Search results for: mixed effects models
17872 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 13517871 The Effects of Self- and Partner Reported Attachment Orientations and Mate Retention Behaviors: Actor and Partner Effects in Romantic Couples
Authors: Jasna Hudek-Knezevic, Igor Kardum, Nada Krapic, Martina Jurcic
Abstract:
The aim of this study was to examine the effects of self- and partner reported attachment orientations on self-reported mate retention behaviors in romantic couples using the actor-partner interdependence model. The study was carried out on 187 heterosexual couples aged from 18 to 35 years, with an average relationship length of 4.5 years. Participants were asked to complete the revised scale of adult attachment and short form of mate retention inventory. Actor and partner effects of self- and partner reported anxious and avoidant attachment orientations on mate retention categories (direct guarding, intersexual negative inducements, positive inducements, public signals of possession and intrasexual negative inducements) and domains (cost-inflicting and benefit-provisioning), as well on overall mate retention were examined. Actor effects for women estimate whether their attachment orientations predict their own mate retention behaviors, whereas men’s actor effects estimate whether their attachment orientations predict their own mate retention behaviors. Women’s partner effects estimate whether their attachment orientations predict their partner’s mate retention behaviors, whereas men’s partner effects estimate whether their attachment orientations predict their partner’s mate retention behaviors. The use of two data sources, self- and partner reports, allow the control of the effects of common method variance when exploring actor and partner effects. Positive actor and partner effects of anxious attachment, as well as negative actor and partner effects of avoidant attachment on mate retention, were expected. In other words, it was expected that more anxiously attached individuals themselves, as well as their partners, will use mate retention behaviors more frequently. On the other hand, more avoidantly attached individuals themselves, as well as their partners, will use mate retention behaviors less frequently. These hypotheses were partially confirmed. The results showed that the strongest and most consistent effects across both data sources were men’s actor effects on the cost-inflicting mate retention domain, and especially on two mate retention categories, direct guarding, and intersexual negative inducements. Additionally, a consistent positive partner effect of men’s anxious attachment orientations on direct guarding was also obtained. Avoidant attachment orientation exerted few and inconsistent actor and partner effects on mate retention domains and categories. The results are explained by theoretical propositions addressing the effects of attachment orientations on an interpersonal romantic relationship in early adulthood.Keywords: actor and partner effects, attachment orientations, dyadic analysis, mate retention behavior
Procedia PDF Downloads 16617870 Human Resource Utilization Models for Graceful Ageing
Authors: Chuang-Chun Chiou
Abstract:
In this study, a systematic framework of graceful ageing has been used to explore the possible human resource utilization models for graceful ageing purpose. This framework is based on the Chinese culture. We call ‘Nine-old’ target. They are ageing gracefully with feeding, accomplishment, usefulness, learning, entertainment, care, protection, dignity, and termination. This study is focused on two areas: accomplishment and usefulness. We exam the current practices of initiatives and laws of promoting labor participation. That is to focus on how to increase Labor Force Participation Rate of the middle aged as well as the elderly and try to promote the elderly to achieve graceful ageing. Then we present the possible models that support graceful ageing.Keywords: human resource utilization model, labor participation, graceful ageing, employment
Procedia PDF Downloads 39017869 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers
Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw
Abstract:
Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.Keywords: aerodynamics, CFD, freightage, pickup cover
Procedia PDF Downloads 16817868 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 42817867 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 6917866 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand
Authors: Jefferson Hernandez, Juan Padilla
Abstract:
Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.Keywords: price elasticity, volume, correlation structures, Bayesian models
Procedia PDF Downloads 16517865 The Role of NAD+ and Nicotinamide (Vitamin B3) in Glaucoma: A Literature Review
Authors: James Pietris
Abstract:
Glaucoma is a collection of irreversible optic neuropathies which, if left untreated, lead to severe visual field loss. These diseases are a leading cause of blindness across the globe and are estimated to affect approximately 80 million people, particularly women and people of Asian descent.1This represents a major burden on healthcare systems worldwide. Recently, there has been increasing interest in the potential of nicotinamide (vitamin B3) as a novel option in the management of glaucoma. This review aims to analyse the currently available literature to determine whether there is evidence of an association between nicotinamide adenine dinucleotide (NAD+) and glaucomatous optic neuropathy and whether nicotinamide has the potential to prevent or reverse these effects. The literature showed a strong connection between reduced NAD+ levels and retinal ganglion cell dysfunction through multiple different studies. There is also evidence of the positive effect of nicotinamide supplementation on retinal ganglion cell function in models of mouse glaucoma and in a study involving humans. Based on the literature findings, a recommendation has been made that more research into the efficacy, appropriate dosing, and potential side effects of nicotinamide supplementation is needed before it can be definitively determined whether it is appropriate for widespread prophylactic and therapeutic use against glaucoma in humans.Keywords: glaucoma, nicotinamide, vitamin B3, optic neuropathy
Procedia PDF Downloads 10617864 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 14317863 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition
Authors: Ramesh Chandra Majhi
Abstract:
Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.Keywords: optimization, passenger car unit, saturation flow, signalized intersection
Procedia PDF Downloads 32717862 Currency Exchange Rate Forecasts Using Quantile Regression
Authors: Yuzhi Cai
Abstract:
In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling
Procedia PDF Downloads 25617861 Interprofessional School-Based Mental Health Services for Rural Adolescents in South Australia
Authors: Garreth Kestell, Lukah Dykes, Danielle Zerk, Kyla Trewartha, Rhianon Marshall, Elena Rudnik
Abstract:
Adolescent mental health is an international priority and the impact of innovative service models must be evaluated. Secondary school-based mental health services (SBMHS) involving private general practitioners and psychologists are a model of care being trialed in South Australia. Measures of depression, anxiety, and stress are routinely collected throughout psychotherapy sessions. This research set out to quantify the impact of psychotherapy for rural adolescents in a school setting and explore the importance of session frequency. Methods: Demographics, session date and DASS21 scores from students (n=65) seen in 2016 by three psychologists working at the SBMHS were recorded. Students were aged 13-18 years (M=15.43, SD= 1.24), mostly female (F=51, M=14), attended between 1 and 23 sessions with a median of 6 sessions (MAD 5.93) in one-year. The treating psychologist collected self-administered DASS21 scores. A mixed model analysis was used with age, sex, treating psychologist, months from first session, and session number as fixed effects, with response variables of DASS depression, anxiety, and stress scores. Results: 71.5% were classified as having extreme or severe anxiety and half had extreme or severe depression and/or stress scores. On average males had a greater increase in DASS scores over time but males attending more sessions benefited most from therapy. Discussion: Psychologists are treating rural adolescents in schools for severe anxiety, depression, and stress. This pilot study indicates that a predictive model combining demographics, session frequency, and DASS scores may help identify who is most likely to benefit from individual psychotherapy. Variations in DAS scores of individuals over time indicate the need for the collection of information such as living situation and exposure to alcohol. A larger sample size and additional data are currently being collected to allow for a more robust analysis.Keywords: adolescent health, psychotherapy, school based mental health services, DAS21
Procedia PDF Downloads 16517860 Efficacy of Music for Improving Language in Children with Special Needs
Authors: Louisa Han Lin Tan, Poh Sim Kang, Wei Ming Loi, Susan Jane Rickard Liow
Abstract:
The efficacy of music for improving speech and language has been shown across ages and diagnoses. Across the world, the wide range of therapy settings and increasing number of children diagnosed with special needs demand more cost and time effective service delivery. However, research exploring co-treatment models on children other than those with Autism Spectrum Disorder remains sparse. The aim of this research was to determine the efficacy of music for improving language in children with special needs, and generalizability of therapy effects. 25 children (7 to 12 years) were split into three groups – A, B and control. A cross-over design with direct therapy (storytelling) with or without music, and indirect therapy was applied with two therapy phases lasting 6 sessions each. Therapy targeted three prepositions in each phase. Baseline language abilities were assessed, with re-assessment after each phase. The introduction of music in therapy led to significantly greater improvement (p=.046, r=.53) in associated language abilities, with case studies showing greater effectiveness in developmentally appropriate target prepositions. However, improvements were not maintained once direct therapy ceased. As such, the incorporation of music could lead to greater efficiency and effectiveness of language therapy in children with special needs, but sustainability and generalizability of therapy effects both require further exploration.Keywords: music, language therapy, children, special needs
Procedia PDF Downloads 46517859 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 29717858 Assessment of Sustainability Initiatives at Applied Science University in Bahrain
Authors: Bayan Ahmed Alsaffar
Abstract:
The aim of this study is to assess the sustainability initiatives at Applied Sciences University (ASU) in Bahrain using a mixed-methods approach based on students, staff, and faculty perceptions. The study involves a literature review, interviews with faculty members and students, and a survey of ASU's level of sustainability in education, research, operations, administration, and finance that depended on the Sustainability Tracking, Assessment & Rating System (STARS). STARS is a tool used to evaluate the sustainability performance of higher education institutions. The study concludes that a mixed-methods approach can provide a powerful tool for assessing sustainability initiatives at ASU and ultimately lead to insights that can inform effective strategies for improving sustainability efforts. The current study contributes to the field of sustainability in universities and highlights the importance of user engagement and awareness for achieving sustainability goals.Keywords: environment, initiatives, society, sustainability, STARS, university
Procedia PDF Downloads 9317857 Lead and Cadmium Residue Determination in Spices Available in Tripoli City Markets (Libya)
Authors: Mohamed Ziyaina, Ahlam Rajab, Khadija Alkhweldi, Wafia Algami, Omer Al. Toumi, Barbara Rasco1
Abstract:
In recent years, there has been a growing interest in monitoring heavy metal contamination in food products. Spices can improve the taste of food and can also be a source of many bioactive compounds but can unfortunately, also be contaminated with dangerous materials, potentially heavy metals. This study was conducted to investigate lead (Pb) and cadmium (Cd) contamination in selected spices commonly consumed in Libya including Capsicum frutescens (chili pepper) Piper nigrum, (black pepper), Curcuma longa (turmeric), and mixed spices (HRARAT) which consist of a combination of: Alpinia officinarum, Zingiber officinale and Cinnamomum zeylanicum. Spices were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide. The highest level of lead (Pb) was found in Curcuma longa and Capsicum frutescens in wholesale markets (1.05 ± 0.01 mg/kg, 0.96 ± 0.06 mg/kg). Cadmium (Cd) levels exceeded FAO/WHO permissible limit. Curcuma longa and Piper nigrum sold in retail markets had a high concentration of Cd (0.36 ± 0.09, 0.35 ± 0.07 mg/kg, respectively) followed by (0.32 ± 0.04 mg/kg) for Capsicum frutescens. Mixed spices purchased from wholesale markets also had high levels of Cd (0.31 ± 0.08 mg/kg). Curcuma longa and Capsicum frutescens may pose a food safety risk due to high levels of lead and cadmium. Cadmium levels exceeded FAO/WHO recommendations (0.2 ppm) for Piper nigrum, Curcuma longa, and mixed spices (HRARAT).Keywords: heavy metals, lead, cadmium determination, spice
Procedia PDF Downloads 64117856 The Impact of Introspective Models on Software Engineering
Authors: Rajneekant Bachan, Dhanush Vijay
Abstract:
The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.Keywords: software engineering, architectures, introspective models, operating systems
Procedia PDF Downloads 53817855 Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust
Authors: Gospodinka Prakova, Pavlina Gidikova, Gergana Sandeva, Kamelia Haracherova, Emil Slavov
Abstract:
Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust.Keywords: mineral dust, neopterin, occupational exposure, respirable crystalline silica
Procedia PDF Downloads 26617854 Shock Formation for Double Ramp Surface
Authors: Abdul Wajid Ali
Abstract:
Supersonic flight promises speed, but the design of the air inlet faces an obstacle: shock waves. They prevent air flow in the mixed compression ports, which reduces engine performance. Our research investigates this using supersonic wind tunnels and schlieren imaging to reveal the complex dance between shock waves and airflow. The findings show clear patterns of shock wave formation influenced by internal/external pressure surfaces. We looked at the boundary layer, the slow-moving air near the inlet walls, and its interaction with shock waves. In addition, the study emphasizes the dependence of the shock wave behaviour on the Mach number, which highlights the need for adaptive models. This knowledge is key to optimizing the combined compression inputs, paving the way for more powerful and efficient supersonic vehicles. Future engineers can use this knowledge to improve existing designs and explore innovative configurations for next-generation ultrasonic applications.Keywords: oblique shock formation, boundary layer interaction, schlieren images, double wedge surface
Procedia PDF Downloads 6517853 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 21217852 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 14117851 Effects of a School-Based Mindfulness Intervention on Stress and Emotions on Students Enrolled in an Independent School
Authors: Tracie Catlett
Abstract:
Students enrolled in high-achieving schools are under tremendous pressure to perform at high levels inside and outside the classroom. Achievement pressure is a prevalent source of stress for students enrolled in high-achieving schools, and female students in particular experience a higher frequency and higher levels of stress compared to their male peers. The practice of mindfulness in a school setting is one tool that has been linked to improved self-regulation of emotions, increased positive emotions, and stress reduction. A mixed methods randomized pretest-posttest no-treatment control trial, evaluated the effects of a six-session mindfulness intervention taught during a regularly scheduled life skills period in an independent day school, one type of high-achieving school. Twenty-nine students in Grades 10 and 11 were randomized by class where Grade 11 students were in the intervention group (n = 14) and Grade 10 students were in the control group (n = 15). Findings from the study produced mixed results. There was no evidence that the mindfulness program reduced participants’ stress levels and negative emotions. In fact, contrary to what was expected, students enrolled in the intervention group experienced higher levels of stress and increased negative emotions at posttreatment when compared to pretreatment. Neither the within-group nor the between-groups changes in stress level were statistically significant, p > .05, and the between-groups effect size was small, d = .2. The study found evidence that the mindfulness program may have had a positive impact on students’ ability to regulate their emotions. The within-group comparison and the between-groups comparison at posttreatment found that students in the mindfulness course experienced statistically significant improvement in the in their ability to regulate their emotions at posttreatment, p = .009 < .05 and p =. 034 < .05, respectively. The between-groups effect size was medium, d =.7, suggesting that the positive differences in emotion regulation difficulties were substantial and have practical implications. The analysis of gender differences as they relate to stress and emotions revealed that female students perceive higher levels of stress and report experiencing stress more often than males. There were no gender differences when analyzing sources of stress experienced by the student participants. Both females and males experience regular achievement pressures related to their school performance and worry about their future, college acceptance, grades, and parental expectations. Females reported an increased awareness of their stress and actively engaged in practicing mindfulness to manage their stress. Students in the treatment group expressed that the practice of mindfulness resulted in feelings of relaxation and calmness.Keywords: achievement pressure, adolescents, emotion regulation, emotions, high-achieving schools, independent schools, mindfulness, negative affect, positive affect, stress
Procedia PDF Downloads 7117850 Literature Review of the Antibacterial Effects of Salvia Officinalis L.
Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam
Abstract:
Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.Keywords: salvia officinalis, literature review, antibacterial, effects
Procedia PDF Downloads 3817849 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics
Authors: A. Kalaei, A. H. W. Ngan
Abstract:
In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress
Procedia PDF Downloads 12317848 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps
Authors: Yong Bum Shin
Abstract:
This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process
Procedia PDF Downloads 8117847 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 6217846 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures
Authors: Ramona Zharfpeykan, Paul Rouse
Abstract:
Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative
Procedia PDF Downloads 18117845 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer
Authors: Y. Baba, A. Archibong-Eso, H. Yeung
Abstract:
Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length
Procedia PDF Downloads 32917844 Environmental Effects on Energy Consumption of Smart Grid Consumers
Authors: S. M. Ali, A. Salam Khan, A. U. Khan, M. Tariq, M. S. Hussain, B. A. Abbasi, I. Hussain, U. Farid
Abstract:
Environment and surrounding plays a pivotal rule in structuring life-style of the consumers. Living standards intern effect the energy consumption of the consumers. In smart grid paradigm, climate drifts, weather parameter and green environmental directly relates to the energy profiles of the various consumers, such as residential, commercial and industrial. Considering above factors helps policy in shaping utility load curves and optimal management of demand and supply. Thus, there is a pressing need to develop correlation models of load and weather parameters and critical analysis of the factors effecting energy profiles of smart grid consumers. In this paper, we elaborated various environment and weather parameter factors effecting demand of consumers. Moreover, we developed correlation models, such as Pearson, Spearman, and Kendall, an inter-relation between dependent (load) parameter and independent (weather) parameters. Furthermore, we validated our discussion with real-time data of Texas State. The numerical simulations proved the effective relation of climatic drifts with energy consumption of smart grid consumers.Keywords: climatic drifts, correlation analysis, energy consumption, smart grid, weather parameter
Procedia PDF Downloads 37517843 Psycho-Social Consequences of Gynecological Health Disparities among Immigrant Women in the USA: An Integrative Review
Authors: Khadiza Akter, Tammy Greer, Raegan Bishop
Abstract:
An in-depth study of the psycho-social effects of gynecological health disparities among immigrant women in the USA is the goal of this integrative review paper. Immigrant women frequently encounter unique obstacles that have severe psycho-social repercussions when it comes to receiving high-quality gynecological treatment. The review investigates the interaction of psychological, sociological, and health factors that affect the psycho-social effects that immigrant women experience in recognition of the significance of addressing these imbalances. The difficulties that immigrant women face in providing high-quality gynecological treatment in the USA are examined in this study. These difficulties are caused by a variety of psychological issues, including acculturation stress and stigma, as well as by social problems like prejudice, language hurdles, and cultural norms. Additionally, variations in healthcare access and affordability have a role. This study highlights the particular challenges that immigrant women have in receiving high-quality gynecological treatment in the United States. These difficulties are caused by both social problems like language obstacles, cultural norms, and biases, as well as psychological ones like acculturation stress and stigma. Additionally, variations in gynecological care for immigrant women are greatly influenced by variances in healthcare availability and price. To find pertinent research looking at the psychological effects of gynecological health disparities among immigrant women in the USA, a thorough search of numerous databases was done. Numerous approaches, including mixed, quantitative, and qualitative ones, were used in the studies. The important findings from various investigations were extracted and synthesized after they underwent a careful evaluation. In order to lessen these discrepancies and enhance the overall well-being of immigrant women, healthcare professionals, legislators, and researchers must collaborate to create specialized treatments, regulations, and health system reforms.Keywords: cultural barriers, gynecological health disparities, health care access, immigrant women, mental health, psycho-social consequences, social stigma
Procedia PDF Downloads 80