Search results for: miniature specimen testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3401

Search results for: miniature specimen testing

2561 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.

Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle

Procedia PDF Downloads 482
2560 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior

Authors: Burak Bal

Abstract:

Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.

Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure

Procedia PDF Downloads 138
2559 Teaching Practices for Subverting Significant Retentive Learner Errors in Arithmetic

Authors: Michael Lousis

Abstract:

The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic throughout the development of the Kassel Project in England and Greece was accomplished. How much retentive these errors were over three-years in the officially provided school instruction of Arithmetic in these countries has also been shown. The learners’ errors in Arithmetic stemmed from a sample, which was comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. The sample was purposefully selected according to the students’ participation in each testing session in the development of the three-year project, in both domains simultaneously in Arithmetic and Algebra. Specific teaching practices have been invented and are presented in this study for subverting these learners’ errors, which were found out to be retentive to the level of the nationally provided mathematical education of each country. The invention and the development of these proposed teaching practices were founded on the rationality of the theoretical accounts concerning the explanation, prediction and control of the errors, on the conceptual metaphor and on an analysis, which tried to identify the required cognitive components and skills of the specific tasks, in terms of Psychology and Cognitive Science as applied to information-processing. The aim of the implementation of these instructional practices is not only the subversion of these errors but the achievement of the mathematical competence, as this was defined to be constituted of three elements: appropriate representations - appropriate meaning - appropriately developed schemata. However, praxis is of paramount importance, because there is no independent of science ‘real-truth’ and because praxis serves as quality control when it takes the form of a cognitive method.

Keywords: arithmetic, cognitive science, cognitive psychology, information-processing paradigm, Kassel project, level of the nationally provided mathematical education, praxis, remedial mathematical teaching practices, retentiveness of errors

Procedia PDF Downloads 299
2558 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening

Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang

Abstract:

In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.

Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems

Procedia PDF Downloads 118
2557 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements

Procedia PDF Downloads 290
2556 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 174
2555 Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis

Authors: Kyeong Hoon Park, Taiji Mazuda

Abstract:

High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined.

Keywords: base-isolation, bilinear model, high damping rubber, loading test

Procedia PDF Downloads 109
2554 Friction and Wear, Including Mechanisms, Modeling,Characterization, Measurement and Testing (Bangladesh Case)

Authors: Gor Muradyan

Abstract:

The paper is about friction and wear, including mechanisms, modeling, characterization, measurement and testing case in Bangladesh. Bangladesh is a country under development, A lot of people live here, approximately 145 million. The territory of this country is very small. Therefore buildings are very close to each other. As the pipe lines are very old, and people get almost dirty water, there are a lot of ongoing projects under ADB. In those projects the contractors using HDD machines (Horizontal Directional Drilling ) and grundoburst. These machines are working underground. As ground in Bangladesh is very sludge, machine can't work relevant because of big friction in the soil. When drilling works are finished machine is pulling the pipe underground. Very often the pulling of the pipes becomes very complicated because of the friction. Therefore long section of the pipe laying can’t be done because of a big friction. In that case, additional problems rise, as well as additional work must be done. As we mentioned above it is not possible to do big section of the pipe laying because of big friction in the soil, Because of this it is coming out that contractors must do more joints, more pressure test. It is always connected with additional expenditure and losing time. This machine can pull in 75 mm to 500 mm pipes connected with the soil condition. Length is possible till 500m related how much friction it will had on the puller. As less as much it can pull. Another machine grundoburst is not working at this soil condition at all. The machine is working with air compressor. This machine are using for the smaller diameter pipes, 20 mm to 63 mm. Most of the cases these machines are being used for the installing of the house connection pipes, for making service connection. To make a friction less contractors using bigger pulling had then the pipe. It is taking down the friction, But the problem of this machine is that it can't work at sludge. Because of mentioned reasons the friction has a big mining during this kind of works. There are a lot of ways to reduce the friction. In this paper we'll introduce the ways that we have researched during our practice in Bangladesh.

Keywords: Bangladesh, friction and wear, HDD machines, reducing friction

Procedia PDF Downloads 293
2553 Analyzing the Effect of Multilingualism, Language 1, and Language 2 on Reading Comprehension

Authors: Judith Hanke

Abstract:

Due to the increase of students with reading difficulties, digital reading support with diagnostics was developed to foster the individual student's reading comprehension. The digital reading support focused on the reading comprehension of elementary school students. The digital reading packages consist of literary texts with aligned reading exercises. The number of students with German as a second language is growing in Germany. Students with multilingualism, language 1, and language 2 learn German together in school. The research's focus is on determining whether and to what extent multilingualism, language 1, and language 2 affect reading comprehension. For the methodology, an ABA design was selected for the intervention study to examine the reading support. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It comprised a survey group (N = 58) and a control group (N = 53). The quantitative data was collected from 3 classes of 3 teachers and 47 students for all three test times. To show differences between the groups, a standardized reading comprehension test was used for the three test times, pretest, posttest, and follow-up. The standardized test consists of three subtests regarding word comprehension, sentence comprehension, and text comprehension. The main findings include that students who spoke German as their first language had the best test scores. Interestingly, students with a different language had better testing scores than students with German as the first language and (an) other language/s. Also, the students with another language outperformed the native language speakers in one of the subtests of the post-testing. The variables of spoken language at home and German as a second language were also examined and correlated with the test results. One significant correlation was found between spoken language at home and the text comprehension test of the pretesting. Additionally, the variable German as a second language had multiple significant correlations in the pretest, posttest and follow-up. The study's significance is to understand the influence of several languages, language 1, and language 2, on reading comprehension.

Keywords: multilingualism, language 1, language 2, reading comprehension, second language

Procedia PDF Downloads 0
2552 Elevated of Interleukin-6 Serum Levels in Pregnant Women with Corona Virus Disease 2019

Authors: Dzatur Rizqi Fathienah Syarifuddin, Isharyah Sunarno, Eddy Hartono, Siti Maisuri T. Chalid

Abstract:

Introduction: The potential impact of coronavirus disease 2019 (COVID-19) on the health of expectant mothers and fetuses has strained attention. Pregnant women are considered a vulnerable category to respiratory infections. Moreover, several inflammatory cytokines are 2-100 times more abundant in COVID-19 with cytokine storms than in normal individuals; interleukin 6 (IL-6) exhibits much higher elevations. Investigating potential relationships between IL-6 serum levels and the severity of COVID-19 symptoms in pregnant women is the aim of this study. Material and Methods: Sixty-two eligible pregnant women were divided into a positive COVID-19 group (n=31) and a negative COVID-19 group (n=31) in this cross-sectional study. The research subjects were selected using consecutive sampling. The IL-6 was measured from a vein blood specimen using ELISA methods. Results: The COVID-19 positive group had a higher median IL-6 serum level (45.35 (35.15- 153.99) vs. 38.86 ± 11.43 (15.02-59.52), p=0.03) than the negative group. On the other hand, the IL-6 serum level had comparable value according to the COVID-19 symptoms severity (88.35 ± 36.14 ng/mL vs. 51.09 ± 25.48 ng/mL vs. 56.02 ± 33.20 ng/mL in moderate symptoms, mild symptoms, and asymptomatic, respectively; p=0.152). Conclusion: Although the IL-6 serum levels are not related to COVID-19 symptoms severity, an elevated of this biomarker was found in pregnant women with affected diagnoses.

Keywords: interleukin-6, pregnancy, COVID-19, several inflammatory

Procedia PDF Downloads 41
2551 Damage Analysis in Open Hole Composite Specimens by Digital Image Correlation: Experimental Investigation

Authors: Faci Youcef

Abstract:

In the present work, an experimental study is carried out using the digital image correlation (DIC) technique to analyze the damage and behavior of woven composite carbon/epoxy under tensile loading. The tension mechanisms associated with failure modes of bolted joints in advanced composites are studied, as well as displacement distribution and strain distribution. The evolution value of bolt angle inclination during tensile tests was studied. In order to compare the distribution of displacements and strains along the surface, figures of image mapping are made. Several factors that are responsible for the failure of fiber-reinforced polymer composite materials are observed. It was found that strain concentrations observed in the specimens can be used to identify full-field damage onset and to monitor damage progression during loading. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions include a failure analysis associated with bolt angle inclinations and supported by microscopic visualizations of the composite specimen. The DIC results can be used to develop and accurately validate numerical models.

Keywords: Carbone, woven, damage, digital image, bolted joint, the inclination of angle

Procedia PDF Downloads 59
2550 Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading

Authors: Xianjia Meng, Chuanyong Qu

Abstract:

Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure.

Keywords: fatigue damage, fracture, microscopic modulus, bone, nano-identation

Procedia PDF Downloads 146
2549 Testing of Complicated Bus Bar Protection Using Smart Testing Methodology

Authors: K. N. Dinesh Babu

Abstract:

In this paper, the protection of a complicated bus arrangement with a dual bus coupler and bus sectionalizer using low impedance differential protection applicable for very high voltages like 220kV and 400kV is discussed. In many power generation stations, several operational procedures are implemented to utilize the transfer bus as the main bus and to facilitate the maintenance of circuit breakers and current transformers (in each section) without shutting down the bay(s). Owing to this fact, the complications in operational philosophy have thrown challenges for the bus bar protection implementation. Many bus topologies allow any one of the main buses available in the station to be used as an auxiliary bus. In such a system, pre-defined precautions and procedures are made as guidelines, which are followed before assigning any bus as an auxiliary bus. The procedure involves shifting of links, changing rotary switches, insertion of test block, and so on, thereby causing unreliable operation. This kind of unreliable operation or inadvertent procedural lapse may result in the isolation of the bus bar from the grid due to the unpredictable operation of the bus bar protection relay, which is a commonly occurring phenomenon due to manual mistakes. With the sophisticated configuration and implementation of logic in modern intelligent electronic devices, the operator is free to select the transfer arrangement without sacrificing the protection required by a bus differential system for a reliable operation, and labor-intensive processes are completely eliminated. This paper deals with the procedure to test the security logic for such special scenarios using Megger make SMRT, bus bar protection relay to assure system stability and get rid of all the specific operational precautions/procedure.

Keywords: bus bar protection, by-pass isolator, blind spot, breaker failure, intelligent electronic device, end fault, bus unification, directional principle, zones of protection, breaker re-trip, under voltage security, smart megger relay tester

Procedia PDF Downloads 54
2548 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor

Authors: L. Boyaci

Abstract:

Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.

Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance

Procedia PDF Downloads 136
2547 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading

Authors: Eda Gök

Abstract:

Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.

Keywords: non-local continuum mechanics, peridynamic theory, solid structures, tensile loading, flexural loading

Procedia PDF Downloads 106
2546 Study on the Incidence of Chikungunya Infection in Swat Region

Authors: Nasib Zaman, Maneesha Kour, Muhammad Rizwan, Fazal Akbar

Abstract:

Abstract: Chikungunya fever is a re-emerging rapidly spreading mosquito-borne disease cause by Aedes albopictus and Aedes aegypti mosquito vectors. Currently, it is affecting millions of people globally. Objective: This study's main objective was to find the incidence of chikungunya fever in the Swat region and the factors associated with the spread of this infection. Method: This study was carried out in different areas of Swat. Blood samples and data were collected from selected patients, and a questionnaire was filled for each patient. 3-5ml of the specimen was taken from the patient's vein and serum, or plasma was separated by centrifugation. Chikungunya tests were performed for IgG and IgM antibodies. The data was analyzed by SPSS and Graph Paid Prism 5. Results: A total of 169 patients were included in this study, out of which 103 (60.9%) having age less than 30 years were positive for chikungunya infection and 66 (39.1%) having more than 30 years were negative for this infection. Only 1 (0.6%) were positive for both IgG and IgM antibody. About 15 (8.9%) patients have diagnosed with positive IgG antibodies, and 25 (26.6%) patients were positive for IgM positive antibodies. The infection rate was significantly higher in males compared to females 71 (59.6%) vs. 14 (38%) P value=0.088, OR=1.7. Conclusion: This study concludes clinical knowledge and awareness that are necessary for a diagnosis of chikungunya infection properly. Therefore it is important to educate people for the eradication of this infection. Recommendation: This study also recommends investigating the other risk factors associated with this infection.

Keywords: Chikungunya, risk factor, Incidence, antibodies, mosquito

Procedia PDF Downloads 97
2545 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 121
2544 The Legal Procedure of Attestation of Public Servants

Authors: Armen Yezekyan

Abstract:

The main purpose of this research is to comprehensively explore and identify the problems of attestation of the public servants and to propose solutions for these issues through deeply analyzing laws and the legal theoretical literature. For the detailed analysis of the above-mentioned problems we will use some research methods, the implementation of which has a goal to ensure the objectivity and clarity of scientific research and its results.

Keywords: attestation, attestation commission, competition commission, public servant, public service, testing

Procedia PDF Downloads 400
2543 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete

Procedia PDF Downloads 281
2542 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 427
2541 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs

Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard

Abstract:

Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.

Keywords: 2D FPPA, hop tests, isokinetic testing, LSI

Procedia PDF Downloads 48
2540 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses

Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia

Abstract:

The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.

Keywords: influenza virus, molecular imprinting, nanoparticles, polymers

Procedia PDF Downloads 335
2539 Functionalized Nano porous Ceramic Membranes for Electrodialysis Treatment of Harsh Wastewater

Authors: Emily Rabe, Stephanie Candelaria, Rachel Malone, Olivia Lenz, Greg Newbloom

Abstract:

Electrodialysis (ED) is a well-developed technology for ion removal in a variety of applications. However, many industries generate harsh wastewater streams that are incompatible with traditional ion exchange membranes. Membrion® has developed novel ceramic-based ion exchange membranes (IEMs) offering several advantages over traditional polymer membranes: high performance in low pH, chemical resistance to oxidizers, and a rigid structure that minimizes swelling. These membranes are synthesized with our patented silane-based sol-gel techniques. The pore size, shape, and network structure are engineered through a molecular self-assembly process where thermodynamic driving forces are used to direct where and how pores form. Either cationic or anionic groups can be added within the membrane nanopore structure to create cation- and anion-exchange membranes. The ceramic IEMs are produced on a roll-to-roll manufacturing line with low-temperature processing. Membrane performance testing is conducted using in-house permselectivity, area-specific resistance, and ED stack testing setups. Ceramic-based IEMs show comparable performance to traditional IEMs and offer some unique advantages. Long exposure to highly acidic solutions has a negligible impact on ED performance. Additionally, we have observed stable performance in the presence of strong oxidizing agents such as hydrogen peroxide. This stability is expected, as the ceramic backbone of these materials is already in a fully oxidized state. This data suggests ceramic membranes, made using sol-gel chemistry, could be an ideal solution for acidic and/or oxidizing wastewater streams from processes such as semiconductor manufacturing and mining.

Keywords: ion exchange, membrane, silane chemistry, nanostructure, wastewater

Procedia PDF Downloads 71
2538 Micro-Scale Digital Image Correlation-Driven Finite Element Simulations of Deformation and Damage Initiation in Advanced High Strength Steels

Authors: Asim Alsharif, Christophe Pinna, Hassan Ghadbeigi

Abstract:

The development of next-generation advanced high strength steels (AHSS) used in the automotive industry requires a better understanding of local deformation and damage development at the scale of their microstructures. This work is focused on dual-phase DP1000 steels and involves micro-mechanical tensile testing inside a scanning electron microscope (SEM) combined with digital image correlation (DIC) to quantify the heterogeneity of deformation in both ferrite and martensite and its evolution up to fracture. Natural features of the microstructure are used for the correlation carried out using Davis LaVision software. Strain localization is observed in both phases with tensile strain values up to 130% and 110% recorded in ferrite and martensite respectively just before final fracture. Damage initiation sites have been observed during deformation in martensite but could not be correlated to local strain values. A finite element (FE) model of the microstructure has then been developed using Abaqus to map stress distributions over representative areas of the microstructure by forcing the model to deform as in the experiment using DIC-measured displacement maps as boundary conditions. A MATLAB code has been developed to automatically mesh the microstructure from SEM images and to map displacement vectors from DIC onto the FE mesh. Results show a correlation of damage initiation at the interface between ferrite and martensite with local principal stress values of about 1700MPa in the martensite phase. Damage in ferrite is now being investigated, and results are expected to bring new insight into damage development in DP steels.

Keywords: advanced high strength steels, digital image correlation, finite element modelling, micro-mechanical testing

Procedia PDF Downloads 130
2537 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 271
2536 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 113
2535 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water

Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang

Abstract:

Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.

Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking

Procedia PDF Downloads 138
2534 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine

Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav

Abstract:

This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.

Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA

Procedia PDF Downloads 189
2533 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 255
2532 Effect of 17α-Methyltestosterone Hormone on Haematological Profiles of the Sex Reversed, Sarotherodon Melanotheron

Authors: Ayoola, Simeon Oluwatoyin, Omogoriola Hannah Omoloye

Abstract:

The effects of 17α-Methyltestosterone Hormone on blood composition of the Sex Reversed Sarotherodon melanotheron were investigated. S. melanotheron fry were reared in six (6) plastic tanks for three (3) months, of which three (3) tanks served as treatment tanks while the other three (3) served as the control. The fry were fed with 17α-methyl testosterone enzyme, which functions as a sex reversal hormone. The fry were administered this hormone for 30 days, to ensure complete sex reversal. All the S. melanotheron fry were reared to table size for duration of three (3) months, after which, blood samples were taken from both the control and treatment fishes. The blood parameters showed no significant differences with the same values of White Blood Cell count (WBC) and Total plasma protein for the control and experimental fishes. A total protein value for sex reversed specimens was 3.99g/dL, while urea and creatinine values were 0.2g/dL. Alkaline Phosphatase, Aspartate transaminase and Alanine transaminase for the treatment specimen were 183nm/mg protein/min, 98nm/mg protein/min and 105nm/mg protein/min respectively. A total protein value for control specimens was 2.81g/dL, while urea and creatinine values were 0.2g/dL. Alkaline Phosphatase, Aspartate transaminase and Alanine transaminase for the control species were 174nm/mg protein/min, 93nm/mg protein/min and 106nm/mg protein/min respectively. The safety of MT on S. melanotheron is therefore proved since there is no adverse effect on the fish.

Keywords: 17α-Methyltestosterone, haematology, sex reversal, sarotherodon melanotheron

Procedia PDF Downloads 478