Search results for: charging networks
2173 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks
Authors: Amal Khalifa, Nicolas Vana Santos
Abstract:
Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.Keywords: deep learning, steganography, image, discrete wavelet transform, fusion
Procedia PDF Downloads 912172 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization
Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati
Abstract:
In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network
Procedia PDF Downloads 3802171 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 582170 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks
Authors: Anusha M., V. Srikanth
Abstract:
Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios
Procedia PDF Downloads 5612169 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 3862168 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning
Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho
Abstract:
Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning
Procedia PDF Downloads 962167 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 1032166 Neural Networks Underlying the Generation of Neural Sequences in the HVC
Authors: Zeina Bou Diab, Arij Daou
Abstract:
The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird
Procedia PDF Downloads 712165 A Framework for Strategy Development in Small Companies: A Case Study of a Telecommunication Firm
Authors: Maryam Goodarzi, Mahdieh Sheikhi, Mehdi Goodarzi
Abstract:
This study intends to offer an appropriate strategy development framework for a telecommunication firm (as a case study) which works on Information and Communication Technology (ICT) projects, development of telecommunication networks, and maintenance of local networks, according to its dominant condition. In this approach, first, the objectives were set and the mission was defined. Then, the capability was assessed by SWOT matrix. Using SPACE matrix, the strategy of the company was determined. The strategic direction is set and an appropriate and superior strategy was developed and offered employing QSPM matrix. The theoretical framework or conceptual model of the present study first involves 4 stages of framework development and then from stage 3 (assessing capability) onward, a strategic management model by Fred R. David. In this respect, the tools and methods offered in the framework are appropriate for all kinds of organizations, particularly small firms, and help strategists identify, evaluate, and select strategies.Keywords: strategy formulation, firm mission, strategic direction, space diagram, quantitative strategic planning matrix, SWOT matrix
Procedia PDF Downloads 3742164 Over the Air Programming Method for Learning Wireless Sensor Networks
Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha
Abstract:
Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.Keywords: WSN, over the air programming, virtual lab, AT45DB
Procedia PDF Downloads 3772163 Social Networks And Social Complexity: The Southern Italian Drive For Trade Exchange During The Late Bronze Age
Authors: Sara Fioretti
Abstract:
During the Middle Bronze Age, southern Italy underwent a reorganisation of social structures where local cultures, such as the sub-Apennine and Nuragic, flourished and participated in maritime trade. This paper explores the socio-economic relationships, in both cross-cultural and potentially inter-regional settings, present within the archaeological repertoire of the southern Italian Late Bronze Age (LBA 1600 -1050 BCE). The emergence of economic relations within the connectivity of the regional settlements is explored through ceramic contexts found in the case studies Punta di Zambrone, Broglio di Trebisacce, and Nuraghe Antigori. This paper discusses the findings of a statistical and theoretical approach from an ongoing study in relation to the Mediterranean’s characterisation as a period dominated by Mycenaean influence. This study engages with a theoretical bricolage of Social Networks Entanglement, and Assertive Objects Theory to address the selective and assertive dynamics evident in the cross-cultural trade exchanges as well as consider inter-regional dynamics. Through this intersection of theory and statistical analysis, the case studies establish a small percentage of pottery as imported, whilst assertive productions have a relatively higher quantity. Overall, the majority still adheres to regional Italian traditions. Therefore, we can dissect the rhizomatic relationships cultivated by the Italian coasts and Mycenaeans and their roles within their networks through the intersection of theoretical and statistical analysis. This research offers a new perspective on the complex nature of the Late Bronze Age relational structures.Keywords: late bronze age, mediterranean archaeology, exchanges and trade, frequency distribution of ceramic assemblages, social network theory, rhizomatic exchanges
Procedia PDF Downloads 472162 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks
Authors: Hyunsun Lee, Yi Zhu
Abstract:
Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles
Procedia PDF Downloads 1232161 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 992160 How to Modernise the ECN
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. It might be the case that the ECN is subject not so much to path dependence but to past dependence. It might have to be replaced, as happened to its predecessor. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonization of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures. The aim is to adopt these concepts into the EU setting without recourse to legal transplantation. The major difficulty is that many of these concepts have been tested only in the US and it is difficult to tell whether they could be modified to meet EU standards. Concepts such as judicial cooperation might be difficult due to different language traditions in EU member states. It is hoped that greater flexibility, as in the American network, would boost legitimacy and transparency.Keywords: ECN, networks, regulation, competition
Procedia PDF Downloads 4282159 Spatially Referenced Checklist Model Dedicated to Professional Actors for a Good Evaluation and Management of Networks
Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry
Abstract:
The objective of this article is to explain the use of geographic information system (GIS) and information and communication technologies (ICTs) in the real-time processing and analysis of data on the status of an urban sanitation network by integrating professional actors in sanitation for sustainable management in urban areas. Indeed, it is a smart geo-collaboration based on the complementarity of ICTs and GIS. This multi-actor reflection was built with the objective of contributing to the development of complementary solutions to the existing technologies to better protect the urban environment, with the help of a checklist with the spatial reference "E-Géo-LD" dedicated to the "professional/professional" actors in sanitation, for intelligent monitoring of liquid sanitation networks in urban areas. In addition, this research provides a good understanding and assimilation of liquid sanitation schemes in the "Lamkansa" sampling area of the city of Casablanca, and spatially evaluates these schemes. Downstream, it represents a guide to assess the environmental impacts of the liquid sanitation scheme.Keywords: ICT, GIS, spatial checklist, liquid sanitation, environment
Procedia PDF Downloads 2362158 Integrated Social Support through Social Networks to Enhance the Quality of Life of Metastatic Breast Cancer Patients
Authors: B. Thanasansomboon, S. Choemprayong, N. Parinyanitikul, U. Tanlamai
Abstract:
Being diagnosed with metastatic breast cancer, the patients as well as their caretakers are affected physically and mentally. Although the medical systems in Thailand have been attempting to improve the quality and effectiveness of the treatment of the disease in terms of physical illness, the success of the treatment also depends on the quality of mental health. Metastatic breast cancer patients have found that social support is a key factor that helps them through this difficult time. It is recognized that social support in different dimensions, including emotional support, social network support, informational support, instrumental support and appraisal support, are contributing factors that positively affect the quality of life of patients in general, and it is undeniable that social support in various forms is important in promoting the quality of life of metastatic breast patients. However, previous studies have not been dedicated to investigating their quality of life concerning affective, cognitive, and behavioral outcomes. Therefore, this study aims to develop integrated social support through social networks to improve the quality of life of metastatic breast cancer patients in Thailand.Keywords: social support, metastatic breath cancer, quality of life, social network
Procedia PDF Downloads 1492157 Reimagining the Potential of Street Lighting Infrastructure in Nairobi City
Authors: Clifford Otieno Ochieng, Nsenda Lukumwena
Abstract:
Cities worldwide and most notably those in the global south, including Nairobi City are experiencing accelerated population growth and urban sprawl, accompanied with multiple socioeconomic challenges’ which in turn increase the pressure on already limited infrastructure such as public lighting and on limited financial resources. Based on this premise, through reimaging the value of street lighting infrastructure, the study attempts to highlight the affordance and affordability of streetlights and suggests them as a tool to optimally address limited financial resources that characterize cities in the global south. As a methodology, the paper reviews and analyzes literature available online including Nairobi city budgets; reports from Kenya Power, World Health Organization and United Nations; and articles on enterprise level Internet of Things (IoT) solutions. In conclusion, this study illustrates that streetlights can go well beyond their traditional roles of illuminating cities at night. They can be as suggested in this paper charging stations, communication network terminals and disease prevention nodes.Keywords: affordance, Nairobi, developing economies, IoT, smart street lights, smart cities
Procedia PDF Downloads 1852156 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time
Procedia PDF Downloads 2882155 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks
Authors: Zeyad Abdelmageid, Xianbin Wang
Abstract:
Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead
Procedia PDF Downloads 1192154 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: ammonia slip, neural-network, vehicles emissions, SCR-NOx
Procedia PDF Downloads 2132153 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net
Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi
Abstract:
Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation
Procedia PDF Downloads 1832152 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating
Procedia PDF Downloads 5282151 Privacy-Preserving Location Sharing System with Client/Server Architecture in Mobile Online Social Network
Authors: Xi Xiao, Chunhui Chen, Xinyu Liu, Guangwu Hu, Yong Jiang
Abstract:
Location sharing is a fundamental service in mobile Online Social Networks (mOSNs), which raises significant privacy concerns in recent years. Now, most location-based service applications adopt client/server architecture. In this paper, a location sharing system, named CSLocShare, is presented to provide flexible privacy-preserving location sharing with client/server architecture in mOSNs. CSLocShare enables location sharing between both trusted social friends and untrusted strangers without the third-party server. In CSLocShare, Location-Storing Social Network Server (LSSNS) provides location-based services but do not know the users’ real locations. The thorough analysis indicates that the users’ location privacy is protected. Meanwhile, the storage and the communication cost are saved. CSLocShare is more suitable and effective in reality.Keywords: mobile online social networks, client/server architecture, location sharing, privacy-preserving
Procedia PDF Downloads 3312150 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 1562149 Repositioning Nigerian University Libraries for Effective Information Provision and Delivery in This Age of Globalization
Authors: S. O. Uwaifo
Abstract:
The paper examines the pivotal role of the library in university education through the provision of a wide range of information materials (print and non- print) required for the teaching, learning and research activities of the university. However certain impediments to the effectiveness of Nigerian university libraries, such as financial constraints, high foreign exchange, global disparities in accessing the internet, lack of local area networks, erratic electric power supply, absence of ICT literacy, poor maintenance culture, etc., were identified. Also, the necessity of repositioning Nigerian university libraries for effective information provision and delivery was stressed by pointing out their dividends, such as users’ access to Directory of Open Access Journals (DOAJ), Online Public Access Catalogue (OPAC), Institutional Repositories, Electronic Document Delivery, Social Media Networks, etc. It therefore becomes necessary for the libraries to be repositioned by way of being adequately automated or digitized for effective service delivery, in this age of globalization. Based on the identified barriers by this paper, some recommendations were proffered.Keywords: repositioning, Nigerian university libraries, effective information provision and delivery, globalization
Procedia PDF Downloads 3272148 Experimental Study of Mixture of R290/R600 to Replace R134a in a Domestic Refrigerator
Authors: T. O. Babarinde, B. O. Bolaji, S. O. Ismaila
Abstract:
Interest in natural refrigerants, such as hydrocarbons has been renewed in recent years because of the environmental problems associated with synthetic chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC) refrigerants. Due to the depletion of ozone-layer and global warming effects, synthetic refrigerants are being gradually phased out in accordance with the international protocols that aim to protect the environment. In this work, a refrigerator designed to work with R134a was used for this experiment, Liquefied Petroleum Gas (LPG) which consists of commercial propane and butane in a single evaporator domestic refrigerator with a total volume of 62 litres. In this experiment, type K thermocouples with their probes were used to measure the temperatures of four major components (evaporator, compressor, condenser and expansion device) of the refrigeration system. Also the system was instrumented with two pressure gauges at the inlet and outlet of the compressor for measuring the suction and discharged pressures. The experiments were carried out using 40, 60, 80,100g charges and the charges were measured with a digital charging scale. Thermodynamic properties of the LPG refrigerant were determined. The results obtained showed that using LPG charge of 60g. The system COP increased with 14.6% and the power consumption reduced with 9.8% when compared with R134a. Therefore, LPG can replace R134a in domestic refrigerator.Keywords: domestic refrigerator, experimental, LPG, R134a
Procedia PDF Downloads 4832147 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation
Procedia PDF Downloads 2722146 Regeneration Study on the Athens City Center: Transformation of the Historical Triangle to “Low Pollution and Restricted Vehicle Traffic Zone”
Authors: Chondrogianni Dimitra, Yorgos J. Stephanedes
Abstract:
The impact of the economic crisis, coupled with the aging of the city's old core, is reflected in central Athens. Public and private users, residents, employees, visitors desire the quality upgrading of abandoned buildings and public spaces through environmental upgrading and sustainable mobility, and promotion of the international metropolitan character of the city. In the study, a strategy for reshaping the character and function of the historic Athenian triangle is proposed, aiming at its economic, environmental, and social sustainable development through feasible, meaningful, and non-landscaping solutions of low cost and high positive impact. Sustainable mobility is the main principle in re-planning the study area and transforming it into a “Low Pollution and Limited Vehicle Traffic Zone” is the main strategy. Τhe proposed measures include the development of pedestrian mobility networks by expanding the pedestrian roads and limited-traffic routes, of bicycle networks based on the approved Metropolitan Bicycle Route of Athens, of public transportation networks with new lines of electric mini-buses, and of new regulations for vehicle mobility in the historic triangle. In addition, complementary actions are proposed regarding the provision of Wi-Fi on fixed track media, development of applications that facilitate combined travel and provide real-time data, integration of micromobility (roller skates, Segway, Hoverboard), and its enhancement as a flexible means of personal mobility, and development of car-sharing, ride-sharing and dynamic carpooling initiatives.Keywords: regeneration plans, sustainable mobility, environmental upgrading, athens historical triangle
Procedia PDF Downloads 1672145 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 262144 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin
Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi
Abstract:
The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.Keywords: rainfall, neural networks, climatic indices, Mediterranean
Procedia PDF Downloads 312