Search results for: Velocimetry Laser Doppler.
154 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices
Authors: K. Swapna
Abstract:
A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.Keywords: glasses, J-O parameters, photoluminescence, I-H model
Procedia PDF Downloads 158153 Study on Shifting Properties of CVT Rubber V-belt
Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato
Abstract:
The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission
Procedia PDF Downloads 143152 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability
Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard
Abstract:
The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty
Procedia PDF Downloads 187151 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps
Authors: Arkadiusz Zurek
Abstract:
The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0
Procedia PDF Downloads 86150 Evaluation of Surface Roughness Condition Using App Roadroid
Authors: Diego de Almeida Pereira
Abstract:
The roughness index of a road is considered the most important parameter about the quality of the pavement, as it has a close relation with the comfort and safety of the road users. Such condition can be established by means of functional evaluation of pavement surface deviations, measured by the International Roughness Index (IRI), an index that came out of the international evaluation of pavements, coordinated by the World Bank, and currently owns, as an index of limit measure, for purposes of receiving roads in Brazil, the value of 2.7 m/km. This work make use of the e.IRI parameter, obtained by the Roadroid app. for smartphones which use Android operating system. The choice of such application is due to the practicality for the user interaction, as it possesses a data storage on a cloud of its own, and the support given to universities all around the world. Data has been collected for six months, once in each month. The studies begun in March 2018, season of precipitations that worsen the conditions of the roads, besides the opportunity to accompany the damage and the quality of the interventions performed. About 350 kilometers of sections of four federal highways were analyzed, BR-020, BR-040, BR-060 and BR-070 that connect the Federal District (area where Brasilia is located) and surroundings, chosen for their economic and tourist importance, been two of them of federal and two others of private exploitation. As well as much of the road network, the analyzed stretches are coated of Hot Mix Asphalt (HMA). Thus, this present research performs a contrastive discussion between comfort conditions and safety of the roads under private exploitation in which users pay a fee to the concessionaires so they could travel on a road that meet the minimum requirements for usage, and regarding the quality of offered service on the roads under Federal Government jurisdiction. And finally, the contrast of data collected by National Department of Transport Infrastructure – DNIT, by means of a laser perfilometer, with data achieved by Roadroid, checking the applicability, the practicality and cost-effective, considering the app limitations.Keywords: roadroid, international roughness index, Brazilian roads, pavement
Procedia PDF Downloads 85149 Uranium Migration Process: A Multi-Technique Investigation Strategy for a Better Understanding of the Role of Colloids
Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes
Abstract:
The knowledge of uranium migration processes within underground environments is a major issue in the environmental risk assessment associated with nuclear activities. This process is identified as strongly controlled by adsorption mechanisms, thus leading to strongly delayed migration paths. Colloidal ligands are likely to significantly increase the mobility of uranium in natural environments. The ability of colloids to mobilize and transport uranium depends on their origin, their nature, their structure, their stability and their reactivity with uranium. Thus, the colloidal mobilization and transport properties are often described as site-specific. In this work, the colloidal phases of two leachates obtained from two different horizons of the same podzolic soil were characterized with a speciation approach. For this purpose, a multi-technique strategy was used, based on Field-Flow Fractionation coupled to Ultraviolet, Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-UV-MALS-ICPMS), Transmission Electron Microscopy (TEM), Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap), and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS-EEM). Thus, elemental composition, size distribution, microscopic structure, colloidal stability and possible organic and/or inorganic content of colloids were determined, as well as their association with uranium. The leachates exhibit differences in their physical and chemical characteristics, mainly in the nature of organic matter constituents. The multi-technique investigation strategy used provides original data about colloidal phase structure and composition, offering a new vision of the way the uranium can be mobilized and transported in the considered soil. This information is a real significant contribution opening the way to our understanding and predicting of the colloidal transport.Keywords: colloids, migration, multi-technique, speciation, transport, uranium
Procedia PDF Downloads 144148 Enhanced Iron Accumulation in Chickpea Though Expression of Iron-Regulated Transport and Ferritin Genes
Authors: T. M. L. Hoang, G. Tan, S. D. Bhowmik, B. Williams, A. Johnson, M. R. Karbaschi, Y. Cheng, H. Long, S. G. Mundree
Abstract:
Iron deficiency is a worldwide problem affecting both developed and developing countries. Currently, two major approaches namely iron supplementation and food fortification have been used to combat this issue. These measures, however, are limited by the economic status of the targeted demographics. Iron biofortification through genetic modification to enhance the inherent iron content and bioavailability of crops has been employed recently. Several important crops such as rice, wheat, and banana were reported successfully improved iron content via this method, but there is no known study in legumes. Chickpea (Cicer arietinum) is an important leguminous crop that is widely consumed, particularly in India where iron deficiency anaemia is prevalent. Chickpea is also an ideal pulse in the formulation of complementary food between pulses and cereals to improve micronutrient contents. This project aims at generating enhanced ion accumulation and bioavailability chickpea through the exogenous expression of genes related to iron transport and iron homeostasis in chickpea plants. Iron-Regulated Transport (IRT) and Ferritin genes in combination were transformed into chickpea half-embryonic axis by agrobacterium–mediated transformation. Transgenic independent event was confirmed by Southern Blot analysis. T3 leaves and seeds of transgenic chickpea were assessed for iron contents using LA-ICP-MS (Laser Ablation – Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The correlation between transgene expression levels and iron content in T3 plants and seeds was assessed using qPCR. Results show that iron content in transgenic chickpea expressing the above genes significantly increased compared to that in non-transgenic controls.Keywords: iron biofortification, chickpea, IRT, ferritin, Agrobacterium-mediated transformation, LA-ICP-MS, ICP-OES
Procedia PDF Downloads 441147 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach
Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri
Abstract:
In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications
Procedia PDF Downloads 61146 Tocotrienol Rich Fraction in Nicotine-Induced Embryos: Cytoskeletal Changes of Actin and Tubulin
Authors: Nurul Hamirah Kamsani, Mohd Hamim Rajikin, Nor Ashikin Mohamed Noor Khan, Sharaniza Abdul Rahim
Abstract:
Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. Under influence of nicotine, the cytoskeletal organization may be subjected to oxidative stress (OS) insult and cause alteration. Tocotrienol-rich fraction (TRF) is proven to enhance fertility better than the other sub-group of Vitamin E, tocopherols (TCPs). The objective of this study was to evaluate the effects of TRF on 1) actin and tubulin of 2- and 8-cell murine embryos and 2) the regulation of reactive oxygen species (ROS)-scavenging enzymes; induced by nicotine. Twenty four female Balb/C were subjected to either subcutaneous (sc) injection of 0.9% NaCl; sc injection of 3.0 mg/kg bw/day nicotine; sc injection of 3.0 mg/kg bw/day nicotine + oral gavage (OG) of 60 mg/kg bw/day TRF; or OG of 60 mg/kg bw/day TRF for 7 consecutive days. After superovulation and mating, animals were euthanized. 2-cell developing embryos were retrieved. 50% of the retrieved embryos were visualized under confocal laser staining microscopy (CLSM) for alterations of actin and tubulin. The remaining amount of embryos was cultured in vitro until 8-cell stage followed by CLSM visualization. Blood plasma was subjected to OS assays. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined and analysed accordingly. At both 2- and 8-cell developing stages, actin intensities were significantly reduced in the nicotine group (p<0.001). After the intervention, actin intensity was significantly increased compared to that of the nicotine group (p<0.001). The same trend was seen in tubulin at both cell stages. TRF has minimized the deleterious effects of nicotine in actin and tubulin of both 2- and 8-cell developmental stages during pre-implantation embryonic development in mice in vitro. Levels of endogenous anti-oxidative enzymes were sustained close to control accompanied by decreased levels of OS biomarker.Keywords: actin, nicotine, pre-implantation embryos, tocotrienol rich fraction, tubulin
Procedia PDF Downloads 151145 Synthesis of Liposomal Vesicles by a Novel Supercritical Fluid Process
Authors: Wen-Chyan Tsai, Syed S. H. Rizvi
Abstract:
Organic solvent residues are always associated with liposomes produced by the traditional techniques like the thin film hydration and reverse phase evaporation methods, which limit the applications of these vesicles in the pharmaceutical, food and cosmetic industries. Our objective was to develop a novel and benign process of liposomal microencapsulation by using supercritical carbon dioxide (SC-CO2) as the sole phospholipid-dissolving medium and a green substitute for organic solvents. This process consists of supercritical fluid extraction followed by rapid expansion via a nozzle and automatic cargo suction. Lecithin and cholesterol mixed in 10:1 mass ratio were dissolved in SC-CO2 at 20 ± 0.5 MPa and 60 oC. After at least two hours of equilibrium, the lecithin/cholesterol-laden SC-CO2 was passed through a 1000-micron nozzle and immediately mixed with the cargo solution to form liposomes. Liposomal micro-encapsulation was conducted at three pressures (8.27, 12.41, 16.55 MPa), three temperatures (75, 83 and 90 oC) and two flow rates (0.25 ml/sec and 0.5 ml/sec). Liposome size, zeta potential and encapsulation efficiency were characterized as functions of the operating parameters. The average liposomal size varied from 400-500 nm to 1000-1200 nm when the pressure was increased from 8.27 to 16.55 MPa. At 12.41 MPa, 90 oC and 0.25 ml per second of 0.2 M glucose cargo loading rate, the highest encapsulation efficiency of 31.65 % was achieved. Under a confocal laser scanning microscope, large unilamellar vesicles and multivesicular vesicles were observed to make up a majority of the liposomal emulsion. This new approach is a rapid and continuous process for bulk production of liposomes using a green solvent. Based on the results to date, it is feasible to apply this technique to encapsulate hydrophilic compounds inside the aqueous core as well as lipophilic compounds in the phospholipid bilayers of the liposomes for controlled release, solubility improvement and targeted therapy of bioactive compounds.Keywords: liposome, micro encapsulation, supercritical carbon dioxide, non-toxic process
Procedia PDF Downloads 431144 Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities
Authors: Rita Emília Szabó, Róbert Polanek, Tünde Tőkés, Zoltán Szabó, Szabolcs Czifrus, Katalin Hideghéty
Abstract:
Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations.Keywords: ionizing radiation, LD50, relative biological effectiveness, zebrafish embryo
Procedia PDF Downloads 309143 Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate
Authors: Amr Mohamed Bakry Ibrahim, Yingzhou Ni, Hao Cheng, Li Liang
Abstract:
Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries.Keywords: Mentha piperita oil, microcapsule, tuna oil, whey protein isolate
Procedia PDF Downloads 352142 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy
Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen
Abstract:
In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.Keywords: anodization, colored, high quality, wind chime, nano-tube
Procedia PDF Downloads 245141 Septic Pulmonary Emboli as a Complication of Peripheral Venous Cannula Insertion
Authors: Ankita Baidya, Vanishri Ganakumar, Ranveer S. Jadon, Piyush Ranjan, Rita Sood
Abstract:
Septic embolism can have varied presentations and clinical considerations. Infected central venous catheters are commonly associated with septic emboli but peripheral vascular catheters are rarely implicated. We describe a rare case of septic pulmonary emboli related to infected peripheral venous cannulation caused by an unusual etiological agent. A young male presented with complaints of fever, productive cough, sudden onset shortness of breath and cellulitis in both the upper limbs. He was recently hospitalised for dengue fever and administered intravenous fluids through peripheral venous line. The patient was febrile, tachypneic and in respiratory distress, there were multiple pus filled bullae in left hand alongwith swelling and erythema involving right forearm that started at the site of cannulation. Chest examination showed active accessory muscles of respiration, stony dull percussion at the base of right lung and decreased breath sounds at right infrascapular, infraaxillary and mammary area. Other system examination was within normal limits. Chest X-ray revealed bilateral multiple patchy heterogenous peripheral opacities and infiltrates with right-sided pleural effusion. Contrast-enhanced computed tomography (CECT) chest showed feeding vessel sign confirming the diagnosis as septic emboli. Venous Doppler and 2D-echocardiogarm were normal. Laboratory findings showed marked leucocytosis (22000/mm3). Pus aspirate, blood sample, and sputum sample were sent for microbiological testing. The patient was started empirically on ceftriaxone, vancomycin, and clindamycin. The Pus culture and sputum culture showed Klebsiella pneumoniae sensitive to cefoperazone-sulbactum, piperacillin-tazobactum, meropenem and amikacin. The antibiotics were modified accordingly to antimicrobial sensitivity profile to Cefoperazone-sulbactum. Bronchoalveolar lavage (BAL) was done and sent for microbiological investigations. BAL culture showed Klebsiella pneumoniae with same antimicrobial resistance profile. On day 6 of starting cefoperazone-sulbactum, he became afebrile. The skin lesions improved significantly. He was administered 2 weeks of cefoperazone–sulbactum and discharged on oral faropenem for 4 weeks. At the time of discharge, TLC was 11200/mm3 with marked radiological resolution of infection and healed skin lesions. He was kept in regular follow up. Chest X-ray and skin lesions showed complete resolution after 8 weeks. Till date, only couple of case reports of septic emboli through peripheral intravenous line have been reported in English literature. This case highlights that a simple procedure of peripheral intravenous cannulation can lead to catastrophic complication of septic pulmonary emboli and widespread cellulitis if not done with proper care and precautions. Also, the usual pathogens in such clinical settings are gram positive bacteria, but with the history of recent hospitalization, empirical therapy should also cover drug resistant gram negative microorganisms. It also emphasise the importance of appropriate healthcare practices to be taken care during all procedures.Keywords: antibiotics, cannula, Klebsiella pneumoniae, septic emboli
Procedia PDF Downloads 160140 Determination of the Cooling Rate Dependency of High Entropy Alloys Using a High-Temperature Drop-on-Demand Droplet Generator
Authors: Saeedeh Imani Moqadam, Ilya Bobrov, Jérémy Epp, Nils Ellendt, Lutz Mädler
Abstract:
High entropy alloys (HEAs), having adjustable properties and enhanced stability compared with intermetallic compounds, are solid solution alloys that contain more than five principal elements with almost equal atomic percentage. The concept of producing such alloys pave the way for developing advanced materials with unique properties. However, the synthesis of such alloys may require advanced processes with high cooling rates depending on which alloy elements are used. In this study, the micro spheres of different diameters of HEAs were generated via a drop-on-demand droplet generator and subsequently solidified during free-fall in an argon atmosphere. Such droplet generators can generate individual droplets with high reproducibility regarding droplet diameter, trajectory and cooling while avoiding any interparticle momentum or thermal coupling. Metallography as well as X-ray diffraction investigations for each diameter of the generated metallic droplets where then carried out to obtain information about the microstructural state. To calculate the cooling rate of the droplets, a droplet cooling model was developed and validated using model alloys such as CuSn%6 and AlCu%4.5 for which a correlation of secondary dendrite arm spacing (SDAS) and cooling rate is well-known. Droplets were generated from these alloys and their SDAS was determined using quantitative metallography. The cooling rate was then determined from the SDAS and used to validate the cooling rates obtained from the droplet cooling model. The application of that model on the HEA then leads to the cooling rate dependency and hence to the identification of process windows for the synthesis of these alloys. These process windows were then compared with cooling rates obtained in processes such as powder production, spray forming, selective laser melting and casting to predict if a synthesis is possible with these processes.Keywords: cooling rate, drop-on-demand, high entropy alloys, microstructure, single droplet generation, X-ray Diffractometry
Procedia PDF Downloads 211139 Experimental Pain Study Investigating the Distinction between Pain and Relief Reports
Authors: Abeer F. Almarzouki, Christopher A. Brown, Richard J. Brown, Anthony K. P. Jones
Abstract:
Although relief is commonly assumed to be a direct reflection of pain reduction, it seems to be driven by complex emotional interactions in which pain reduction is only one component. For example, termination of a painful/aversive event may be relieving and rewarding. Accordingly, in this study, whether terminating an aversive negative prediction of pain would be reflected in a greater relief experience was investigated, with a view to separating apart the effects of the manipulation on pain and relief. We use aversive conditioning paradigm to investigate the perception of relief in an aversive (threat) vs. positive context. Participants received positive predictors of a non-painful outcome which were presented within either a congruent positive (non-painful) context or an incongruent threat (painful) context that had been previously conditioned; trials followed by identical laser stimuli on both conditions. Participants were asked to rate the perceived intensity of pain as well as their perception of relief in response to the cue predicting the outcome. Results demonstrated that participants reported more pain in the aversive context compared to the positive context. Conversely, participants reported more relief in the aversive context compares to the neutral context. The rating of relief in the threat context was not correlated with pain reports. The results suggest that relief is not dependant on pain intensity. Consistent with this, relief in the threat context was greater than that in the positive expectancy condition, while the opposite pattern was obtained for the pain ratings. The value of relief in this study is better appreciated in the context of an impending negative threat, which is apparent in the higher pain ratings in the prior negative expectancy compared to the positive expectancy condition. Moreover, the more threatening the context (as manifested by higher unpleasantness/higher state anxiety scores), the more the relief is appreciated. The importance of the study highlights the importance of exploring relief and pain intensity in monitoring separately or evaluating pain-related suffering. The results also illustrate that the perception of painful input may largely be shaped by the context and not necessarily stimulus-related.Keywords: aversive context, pain, predictions, relief
Procedia PDF Downloads 139138 Elevated Systemic Oxidative-Nitrosative Stress and Cerebrovascular Function in Professional Rugby Union Players: The Link to Impaired Cognition
Authors: Tom S. Owens, Tom A. Calverley, Benjamin S. Stacey, Christopher J. Marley, George Rose, Lewis Fall, Gareth L. Jones, Priscilla Williams, John P. R. Williams, Martin Steggall, Damian M. Bailey
Abstract:
Introduction and aims: Sports-related concussion (SRC) represents a significant and growing public health concern in rugby union, yet remains one of the least understood injuries facing the health community today. Alongside increasing SRC incidence rates, there is concern that prior recurrent concussion may contribute to long-term neurologic sequelae in later-life. This may be due to an accelerated decline in cerebral perfusion, a major risk factor for neurocognitive decline and neurodegeneration, though the underlying mechanisms remain to be established. The present study hypothesised that recurrent concussion in current professional rugby union players would result in elevated systemic oxidative-nitrosative stress, reflected by a free radical-mediated reduction in nitric oxide (NO) bioavailability and impaired cerebrovascular and cognitive function. Methodology: A longitudinal study design was adopted across the 2017-2018 rugby union season. Ethical approval was obtained from the University of South Wales Ethics Committee. Data collection is ongoing, and therefore the current report documents result from the pre-season and first half of the in-season data collection. Participants were initially divided into two subgroups; 23 professional rugby union players (aged 26 ± 5 years) and 22 non-concussed controls (27 ± 8 years). Pre-season measurements were performed for cerebrovascular function (Doppler ultrasound of middle cerebral artery velocity (MCAv) in response to hypocapnia/normocapnia/hypercapnia), cephalic venous concentrations of the ascorbate radical (A•-, electron paramagnetic resonance spectroscopy), NO (ozone-based chemiluminescence) and cognition (neuropsychometric tests). Notational analysis was performed to assess contact in the rugby group throughout each competitive game. Results: 1001 tackles and 62 injuries, including three concussions were observed across the first half of the season. However, no associations were apparent between number of tackles and any injury type (P > 0.05). The rugby group expressed greater oxidative stress as indicated by increased A•- (P < 0.05 vs. control) and a subsequent decrease in NO bioavailability (P < 0.05 vs. control). The rugby group performed worse in the Ray Auditory Verbal Learning Test B (RAVLT-B, learning, and memory) and the Grooved Pegboard test using both the dominant and non-dominant hands (visuomotor coordination, P < 0.05 vs. control). There were no between-group differences in cerebral perfusion at baseline (MCAv: 54 ± 13 vs. 59 ± 12, P > 0.05). Likewise, no between-group differences in CVRCO2Hypo (2.58 ± 1.01 vs. 2.58 ± 0.75, P > 0.05) or CVRCO2Hyper (2.69 ± 1.07 vs. 3.35 ± 1.28, P > 0.05) were observed. Conclusion: The present study identified that the rugby union players are characterized by impaired cognitive function subsequent to elevated systemic-oxidative-nitrosative stress. However, this appears to be independent of any functional impairment in cerebrovascular function. Given the potential long-term trajectory towards accelerated cognitive decline in populations exposed to SRC, prophylaxis to increase NO bioavailability warrants consideration.Keywords: cognition, concussion, mild traumatic brain injury, rugby
Procedia PDF Downloads 176137 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz
Abstract:
Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification
Procedia PDF Downloads 362136 Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System
Authors: Won Hyuck Kim, Chang Hwan Kim, Hyun Wook Kim, Myoung Hoon Lee, Chan Hong Park, Hyeon Yeong Park
Abstract:
We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey.Keywords: Anmok, beach survey, Shipborne Mobile LiDAR System, submarine topography
Procedia PDF Downloads 429135 Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products
Authors: Lorenzo Cocola, Massimo Fedel, Dragiša Savić, Bojana Danilović, Luca Poletto
Abstract:
An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere.Keywords: TDLAS, carbon dioxide, cups, headspace, measurement
Procedia PDF Downloads 324134 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies
Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif
Abstract:
Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environmentKeywords: PGPR, nitrogen fixation, phosphate solubilization, colonization
Procedia PDF Downloads 340133 Effect of Geometric Imperfections on the Vibration Response of Hexagonal Lattices
Authors: P. Caimmi, E. Bele, A. Abolfathi
Abstract:
Lattice materials are cellular structures composed of a periodic network of beams. They offer high weight-specific mechanical properties and lend themselves to numerous weight-sensitive applications. The periodic internal structure responds to external vibrations through characteristic frequency bandgaps, making these materials suitable for the reduction of noise and vibration. However, the deviation from architectural homogeneity, due to, e.g., manufacturing imperfections, has a strong influence on the mechanical properties and vibration response of these materials. In this work, we present results on the influence of geometric imperfections on the vibration response of hexagonal lattices. Three classes of geometrical variables are used: the characteristics of the architecture (relative density, ligament length/cell size ratio), imperfection type (degree of non-periodicity, cracks, hard inclusions) and defect morphology (size, distribution). Test specimens with controlled size and distribution of imperfections are manufactured through selective laser sintering. The Frequency Response Functions (FRFs) in the form of accelerance are measured, and the modal shapes are captured through a high-speed camera. The finite element method is used to provide insights on the extension of these results to semi-infinite lattices. An updating procedure is conducted to increase the reliability of numerical simulation results compared to experimental measurements. This is achieved by updating the boundary conditions and material stiffness. Variations in FRFs of periodic structures due to changes in the relative density of the constituent unit cell are analysed. The effects of geometric imperfections on the dynamic response of periodic structures are investigated. The findings can be used to open up the opportunity for tailoring these lattice materials to achieve optimal amplitude attenuations at specific frequency ranges.Keywords: lattice architectures, geometric imperfections, vibration attenuation, experimental modal analysis
Procedia PDF Downloads 122132 Design and Simulation of Low Threshold Nanowire Photonic Crystal Surface Emitting Lasers
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Nanowire based Photonic Crystal Surface Emitting Lasers (PCSELs) reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we show that through deforming the honeycomb pattern and tuning the heigh and lattice constants of the nanowires, it is possible to achieve even higher Q-factor devices. Considering three different band edge modes, we investigate how the resonance wavelength changes as the device is deformed, which is useful in designing high Q-factor devices in different wavelength bands. We eventually establish the design and simulation of honeycomb PCSELs operating around the wavelength of 960nm , in the O and the C band with Q-factors up to 7X〖10〗^7. We also investigate the Q-factors of undeformed device, and establish that the mode at the band edge close to 960nm can attain highest Q-factor of all the modes when the device is undeformed and the Q-factor degrades as the device is deformed. This work is a stepping stone towards the fabrication of very high Q-factor, nanowire based honey comb PCSELs, which are expected to have very low lasing threshold.Keywords: designing nanowire PCSEL, designing PCSEL on silicon substrates, low threshold nanowire laser, simulation of photonic crystal lasers
Procedia PDF Downloads 11131 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 72130 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool
Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier
Abstract:
Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison
Procedia PDF Downloads 384129 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa
Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh
Abstract:
Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health
Procedia PDF Downloads 149128 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 379127 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo
Abstract:
The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: automated equipment, management, multi-beam sensor, pothole
Procedia PDF Downloads 224126 Study of Radiological and Chemical Effects of Uranium in Ground Water of SW and NE Punjab, India
Authors: Komal Saini, S. K. Sahoo, B. S. Bajwa
Abstract:
The Laser Fluorimetery Technique has been used for the microanalysis of uranium content in water samples collected from different sources like the hand pumps, tube wells in the drinking water samples of SW & NE Punjab, India. The geographic location of the study region in NE Punjab is between latitude 31.21º- 32.05º N and longitude 75.60º-76.14º E and for SW Punjab is between latitude 29.66º-30.48º N and longitude 74.69º-75.54º E. The purpose of this study was mainly to investigate the uranium concentration levels of ground water being used for drinking purposes and to determine its health effects, if any, to the local population of these regions. In the present study 131 samples of drinking water collected from different villages of SW and 95 samples from NE, Punjab state, India have been analyzed for chemical and radiological toxicity. In the present investigation, uranium content in water samples of SW Punjab ranges from 0.13 to 908 μgL−1 with an average of 82.1 μgL−1 whereas in samples collected from NE- Punjab, it ranges from 0 to 28.2 μgL−1 with an average of 4.84 μgL−1. Thus, revealing that in the SW- Punjab 54 % of drinking water samples have uranium concentration higher than international recommended limit of 30 µgl-1 (WHO, 2011) while 35 % of samples exceeds the threshold of 60 µgl-1 recommended by our national regulatory authority of Atomic Energy Regulatory Board (AERB), Department of Atomic Energy, India, 2004. On the other hand in the NE-Punjab region, none of the observed water sample has uranium content above the national/international recommendations. The observed radiological risk in terms of excess cancer risk ranges from 3.64x10-7 to 2.54x10-3 for SW-Punjab, whereas for NE region it ranges from 0 to 7.89x10-5. The chemical toxic effect in terms of Life-time average Daily Dose (LDD) and Hazard Quotient (HQ) have also been calculated. The LDD for SW-Punjab varies from 0.0098 to 68.46 with an average of 6.18 µg/ kg/day whereas for NE region it varies from 0 to 2.13 with average 0.365 µg/ kg/day, thus indicating presence of chemical toxicity in SW Punjab as 35% of the observed samples in the SW Punjab are above the recommendation limit of 4.53 µg/ kg/day given by AERB for 60 µgl-1 of uranium. Maximum & Minimum values for hazard quotient for SW Punjab is 0.002 & 15.11 with average 1.36 which is considerably high as compared to safe limit i.e. 1. But for NE Punjab HQ varies from 0 to 0.47. The possible sources of high uranium observed in the SW- Punjab will also be discussed.Keywords: uranium, groundwater, radiological and chemical toxicity, Punjab, India
Procedia PDF Downloads 381125 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor
Authors: Sumana Kumar, Abha Misra
Abstract:
Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam
Procedia PDF Downloads 115