Search results for: dispersed region growing algorithm (DRGA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11521

Search results for: dispersed region growing algorithm (DRGA)

10681 Concerted Strategies for Sustainable Water Resource Management in Semi-Arid Rajasthan State of India

Authors: S. K. Maanju, K. Saha, Sonam Yadav

Abstract:

Rapid urbanization growth and multi-faceted regional level industrialization is posing serious threat to natural groundwater resource in State of Rajasthan which constitute major semi-arid part of India. The groundwater resources of the State are limited and cannot withstand the present rate of exploitation for quite a long time. Recharging of groundwater particularly in the western part, where annual precipitation does not exceed a few centimeters, is extremely slow and cannot replenish the exploited quantum. Hence, groundwater in most of the parts of this region has become an exhausting resource. In major parts water table is lowering down rapidly and continuously. The human beings of this semi-arid region are used to suffering from extreme climatic conditions of arid to semi-arid nature and acute shortage of water. The quality of groundwater too in many areas of this region is not up to the standards prescribed by the health organizations like WHO and BIS. This semi-arid region is one of the highly fluoride contaminated area of India as well as have excess, nitrates, sulphates, chlorides and total dissolved solids at various locations. Therefore, concerted efforts are needed towards sustainable development of groundwater in this State of India.

Keywords: Rajasthan, water, exploitation, sustainable, development and resource

Procedia PDF Downloads 347
10680 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 119
10679 Non-Melanoma Skin Cancer in Ha’il Region in the Kingdom of Saudi Arabia: A Clinicopathological Study

Authors: Laila Seada, Nouf Al Gharbi, Shaimaa Dawa

Abstract:

Although skin cancers are prevalent worldwide, it is uncommon in Ha’il region in the Kingdom of Saudi Arabia, mostly non-melanoma sub-type. During a 4-year period from 2014 to 2017, out of a total of 120 cases of skin lesions, 29 non-melanoma cancers were retrieved from histopathology files obtained from King Khalid Hospital. As part of the study, all cases of skin cancer diagnosed during 2014 -2017 have been revised and the clinicopathological data recorded. The results show that Basal cell carcinoma (BCC) was the most common neoplasm (36%), followed by cutaneous lymphomas (mostly mycosis fungoides 25%), squamous cell carcinoma (SCC) (21%) and dermatofibrosarcoma protuberans (DFSP) (11%). Only one case of metastatic carcinoma was recorded. BCC nodular type was the most prevalent, with a mean age 57.6 years and mean size 2.73 cm. SCC was mostly grade 2, with mean size 1.9 cm and an older mean age of 72.3 cm. Increased size of lesion positively correlated with older age (p = 0.001). Non-melanoma skin cancer in Ha’il region is not frequently encountered. BCC is the most frequent followed by cutaneous T-cell lymphomas and SCC. The findings in this study were in accordance with other parts of, but much lower than other parts of the world.

Keywords: non melanoma skin cancer, Hail Region, histopathology, BCC

Procedia PDF Downloads 158
10678 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles

Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh

Abstract:

This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.

Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs

Procedia PDF Downloads 213
10677 Adaptive Online Object Tracking via Positive and Negative Models Matching

Authors: Shaomei Li, Yawen Wang, Chao Gao

Abstract:

To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as a binary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm cannot only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

Keywords: object tracking, tracking drift, partial least squares analysis, positive and negative models matching

Procedia PDF Downloads 529
10676 An Improved K-Means Algorithm for Gene Expression Data Clustering

Authors: Billel Kenidra, Mohamed Benmohammed

Abstract:

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.

Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization

Procedia PDF Downloads 190
10675 Modeling and Calculation of Physical Parameters of the Pollution of Water by Oil and Materials in Suspensions

Authors: Ainas Belkacem, Fourar Ali

Abstract:

The present study focuses on the mathematical modeling and calculation of physical parameters of water pollution by oil and sand in regime fully dispersed in water. In this study, the sand particles and oil are suspended in the case of fully developed turbulence. The study consists to understand, model and predict the viscosity, the structure and dynamics of these types of mixtures. The work carried out is Numerical and validated by experience.

Keywords: multi phase flow, pollution, suspensions, turbulence

Procedia PDF Downloads 238
10674 The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey

Authors: M. Kubilay Önal

Abstract:

The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones.

Keywords: apricot, phenological characters, pomological characters, weight-ranking method

Procedia PDF Downloads 281
10673 Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

Authors: O. Khalaj, B. Mašek, H. Jirková, J. Svoboda

Abstract:

By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.

Keywords: hot forming, ODS, alloys, thermomechanical, Fe-Al, Al2O3

Procedia PDF Downloads 280
10672 The Algorithm of Semi-Automatic Thai Spoonerism Words for Bi-Syllable

Authors: Nutthapat Kaewrattanapat, Wannarat Bunchongkien

Abstract:

The purposes of this research are to study and develop the algorithm of Thai spoonerism words by semi-automatic computer programs, that is to say, in part of data input, syllables are already separated and in part of spoonerism, the developed algorithm is utilized, which can establish rules and mechanisms in Thai spoonerism words for bi-syllables by utilizing analysis in elements of the syllables, namely cluster consonant, vowel, intonation mark and final consonant. From the study, it is found that bi-syllable Thai spoonerism has 1 case of spoonerism mechanism, namely transposition in value of vowel, intonation mark and consonant of both 2 syllables but keeping consonant value and cluster word (if any). From the study, the rules and mechanisms in Thai spoonerism word were applied to develop as Thai spoonerism word software, utilizing PHP program. the software was brought to conduct a performance test on software execution; it is found that the program performs bi-syllable Thai spoonerism correctly or 99% of all words used in the test and found faults on the program at 1% as the words obtained from spoonerism may not be spelling in conformity with Thai grammar and the answer in Thai spoonerism could be more than 1 answer.

Keywords: algorithm, spoonerism, computational linguistics, Thai spoonerism

Procedia PDF Downloads 236
10671 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.

Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast

Procedia PDF Downloads 84
10670 Determinants for Discontinuing Contraceptive Use and Regional Variations in Bangladesh: A Sociological Perspective

Authors: Md. Shahriar Sabuz

Abstract:

Bangladesh, a South Asian developing country, has experienced an increasing rate of contraceptive use in the last few decades. But one-third of the pregnancies are still unintended, and the fertility rate surpasses the desired rate of children. It may be because of the discontinuation of the use of contraceptive methods. So, it is necessary to find out the reasons for the discontinuation of the use of contraceptives. Moreover, the rate of contraception discontinuation varies from rural to urban, region to region. In this study, our objectives are to find out the reasons behind the discontinuation of the use of the contraceptive method, and the regional variations of the rate of those reasons. We are using the dataset of Bangladesh Demographic and Health Surveys (BDHS) 2014 for this study and the ever-married women of Bangladesh who have discontinued the use of contraceptive methods aged 15-49. The data was collected from the seven districts of the country. The finding shows that currently there are 23% of women have stopped using their contraception. The most common reasons for stopping using the method are that either they are pregnant or want to be pregnant. A significant number of people are not using the contraceptive method because of the fear of side effects. Though the rate of non-user is higher in rural areas than in urban areas, reasons for method discontinuation are not significantly different between urban and rural areas. However, reasons for discontinuing contraceptive methods significantly vary from region to region.

Keywords: discontinuation of contraceptive, health, pregnant, fertility

Procedia PDF Downloads 95
10669 Dependency Theory on Examining the Relationship between the United States and the Middle East: In the Case of Iran, Saudi Arabia, and Turkey

Authors: Abdelhafez Abdel Hafez

Abstract:

Dependency theory was developed since 1950s, with economic concerns. It divided the world into two parts, the states of the peripheral (third world countries) and the states of the core (the developed capitalist countries). Another perspective developed to the theory with the implementation of the idea of semi-peripheral states in the new world order. With these divisions (core, peripheral, semi-peripheral) this study aims to develop a concept from the perspective of dependency theory, to understand the nature of the relationship of the U.S. with the Middle East Regions through its relation with Iran, Saudi Arabia, and Turkey. The tested countries (Saudi Arabia, Iran and Turkey) are seeking a foothold and influential role in the region. The paper argued that the U.S. directs its policies toward the region, in the way to guarantee no country of the region will be in semi-peripheral level (that could create competitions or danger on the U.S. interest). Therefore, U.S. policies in the region have varied from declaring war to diplomatic channels and sometimes ignoring. The paper is based on the dependency theory, and other international relations theories used to study the Middle East in the international context.

Keywords: dependency, hegemony, imperialism, middle east

Procedia PDF Downloads 129
10668 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 108
10667 Local Female Dresses of Yuruk Community in Günaydin Village of Balikesir Region

Authors: Melek Tufan, Filiz Erden, E. Elhan Özus

Abstract:

Apparel is a fact that has assigned wide cultural functions in development process even if it basically aims at protection during mankind's cultural development and course of live. It is an important cultural element that has been shaped by ecological conditions, social and personal values, traditions, cultural and economic conditions, at the same time it is a bearer of culture. Customs and traditions that maintain culture create differences in dressing styles of the region. These differences create traditional clothing forms specific to each region, which are different from each other or show close similarities. Differences which have dominant features create sense of dress specific to community owned. Samples of a kind of dress worn over salwar, long shirt, jacket, salwar and underpants that are types of local female dresses available in houses of yuruk community in Günaydın village of Balıkesir region have been found. By examining local dresses in terms of material, color, cutting, sewing, ornamentation technique and ornamentation subject and it has been aimed to record them with observation forms and transfer them to the next generations.

Keywords: women, traditional, Turkish Culture, art, fashion

Procedia PDF Downloads 340
10666 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine

Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui

Abstract:

This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.

Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator

Procedia PDF Downloads 288
10665 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 415
10664 Active Space Debris Removal by Extreme Ultraviolet Radiation

Authors: A. Anandha Selvan, B. Malarvizhi

Abstract:

In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.

Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere

Procedia PDF Downloads 462
10663 A Fast Version of the Generalized Multi-Directional Radon Transform

Authors: Ines Elouedi, Atef Hammouda

Abstract:

This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.

Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition

Procedia PDF Downloads 278
10662 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 73
10661 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm

Authors: Mahmoud Enayati, Sirous Mohammadi

Abstract:

In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.

Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm

Procedia PDF Downloads 532
10660 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites

Procedia PDF Downloads 385
10659 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 154
10658 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm

Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh

Abstract:

this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.

Keywords: genetic algorithm, information retrieval, optimal queries, crossover

Procedia PDF Downloads 292
10657 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 96
10656 The History Of Mental Health In The Middle East: Analytical Literature Review

Authors: Mohamad Musa

Abstract:

The history of mental health practices and services in the Middle East region has been deeply intertwined with its rich cultural, religious, and societal context. Tracing back to ancient times, mental health approaches were heavily influenced by the traditions of major monotheistic religions, with a strong emphasis on spiritual and traditional healing methods. As psychiatric institutions and Western medicine gradually gained a foothold in the region during the 20th century, a notable shift occurred. However, the integration of Western psychiatric practices faced significant challenges due to cultural barriers and deeply rooted beliefs. Families and communities often turned to traditional healers and religious practices as their initial recourse for mental health concerns, viewing Western interventions with skepticism and hesitation. Historically, mental health services in the Middle East have been overshadowed by a focus on physical health and the biomedical model. Mental illness carried substantial stigma, with individuals and families often reluctant to disclose mental health struggles due to fears of societal ostracization and discrimination. This stigma posed a significant barrier to accessing and accepting formal mental health support. Later in the 20th century, governments in the Middle East began recognizing the need for modernizing mental health services and integrating them into the broader healthcare system. However, this process was hindered by several factors, including limited resources, inadequate training for healthcare professionals, and ongoing conflicts and instability in certain regions, which disrupted the delivery of mental health services. As the 21st century progressed, several Middle Eastern nations, particularly those in the Arabian Gulf region, began implementing national mental health strategies and legislative reforms to address the growing need for comprehensive mental health care. These efforts aimed to destigmatize mental illness, protect the rights of individuals with mental health conditions, and promote public awareness and education. Despite these positive developments, the historical legacy of stigma, cultural barriers, and limited resources continues to pose challenges in the provision of accessible and culturally responsive mental health services across the diverse populations of the Middle East.

Keywords: mental health, history, middle east, literature review

Procedia PDF Downloads 31
10655 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 548
10654 Minority Rights in Islamic Law (Sharia) and International Law Protection Mechanisms in the Region Kurdistan of Iraq

Authors: Ardawan Mustafa Ismail, Rebaz Sdiq Ismail

Abstract:

The subject of minorities takes an exceptional importance at all levels, around the world, especially those whose population is composed of many nationalities, and this subject became a very affective part in every country for its security, entity and stability, such as the nationality, religion or culture, as a result of internal factors and external influences, and at the same time it became clear that enslaving minorities had become a matter of reality. Which made the rights of minorities one of the legal, political and geographical issues, many attempts emerged that specialists and non-specialists have given the minorities ’problems their realistic solutions away from theorizing and assumption. On this chosen topic, there are many researches that are written in general places, but… It is believed did not see any in-depth studies dealing with the protection of minority rights of the Region of Kurdistan/ Iraq, because in the Region of Kurdistan/ Iraq there are many minorities living in this area, such as: Muslims, Yazidi, Assyrian, Christian, Chaldeans, and others.

Keywords: minority, international law, protection, Kurdistan, people

Procedia PDF Downloads 37
10653 Orchids of Coastal Karnataka, India: Diversity, Trends in Population, Threats and Conservation Strategies

Authors: Sankaran Potti Narasimhan

Abstract:

Costal Karnataka is sandwiched between Arabian Sea and the biodiversity hotspot of Western Ghats. This has provided a rich vegetation, canopy and humidity for the sustainable growth and evolution of many orchid populations. Similar to many other biodiversity hostpot regions of India and the world, this region also faces threat from anthropogenic activities and climate change. Hence, there is a need to study the current orchid diversity and trends in population as well as an effective conservation strategy. Costal belt of Karnataka state of India extends over 325 kilometers and an area of 18,000 km2. The region encompasses two national parks such as the Anshi National Park and the Kudremukh National Park. The study regions also include two Wild Life Sanctuaries such as the Someshwara Wildlife Sanctuary and Mookambika Wildlife Sanctuary. The estimated number of orchids in the region includes 30 genera and 45 species. Both terrestrial and epiphytic orchids are found in this region. The region contains many red listed orchids such as Trias stocksii (Critically endangered), Eriad alzellii (Lower risk vulnerable) and Dendrobnium ovatum (Vulnerable). The important terrestrial orchids of the region are Geodorum, Habenaria, Lipparis, Malaxis, Nervilia, Pachystoma, Pectelis, Peristylus, Tropidia and Zeuxine. The epiphytic forms includes Acampe, Aerides, Bulbophyllum, Cleisostoma, Conchidum, Cottonia, Cymbidium, Dendronium, Eria, Flickingeria, Gastrochilus, Kingidium, Luisia, Oberonia, Phalaenopsis, Pholidota, Porpax, Rhynchostylis, Sirhookera and Trias. The current paper discusses the population strength and changes in the population structure of these orchids along with proposed conservation strategies.

Keywords: orchid diversity, bulbophyllum, dendrobium, orchid conservation

Procedia PDF Downloads 394
10652 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 295