Search results for: features based techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34148

Search results for: features based techniques

33308 On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing

Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane

Abstract:

Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques.

Keywords: mathematical modelling, optimization, emerging trends, advanced manufacturing

Procedia PDF Downloads 294
33307 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 173
33306 MB-Slam: A Slam Framework for Construction Monitoring

Authors: Mojtaba Noghabaei, Khashayar Asadi, Kevin Han

Abstract:

Simultaneous Localization and Mapping (SLAM) technology has recently attracted the attention of construction companies for real-time performance monitoring. To effectively use SLAM for construction performance monitoring, SLAM results should be registered to a Building Information Models (BIM). Registring SLAM and BIM can provide essential insights for construction managers to identify construction deficiencies in real-time and ultimately reduce rework. Also, registering SLAM to BIM in real-time can boost the accuracy of SLAM since SLAM can use features from both images and 3d models. However, registering SLAM with the BIM in real-time is a challenge. In this study, a novel SLAM platform named Model-Based SLAM (MB-SLAM) is proposed, which not only provides automated registration of SLAM and BIM but also improves the localization accuracy of the SLAM system in real-time. This framework improves the accuracy of SLAM by aligning perspective features such as depth, vanishing points, and vanishing lines from the BIM to the SLAM system. This framework extracts depth features from a monocular camera’s image and improves the localization accuracy of the SLAM system through a real-time iterative process. Initially, SLAM can be used to calculate a rough camera pose for each keyframe. In the next step, each SLAM video sequence keyframe is registered to the BIM in real-time by aligning the keyframe’s perspective with the equivalent BIM view. The alignment method is based on perspective detection that estimates vanishing lines and points by detecting straight edges on images. This process will generate the associated BIM views from the keyframes' views. The calculated poses are later improved during a real-time gradient descent-based iteration method. Two case studies were presented to validate MB-SLAM. The validation process demonstrated promising results and accurately registered SLAM to BIM and significantly improved the SLAM’s localization accuracy. Besides, MB-SLAM achieved real-time performance in both indoor and outdoor environments. The proposed method can fully automate past studies and generate as-built models that are aligned with BIM. The main contribution of this study is a SLAM framework for both research and commercial usage, which aims to monitor construction progress and performance in a unified framework. Through this platform, users can improve the accuracy of the SLAM by providing a rough 3D model of the environment. MB-SLAM further boosts the application to practical usage of the SLAM.

Keywords: perspective alignment, progress monitoring, slam, stereo matching.

Procedia PDF Downloads 222
33305 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap

Authors: Sabri Serkan Gulluoglu

Abstract:

It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.

Keywords: remote sensing, satellite imaging, gis, computer science, information

Procedia PDF Downloads 317
33304 Schematic Study of Groundwater Potential Zones in Granitic Terrain Using Remotesensing and GIS Techniques, in Miyapur and Bollaram Areas of Hyderabad, India

Authors: Ishrath, Tapas Kumar Chatterjee

Abstract:

The present study aims developing interpretation and evaluation to integrate various data types for management of existing water resources for sustainable use. Proper study should be followed based on the geomorphology of the area. Thematic maps such as lithology, base map, land use/land cover, geomorphology, drainage and lineaments maps are prepared to study the area by using area toposheet, IRS P6 and LISIII Satellite imagery. These thematic layers are finally integrated by using Arc GIS, Arc View, and software to prepare a ground water potential zones map of the study area. In this study, an integrated approach involving remote sensing and GIS techniques has successfully been used in identifying groundwater potential zones in the study area to classify them as good, moderate and poor. It has been observed that Pediplain shallow (PPS) has good recharge, Pediplain moderate (PPM) has moderately good recharge, Pediment Inselberg complex (PIC) has poor recharge and Inselberg (I) has no recharge. The study has concluded that remote sensing and GIS techniques are very efficient and useful for identifying ground water potential zones.

Keywords: satellite remote sensing, GIS, ground water potential zones, Miyapur

Procedia PDF Downloads 444
33303 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: inversion, limitations, optimization, resistivity

Procedia PDF Downloads 363
33302 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.

Procedia PDF Downloads 465
33301 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 66
33300 Bag of Words Representation Based on Weighting Useful Visual Words

Authors: Fatma Abdedayem

Abstract:

The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.

Keywords: BOW, useful visual words, weighted visual words, bag of visual words

Procedia PDF Downloads 434
33299 Evaluating and Examining Pictures of Children of Five Years Old

Authors: Emine Yılmaz Bolat

Abstract:

Early childhood is a very important period in terms of identifying and developing early skills and abilities. It is likely that the child's development will be in the same direction in the future. This study was conducted with 26 children for the purpose of examining pictures of children of five years old. In the survey, children were asked to draw a picture with pastel dyes. The drawings were collected and evaluated by the researcher. At the end of the research, it was found that the children used the yellow color (N = 17, 16,34%) and the least gray color (N = 1, 0,96%). When the features of children's pictures are examined, the children's paintings have been found to have hierarchy, transparency, completion, the use of vivid colors, and the presence of vertical and horizontal painting lines.

Keywords: early childhood, kindergarten, pictures of children, features of pictures

Procedia PDF Downloads 305
33298 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 525
33297 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 232
33296 Review of Dielectric Permittivity Measurement Techniques

Authors: Ahmad H. Abdelgwad, Galal E. Nadim, Tarek M. Said, Amr M. Gody

Abstract:

The prime objective of this manuscript is to provide intensive review of the techniques used for permittivity measurements. The measurement techniques, relevant for any desired application, rely on the nature of the measured dielectric material, both electrically and physically, the degree of accuracy required, and the frequency of interest. Regardless of the way that distinctive sorts of instruments can be utilized, measuring devices that provide reliable determinations of the required electrical properties including the obscure material in the frequency range of interest can be considered. The challenge in making precise dielectric property or permittivity measurements is in designing of the material specimen holder for those measurements (RF and MW frequency ranges) and adequately modeling the circuit for reliable computation of the permittivity from the electrical measurements. If the RF circuit parameters such as the impedance or admittance are estimated appropriately at a certain frequency, the material’s permittivity at this frequency can be estimated by the equations which relate the way in which the dielectric properties of the material affect on the parameters of the circuit.

Keywords: dielectric permittivity, free space measurement, waveguide techniques, coaxial probe, cavity resonator

Procedia PDF Downloads 368
33295 Breaking through Barricades to Enhance the University Library Infrastructure to Aid the Visually Challenged - Contemplated Based within the Sri Lankan Context

Authors: Wilfred Jeyatheese Jeyaraj

Abstract:

The Sri Lankan legislative acts dictate several recommendations to improve accessibility of services for the visually challenged. But the main consideration here is the feasibility and extent to which these endorsements have been implemented in actuality within Sri Lankan academic libraries. This paper tends to assess the existent issues that impediment the implementation of accessibility features for the visually challenged in Sri Lankan academic libraries. Visually challenged students continually walk through immense challenges to step forth into their university life. Reaching their undergrad stage of their academic phase, they should be entitled to access information resources with ease and with equality in comparison to the sighted users of a university library. The current university libraries in Sri Lanka, have well improved services that they render to their users. But, what lacks in this scenario is the consideration as to whether these features offered by libraries are user-friendly and easily accessible by the visually challenged users as well. Hence, this paper tends to analyze the inhibitions in delivering services oriented towards the visually challenged and the sighted, and propose feasible alternatives to create a neutral high-end university library environment.

Keywords: accessibility, university library, Sri Lanka, visually-challenged

Procedia PDF Downloads 288
33294 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 37
33293 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 541
33292 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network

Procedia PDF Downloads 468
33291 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 188
33290 Low-Surface Roughness and High Optical Quality CdS Thin Film Deposited on Heated Substrate Using Room-Temperature Chemical Solution

Authors: A. Elsayed, M. H. Dewaidar, M. Ghali, M. Elkemary

Abstract:

The high production cost of the conventional solar cells requires the search for economic methods suitable for solar energy conversion. Cadmium Sulfide (CdS) is one of the most important semiconductors used in photovoltaics, especially in large area solar cells; and can be prepared in a thin film form by a wide variety of deposition techniques. The preparation techniques include vacuum evaporation, sputtering and molecular beam epitaxy. Other techniques, based on chemical solutions, are also used for depositing CdS films with dramatically low-cost compared to other vacuum-based methods. Although this technique is widely used during the last decades, due to simplicity and low-deposition temperature (~100°C), there is still a strong need for more information on the growth process and its relation with the quality of the deposited films. Here, we report on deposition of high-quality CdS thin films; with low-surface roughness ( < 3.0 nm) and sharp optical absorption edge; on low-temperature glass substrates (70°C) using a new method based on the room-temperature chemical solution. In this method, a mixture solution of cadmium acetate and thiourea at room temperature was used under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-VIS transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. The deposited films show high optical quality as confirmed by observation of both, sharp edge in the transmittance spectra and strong PL intensity at room temperature. Furthermore, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap of the deposited CdS films can be utilized for tuning the electronic bands' alignments between CdS and other light-harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of solar cells devices based on these heterostructures.

Keywords: chemical deposition, CdS, optical properties, surface, thin film

Procedia PDF Downloads 161
33289 Shakespeare's Hamlet in Ballet: Transformation of an Archival Recording of a Neoclassical Ballet Performance into a Contemporary Transmodern Dance Video Applying Postmodern Concepts and Techniques

Authors: Svebor Secak

Abstract:

This four-year artistic research project hosted by the University of New England, Australia has set the goal to experiment with non-conventional ways of presenting a language-based narrative in dance using insights of recent theoretical writing on performance, addressing the research question: How to transform an archival recording of a neoclassical ballet performance into a new artistic dance video by implementing postmodern philosophical concepts? The Creative Practice component takes the form of a dance video Hamlet Revisited which is a reworking of the archival recording of the neoclassical ballet Hamlet, augmented by new material, produced using resources, technicians and dancers of the Croatian National Theatre in Zagreb. The methodology for the creation of Hamlet Revisited consisted of extensive field and desk research after which three dancers were shown the recording of original Hamlet and then created their artistic response to it based on their reception and appreciation of it. The dancers responded differently, based upon their diverse dancing backgrounds and life experiences. They began in the role of the audience observing video of the original ballet and transformed into the role of the choreographer-performer. Their newly recorded material was edited and juxtaposed with the archival recording of Hamlet and other relevant footage, allowing for postmodern features such as aleatoric content, synchronicity, eclecticism and serendipity, that way establishing communication on a receptive reader-response basis, thus blending the roles of the choreographer, performer and spectator, creating an original work of art whose significance lies in the relationship and communication between styles, old and new choreographic approaches, artists and audiences and the transformation of their traditional roles and relationships. In editing and collating, the following techniques were used with the intention to avoid the singular narrative: fragmentation, repetition, reverse-motion, multiplication of images, split screen, overlaying X-rays, image scratching, slow-motion, freeze-frame and simultaneity. Key postmodern concepts considered were: deconstruction, diffuse authorship, supplementation, simulacrum, self-reflexivity, questioning the role of the author, intertextuality and incredulity toward grand narratives - departing from the original story, thus personalising its ontological themes. From a broad brush of diverse concepts and techniques applied in an almost prescriptive manner, the project focuses on intertextuality that proves to be valid on at least two levels. The first is the possibility of a more objective analysis in combination with a semiotic structuralist approach moving from strict relationships between signs to a multiplication of signifiers, considering the dance text as an open construction, containing the elusive and enigmatic quality of art that leaves the interpretive position open. The second one is the creation of the new work where the author functions as the editor, aware and conscious of the interplay of disparate texts and their sources which co-act in the mind during the creative process. It is argued here that the eclectic combination of the old and new material through constant oscillations of different discourses upon the same topic resulted in a transmodern integrationist recent work of art that might be applied as a model for reconsidering existing choreographic creations.

Keywords: Ballet Hamlet, intertextuality, transformation, transmodern dance video

Procedia PDF Downloads 257
33288 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 32
33287 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning

Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker

Abstract:

Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.

Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning

Procedia PDF Downloads 147
33286 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 315
33285 Optimization Query Image Using Search Relevance Re-Ranking Process

Authors: T. G. Asmitha Chandini

Abstract:

Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking.

Keywords: Query, keyword, image, re-ranking, semantic, signature

Procedia PDF Downloads 546
33284 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 407
33283 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches

Procedia PDF Downloads 346
33282 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 146
33281 CMOS Solid-State Nanopore DNA System-Level Sequencing Techniques Enhancement

Authors: Syed Islam, Yiyun Huang, Sebastian Magierowski, Ebrahim Ghafar-Zadeh

Abstract:

This paper presents system level CMOS solid-state nanopore techniques enhancement for speedup next generation molecular recording and high throughput channels. This discussion also considers optimum number of base-pair (bp) measurements through channel as an important role to enhance potential read accuracy. Effective power consumption estimation offered suitable rangeof multi-channel configuration. Nanopore bp extraction model in statistical method could contribute higher read accuracy with longer read-length (200 < read-length). Nanopore ionic current switching with Time Multiplexing (TM) based multichannel readout system contributed hardware savings.

Keywords: DNA, nanopore, amplifier, ADC, multichannel

Procedia PDF Downloads 452
33280 Grading Histopathology Features of Graft-Versus-Host Disease in Animal Models; A Systematic Review

Authors: Hami Ashraf, Farid Kosari

Abstract:

Graft-versus-host disease (GvHD) is a common complication of allogeneic hematopoietic stem cell transplantation that can lead to significant morbidity and mortality. Histopathological examination of affected tissues is an essential tool for diagnosing and grading GvHD in animal models, which are used to study disease mechanisms and evaluate new therapies. In this systematic review, we identified and analyzed original research articles in PubMed, Scopus, Web of Science, and Google Scholar that described grading systems for GvHD in animal models based on histopathological features. We found that several grading systems have been developed, which vary in the tissues and criteria they assess, the severity scoring scales they use, and the level of detail they provide. Skin, liver, and gut are the most commonly evaluated tissues, but lung and thymus are also included in some systems. Our analysis highlights the need for standardized criteria and consistent use of grading systems to enable comparisons between studies and facilitate the translation of preclinical findings to clinical practice.

Keywords: graft-versus-host disease, GvHD, animal model, histopathology, grading system

Procedia PDF Downloads 63
33279 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 250