safe Products

Authors: Patrice Conner

Abstract:

Nanotechnologies have enormous potential to contribute to human flourishing in responsible and sustainable ways. They are rapidly developing field of science, technology and innovation. As enabling technologies, their full scope of applications is potentially very wide. Major implications are expected in many areas, e.g. healthcare, information and communication technologies, energy production and storage, materials science/chemical engineering, manufacturing, environmental protection, consumer products, etc. However, nanotechnologies are unlikely to realize their full potential unless their associated societal and ethical issues are adequately attended. Namely nanotechnologies and nanoparticles may expose humans and the environment to new health risks, possibly involving quite different mechanisms of interference with the physiology of human and environmental species. One of the building blocks of the ‘safe, integrated and responsible’ approach is standardization. Both the Economic and Social Committee and the European Parliament have highlighted the importance to be attached to standardization as a means to accompany the introduction on the market of nanotechnologies and nanomaterials, and a means to facilitate the implementation of regulation. ISO and CEN have respectively started in 2005 and 2006 to deal with selected topics related to this emerging and enabling technology. In the beginning of 2010, EC DG ‘Enterprise and Industry’ addressed the mandate M/461 to CEN, CENELEC and ETSI for standardization activities regarding nanotechnologies and nanomaterials. Thus CEN/TC 352 ‘Nanotechnologies’ has been asked to take the leadership for the coordination in the execution of M/461 (46 topics to be standardized) and to contact relevant European and International Technical committees and interested stakeholders as appropriate (56 structures have been identified). Prior requests from M/461 deal with characterization and exposure of nanomaterials and any matters related to Health, Safety and Environment. Answers will be given to: - What are the structures and how they work? - Where are we right now and how work is going from now onwards? - How CEN’s work and targets deal with and interact with global matters in this field?

Keywords: characterization, environmental protection, exposure, health risks, nanotechnologies, responsible and sustainable ways, safety

Procedia PDF Downloads 180
2488 Phenotypic Characterization of Desi Naked Neck Chicken and Its Association with Insulin-Like Growth Factor-I (IGF-I) Gene Polymorphism in Pakistan

Authors: Akbar Nawaz Khan, Abdul Ghaffar, Muhammad Naeem Riaz

Abstract:

The study was conducted to investigate the phenotypic features, morphometry and production potentialities of indigenous naked neck chicken (NN) of Pakistan under intensive management condition. A total of 35 NN chicks were randomly selected, and the experiment was performed at Poultry and wildlife research section NARC Islamabad for a period of 22 weeks. The predominant plumage color was black and golden while skin color was observed white. The average shank length, leg length, thigh length, keel length, chest breadth, head width, wing space, wing length, body length, body girth, body height and pubic bone width in adult males and females were 69.19 ± 3.34mm, 117.93 ± 4.42mm, 117.93 ± 4.42mm, 90.87 ± 6.53mm, 95.03 ± 4.56mm, 49.77 ± 2.53mm, 30.63 ± 1.50cm, 27.24 ± 2.71cm, 18.88 ± 0.65cm, 17.77 ± 1.01cm, 25.96 ± 0.56cm, 47.81 ± 1.41cm and 35.69 ± 4.09mm respectively. The average age and live body weight of NN chicken at sexual maturity were recorded as 165.85 days and 1269.38 g. While hen-day egg production of NN was recorded as 45%. The present study was aimed to investigate the existence of polymorphism at IGF-I gene in indigenous naked neck chicken through PCR based Restriction Fragment Length Polymorphism. Based on restriction analysis using Hinf I restriction enzyme, three genotypes were detected designated as AA, AC, and CC. Restriction analysis of PCR amplified product showed the presence of DNA fragments of 622, 378, 244 and 191, (genotypes). The PCR-RFLP analysis is easy, cost effective method which permits the easy characterization of IGF-I gene. This showed the investigated IGF-I genes can serve as good molecular markers for marker assisted selection (MAS) concerning growth related traits in chicken.

Keywords: Desi chicken, naked neck, morphology, morphometry, production potential, egg traits, egg geometry, IGF-I, growth, PCR- RFLP, chicken

Procedia PDF Downloads 379
2487 Culture of Human Mesenchymal Stem Cells Culture in Xeno-Free Serum-Free Culture Conditions on Laminin-521

Authors: Halima Albalushi, Mohadese Boroojerdi, Murtadha Alkhabori

Abstract:

Introduction: Maintenance of stem cell properties during culture necessitates the recreation of the natural cell niche. Studies reported the promising outcome of mesenchymal stem cells (MSC) properties maintenance after using extracellular matrix such as CELLstart™, which is the recommended coating material for stem cells cultured in serum-free and xeno-free conditions. Laminin-521 is known as a crucial adhesion protein, which is found in natural stem cell niche, and plays an important role in facilitating the maintenance of self-renewal, pluripotency, standard morphology, and karyotype of human pluripotent stem cells (PSCs). The aim of this study is to investigate the effects of Laminin-521 on human umbilical cord-derived mesenchymal stem cells (UC-MSC) characteristics as a step toward clinical application. Methods: Human MSC were isolated from the umbilical cord via the explant method. Umbilical cord-derived-MSC were cultured in serum-free and xeno-free conditions in the presence of Laminin-521 for six passages. Cultured cells were evaluated by morphology and expansion index for each passage. Phenotypic characterization of UC-MSCs cultured on Laminin-521 was evaluated by assessment of cell surface markers. Results: Umbilical cord derived-MSCs formed small colonies and expanded as a homogeneous monolayer when cultured on Laminin-521. Umbilical cord derived-MSCs reached confluence after 4 days in culture. No statistically significant difference was detected in all passages when comparing the expansion index of UC-MSCs cultured on LN-521 and CELLstart™. Phenotypic characterization of UC-MSCs cultured on LN-521 using flow cytometry revealed positive expression of CD73, CD90, CD105 and negative expression of CD34, CD45, CD19, CD14 and HLA-DR.Conclusion: Laminin-521 is comparable to CELLstart™ in supporting UC-MSCs expansion and maintaining their characteristics during culture in xeno-free and serum-free culture conditions.

Keywords: mesenchymal stem cells, culture, laminin-521, xeno-free serum-free

Procedia PDF Downloads 62
2486 Characterization of Ethanol-Air Combustion in a Constant Volume Combustion Bomb Under Cellularity Conditions

Authors: M. Reyes, R. Sastre, P. Gabana, F. V. Tinaut

Abstract:

In this work, an optical characterization of the ethanol-air laminar combustion is presented in order to investigate the origin of the instabilities developed during the combustion, the onset of the cellular structure and the laminar burning velocity. Experimental tests of ethanol-air have been developed in an optical cylindrical constant volume combustion bomb equipped with a Schlieren technique to record the flame development and the flame front surface wrinkling. With this procedure, it is possible to obtain the flame radius and characterize the time when the instabilities are visible through the cell's apparition and the cellular structure development. Ethanol is an aliphatic alcohol with interesting characteristics to be used as a fuel in Internal Combustion Engines and can be biologically synthesized from biomass. Laminar burning velocity is an important parameter used in simulations to obtain the turbulent flame speed, whereas the flame front structure and the instabilities developed during the combustion are important to understand the transition to turbulent combustion and characterize the increment in the flame propagation speed in premixed flames. The cellular structure is spontaneously generated by volume forces, diffusional-thermal and hydrodynamic instabilities. Many authors have studied the combustion of ethanol air and mixtures of ethanol with other fuels. However, there is a lack of works that investigate the instabilities and the development of a cellular structure in ethanol flames, a few works as characterized the ethanol-air combustion instabilities in spherical flames. In the present work, a parametrical study is made by varying the fuel/air equivalence ratio (0.8-1.4), initial pressure (0.15-0.3 MPa) and initial temperature (343-373K), using a design of experiments type I-optimal. In reach mixtures, it is possible to distinguish the cellular structure formed by the hydrodynamic effect and by from the thermo-diffusive. Results show that ethanol-air flames tend to stabilize as the equivalence ratio decreases in lean mixtures and develop a cellular structure with the increment of initial pressure and temperature.

Keywords: ethanol, instabilities, premixed combustion, schlieren technique, cellularity

Procedia PDF Downloads 56
2485 The Contrastive Survey of Phonetic Structure in Two Iranian Dialects

Authors: Iran Kalbasi, Foroozandeh Zardashti

Abstract:

Dialectology is a branch of social linguistics that studies systematic language variations. Dialects are the branches of a unique language that have structural, morphological and phonetic differences with each other. In Iran, these dialects and language variations themselves have a lot of cultural loads, and studying them have linguistic and cultural importance. In this study, phonetic structure of two Iranian dialects, Bakhtiyari Lori of Masjedsoleyman and Shushtari in Khuzestan Province of Iran have been surveyed. Its statistical community includes twenty speakers of two dialects. The theoretic bases of this research is based on structuralism. Its data have been collected by interviewing the questionnaire that consist of 3000 words, 410 sentences and 110 complex and simple verbs. These datas are analysed and described synchronically. Then, the phonetic characteristics of these two dialects and standard Persian have been compared. Therefore, we can say that in phonetic level of these two dialects and standard Persian, there are clearly differences.

Keywords: standard language, dialectology, bakhtiyari lori dialect of Masjedsoleyman, Shushtari dialect, vowel, consonant

Procedia PDF Downloads 583
2484 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal

Procedia PDF Downloads 442
2483 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 87
2482 Characterization of CuO Incorporated CMOS Dielectric for Fast Switching System

Authors: Nissar Mohammad Karim, Norhayati Soin

Abstract:

To ensure fast switching in high-K incorporated Complementary Metal Oxide Semiconductor (CMOS) transistors, the results on the basis of d (NBTI) by incorporating SiO2 dielectric with aged samples of CuO sol-gels have been reported. Precursor ageing has been carried out for 4 days. The minimum obtained refractive index is 1.0099 which was found after 3 hours of adhesive UV curing. Obtaining a low refractive index exhibits a low dielectric constant and hence a faster system.

Keywords: refractive index, Sol-Gel, precursor aging, aging

Procedia PDF Downloads 463
2481 Genotypic Characterization of Gram-Positive Bacteria Isolated on Ornamental Animals Feed

Authors: C. Miranda, R. Soares, S. Cunha, L. Ferreira, G. Igrejas, P. Poeta

Abstract:

Different animal species, including ornamental animals, are reported as potential reservoirs of antibiotic resistance genes. Consequently, these resistances can be disseminated in the environment and transferred to humans. Moreover, multidrug-resistant bacteria reduce the efficacy of antibiotics, as the case of vancomycin-resistant enterococci. Enterococcus faecalis and E. faecium are described as the main nosocomial pathogens. In this line, the aim of this study was to characterize resistance and virulence genes of enterococci species isolated from samples of food supplied to ornamental animals during 2020. The 29 enterococci isolates (10 E. faecalis and 19 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB and ermC), tetracycline (tetL, tetM, tetK and tetO), quinupristin/dalfopristin (vatD and vatE), gentamicin (aac(6’)-aph(2’’)-Ia), chloramphenicol (catA), streptomycin (ant(6)-Ia) and vancomycin (vanA and vanB). The same isolates were also tested for 10 virulence factors genes (esp, ace, gelE, agg, fsr, cpd, cylA, cylB, cylM and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. The most prevalent resistance genes detected in both enterococci species were ermB (n=15, 52%), ermC (n=7, 24%), tetK (n=8, 28%) and vatE (n=4, 14%). Resistance genes for vancomycin were found in ten (34%) E. faecalis and ten (34%) E. faecium isolates. Only E. faecium isolates showed the presence of ermA (n=2, 7%), tetL (n=13, 45%) and ant(6)-Ia gene (n=4, 14%). A total of nine (31%) enterococci isolates were classified as multidrug-resistant bacteria (3 E. faecalis and 6 E. faecium). In three E. faecalis and one E. faecium were not detected resistance genes. The virulence genes detected in both species were agg (n=6, 21%) and cylLL (n=11, 38%). In general, each isolate showed only one of these virulence genes. Five E. faecalis and eleven E. faecium isolates were negative for all analyzed virulence genes. These preliminary results showed the presence of multidrug-resistant enterococci in food supplied to ornamental animals, in particular vancomycin-resistant enterococci. This genotypic characterization reinforces the relevance to public health in the control of antibiotic-resistant bacteria.

Keywords: antibiotic resistance, enterococci, feed, ornamental animals

Procedia PDF Downloads 183
2480 Modeling and Tracking of Deformable Structures in Medical Images

Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan

Abstract:

This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.

Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images

Procedia PDF Downloads 331
2479 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense

Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah

Abstract:

Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.

Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq

Procedia PDF Downloads 249
2478 Wind Speed Data Analysis in Colombia in 2013 and 2015

Authors: Harold P. Villota, Alejandro Osorio B.

Abstract:

The energy meteorology is an area for study energy complementarity and the use of renewable sources in interconnected systems. Due to diversify the energy matrix in Colombia with wind sources, is necessary to know the data bases about this one. However, the time series given by 260 automatic weather stations have empty, and no apply data, so the purpose is to fill the time series selecting two years to characterize, impute and use like base to complete the data between 2005 and 2020.

Keywords: complementarity, wind speed, renewable, colombia, characteri, characterization, imputation

Procedia PDF Downloads 152
2477 Clustered Regularly Interspaced Short Palindromic Repeats Interference (CRISPRi): An Approach to Inhibit Microbial Biofilm

Authors: Azna Zuberi

Abstract:

Biofilm is a sessile bacterial accretion in which bacteria adapts different physiological and morphological behavior from planktonic form. It is the root cause of about 80% microbial infections in human. Among them, E. coli biofilms are most prevalent in medical devices associated nosocomial infections. The objective of this study was to inhibit biofilm formation by targeting LuxS gene, involved in quorum sensing using CRISPRi. luxS is a synthase, involved in the synthesis of Autoinducer-2(AI-2), which in turn guides the initial stage of biofilm formation. To implement CRISPRi system, we have synthesized complementary sgRNA to target gene sequence and co-expressed with dCas9. Suppression of luxS was confirmed through qRT-PCR. The effect of luxS gene on biofilm inhibition was studied through crystal violet assay, XTT reduction assay and scanning electron microscopy. We conclude that CRISPRi system could be a potential strategy to inhibit bacterial biofilm through mechanism base approach.

Keywords: biofilm, CRISPRi, luxS, microbial

Procedia PDF Downloads 172
2476 Fluoride Immobilization in Plaster Board Waste: A Safety Measure to Prevent Soil and Water Pollution

Authors: Venkataraman Sivasankar, Kiyoshi Omine, Hideaki Sano

Abstract:

The leaching of fluoride from Plaster Board Waste (PBW) is quite feasible in soil and water environments. The Ministry of Environment, Japan recommended the standard limit of 0.8 mgL⁻¹ or less for fluoride. Although the utilization of PBW as a substitute for cement is rather meritorious, its fluoride leaching behavior deteriorates the quality of soil and water and therefore envisaged as a demerit. In view of this fluoride leaching problem, the present research is focused on immobilizing fluoride in PBW. The immobilization experiments were conducted with four chemical systems operated by DAHP (diammonium hydrogen phosphate) and phosphoric acid carbonization of bamboo mass coupled with certain inorganic reactions using reagents such as calcium hydroxide, sodium hydroxide, and aqueous ammonia. The fluoride immobilization was determined after shaking the reactor contents including the plaster board waste for 24 h at 25˚C. In the DAHP system, the immobilization of fluoride was evident from the leaching of fluoride in the range 0.071-0.12 mgL⁻¹, 0.026-0.14 mgL⁻¹ and 0.068-0.12 mgL⁻¹ for the reaction temperatures at 30˚C, 50˚C, and 90˚C, respectively, with final pH of 6.8. The other chemical systems designated as PACCa, PACAm, and PACNa could immobilize fluoride in PBW, and the resulting solution was analyzed with the fluoride less than the Japanese environmental standard of 0.8 mgL⁻¹. In the case of PACAm and PACCa systems, the calcium concentration was found undetectable and witnessed the formation of phosphate compounds. The immobilization of fluoride was found inversely proportional to the increase in the volume of leaching solvent and dose of PBW. Characterization studies of PBW and the solid after fluoride immobilization was done using FTIR (Fourier transform infrared spectroscopy), Raman spectroscopy, FE-SEM ( Field Emission Scanning Electron Microscopy) with EDAX (Energy Dispersive Spectroscopy), XRD (X-ray diffraction), and XPS (X-ray photoelectron spectroscopy). The results revealed the formation of new calcium phosphate compounds such as apatite, monetite, and hydroxylapatite. The participation of such new compounds in fluoride immobilization seems indispensable through the exchange mechanism of hydroxyl and fluoride groups. Acknowledgment: First author thanks to Japanese Society for the Promotion of Science (JSPS) for the award of the fellowship (ID No. 16544).

Keywords: characterization, fluoride, immobilization, plaster board waste

Procedia PDF Downloads 151
2475 Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes

Authors: Seyed Mohsen Mousavi, Ali Reza Mahjoub, Bahjat Afshari Razani

Abstract:

In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys.

Keywords: azo dyes, Fe/ZnO hollow sphere, hollow sphere nanostructures, photocatalyst

Procedia PDF Downloads 344
2474 Identification of Lactic Acid Bacteria Isolated from Raw Camel Milk Produced in South of Morocco

Authors: Maha Alaoui Ismaili, Bouchta Saidi, Mohamed Zahar, Abed Hamama

Abstract:

112 lactic isolates were obtained from 15 samples of camel raw milk produced in Laayoune Boujdour Sakia-El Hamra region (South of Morocco). The main objective was the identification of species of lactic flora belonging to Lactococcus, Lactobacillus and Leuconostoc. Data obtained showed predominance of cocci among lactic isolates (86.6%) while lactic rods represented only 13.4%. With regard to genera identified, Enterococcus was the mostly found out (53.57%), followed by Lactococcus (28.57%), Lactobacillus (13.4%) and Leuconostoc (4.4 %). Identification of the lactic isolates according to their morphological, physiological, and biochemical characteristics led to differentiating 11 species with Lactococcus lactis ssp lactis biovar diacetylactis being the mostly encountered (24.1%) followed by Lactobacillus brevis (3.57%), Lactobacillus plantarum (3.57%), Lactobacillus delbrueckii subsp lactis (3.57%) and Lactococcus lactis subsp cremoris (2.67%).

Keywords: raw camel milk, south of morocco, lactic acid bacteria, identification

Procedia PDF Downloads 473