Search results for: CVFEM- radiation coupled with convection
2357 On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition
Authors: Bashiru Abdullahi, Isah Bala Yabo, Ibrahim Yakubu Seini
Abstract:
In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature.Keywords: heat transfer, thermal radiation, porous channel, MHD, transient, convective boundary condition
Procedia PDF Downloads 1252356 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models
Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik
Abstract:
The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron
Procedia PDF Downloads 1892355 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution
Authors: Mohammed Ali Hjaji, Magdi Mohareb
Abstract:
This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution
Procedia PDF Downloads 4742354 All Types of Base Pair Substitutions Induced by γ-Rays in Haploid and Diploid Yeast Cells
Authors: Natalia Koltovaya, Nadezhda Zhuchkina, Ksenia Lyubimova
Abstract:
We study the biological effects induced by ionizing radiation in view of therapeutic exposure and the idea of space flights beyond Earth's magnetosphere. In particular, we examine the differences between base pair substitution induction by ionizing radiation in model haploid and diploid yeast Saccharomyces cerevisiae cells. Such mutations are difficult to study in higher eukaryotic systems. In our research, we have used a collection of six isogenic trp5-strains and 14 isogenic haploid and diploid cyc1-strains that are specific markers of all possible base-pair substitutions. These strains differ from each other only in single base substitutions within codon-50 of the trp5 gene or codon-22 of the cyc1 gene. Different mutation spectra for two different haploid genetic trp5- and cyc1-assays and different mutation spectra for the same genetic cyc1-system in cells with different ploidy — haploid and diploid — have been obtained. It was linear function for dose-dependence in haploid and exponential in diploid cells. We suggest that the differences between haploid yeast strains reflect the dependence on the sequence context, while the differences between haploid and diploid strains reflect the different molecular mechanisms of mutations.Keywords: base pair substitutions, γ-rays, haploid and diploid cells, yeast Saccharomyces cerevisiae
Procedia PDF Downloads 1572353 A Framework for Automated Nuclear Waste Classification
Authors: Seonaid Hume, Gordon Dobie, Graeme West
Abstract:
Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.Keywords: nuclear decommissioning, radiation detection, object detection, waste classification
Procedia PDF Downloads 2052352 Thermal Management of a Compact Electronic Device Subjected to Different Harsh Operating Conditions
Authors: Murat Parlak, Muhammed Çağlar Malyemez
Abstract:
In a harsh environment, it is crucialtoinvestigatethethermal problem systematically implement a reliableandeffectivecoolingtechniqueformilitaryequipment. In this study, an electronicaldevice has been designed to fit different boundary conditions. Manyfinalternatives can be possiblesolutionsforthethermal problem. Therefore, it is an important step to define an easyproduciblefindesignand a low power fan selection for the optimum unit-design satisfying IP68. The equipment is planned to serve at 71C environment conditions and it also can be screwedto a cold plate at +85C. In both conditions, it is intendedtousethesamechassiswithoutanymodifications. To optimize such a ruggeddevice, all CFD analysis has been done withAnsysFluent 2021®. Afterstudyingpinfins, it is seenthatthesurfacearea is not enough, hencethefin-type is changed to a straightrectangulartypewithforcedconvectioncooling. Finally, a verycompactproductthat can serve in a harsh environment is obtained.Keywords: electronic cooling, harsh environment, forced convection, compact design
Procedia PDF Downloads 1832351 Measurement of Natural Radioactivity and Health Hazard Index Evaluation in Major Soils of Tin Mining Areas of Perak
Authors: Habila Nuhu
Abstract:
Natural radionuclides in the environment can significantly contribute to human exposure to ionizing radiation. The knowledge of their levels in an environment can help the radiological protection agencies in policymaking. Measurement of natural radioactivity in major soils in the tin mining state of Perak Malaysia has been conducted using an HPGe detector. Seventy (70) soil samples were collected at widely distributed locations in the state. Six major soil types were sampled, and thirteen districts around the state were covered. The following were the results of the 226Ra (238U), 228Ra (232Th), and 40K activity in the soil samples: 226Ra (238U) has a mean activity concentration of 191.83 Bq kg⁻¹, more than five times the UNSCEAR reference limits of 35 Bq kg⁻¹. The mean activity concentration of 228Ra (232Th) with a value of 232.41 Bq kg⁻¹ is over seven times the UNSCEAR reference values of 30 Bq kg⁻¹. The average concentration of 40K activity was 275.24 Bq kg⁻¹, which was less than the UNSCEAR reference limit of 400 Bq Kg⁻¹. The range of external hazards index (Hₑₓ) values was from 1.03 to 2.05, while the internal hazards index (Hin) was from 1.48 to 3.08. The Hex and Hin should be less than one for minimal external and internal radiation threats as well as secure use of soil material for building construction. The Hₑₓ and Hin results generally indicate that while using the soil types and their derivatives as building materials in the study area, care must be taken.Keywords: activity concentration, hazard index, soil samples, tin mining
Procedia PDF Downloads 1162350 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure
Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik
Abstract:
Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT
Procedia PDF Downloads 1322349 Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination, methylene blue
Procedia PDF Downloads 212348 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue
Procedia PDF Downloads 682347 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 2062346 Fano-Resonance-Based Wideband Acoustic Metamaterials with Highly Efficient Ventilation
Authors: Xi-Wen Xiao, Tzy-Rong Lin, Chien-Hao Liu
Abstract:
Ventilated acoustic metamaterials have attracted considerable research attention due to their low-frequency absorptions and efficient fluid ventilations. In this research, a wideband acoustic metamaterial with auditory filtering ability and efficient ventilation capacity were proposed. In contrast to a conventional Fano-like resonator, a Fano-like resonator composed of a resonant unit and two nonresonant units with a large opening area of 68% for fluid passages was developed. In addition, the coupling mechanism to improve the narrow bandwidths of conventional Fano-resonance-based meta-materials was included. With a suitable design, the output sound waves of the resonant and nonresonant states were out of phase to achieve sound absorptions in the far fields. Therefore, three-element and five-element coupled Fano-like metamaterials were designed and simulated with the help of the finite element software to obtain the filtering fractional bandwidths of 42.5% and 61.8%, respectively. The proposed approach can be extended to multiple coupled resonators for obtaining ultra-wide bandwidths and can be implemented with 3D printing for practical applications. The research results are expected to be beneficial for sound filtering or noise reductions in duct applications and limited-volume spaces.Keywords: fano resonance, noise reduction, resonant coupling, sound filtering, ventilated acoustic metamaterial
Procedia PDF Downloads 1182345 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters
Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi
Abstract:
Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment
Procedia PDF Downloads 1482344 Process of Dimensioning Small Type Annular Combustors
Authors: Saleh B. Mohamed, Mohamed H. Elhsnawi, Mesbah M. Salem
Abstract:
Current and future applications of small gas turbine engines annular type combustors have requirements presenting difficult disputes to the combustor designer. Reduced cost and fuel consumption and improved durability and reliability as well as higher temperatures and pressures for such application are forecast. Coupled with these performance requirements, irrespective of the engine size, is the demand to control the pollutant emissions, namely the oxides of nitrogen, carbon monoxide, smoke and unburned hydrocarbons. These technical and environmental challenges have made the design of small size combustion system a very hard task. Thus, the main target of this work is to generalize a calculation method of annular type combustors for small gas turbine engines that enables to understand the fundamental concepts of the coupled processes and to identify the proper procedure that formulates and solves the problems in combustion fields in as much simplified and accurate manner as possible. The combustion chamber in task is designed with central vaporizing unit and to deliver 516.3 KW of power. The geometrical constraints are 142 mm & 140 mm overall length and casing diameter, respectively, while the airflow rate is 0.8 kg/sec and the fuel flow rate is 0.012 kg/sec. The relevant design equations are programmed by using MathCAD language for ease and speed up of the calculation process.Keywords: design of gas turbine, small engine design, annular type combustors, mechanical engineering
Procedia PDF Downloads 4122343 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137
Authors: Abdulsalam M. Alhawsawi
Abstract:
Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137
Procedia PDF Downloads 1192342 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators
Authors: Wei Ji
Abstract:
This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis
Procedia PDF Downloads 3112341 CFD Simulation of Forced Convection Nanofluid Heat Transfer in the Automotive Radiator
Authors: Sina Movafagh, Younes Bakhshan
Abstract:
Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated numerically. Different concentrations of nanofluids have been investigated by the addition of Al2O3 nano-particles into the water. Also, the effect of the inlet temperature of nanofluid on the performance of radiator is studied. Results show that with an increase of inlet temperature the outlet temperature and pressure drop along the radiator increase. Also, it has been observed that increase of nono-particle concentration will result in an increase in heat transfer rate within the radiator.Keywords: heat transfer, nanofluid, car radiator, CFD simulation
Procedia PDF Downloads 3082340 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator
Authors: S. Movafagh, Y. Bakhshan
Abstract:
In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.Keywords: forced convection, nanofluid, radiator, CFD simulation
Procedia PDF Downloads 3462339 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays
Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov
Abstract:
Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.Keywords: main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 2562338 High Precision 65nm CMOS Rectifier for Energy Harvesting using Threshold Voltage Minimization in Telemedicine Embedded System
Authors: Hafez Fouad
Abstract:
Telemedicine applications have very low voltage which required High Precision Rectifier Design with high Sensitivity to operate at minimum input Voltage. In this work, we targeted 0.2V input voltage using 65 nm CMOS rectifier for Energy Harvesting Telemedicine application. The proposed rectifier which designed at 2.4GHz using two-stage structure found to perform in a better case where minimum operation voltage is lower than previous published paper and the rectifier can work at a wide range of low input voltage amplitude. The Performance Summary of Full-wave fully gate cross-coupled rectifiers (FWFR) CMOS Rectifier at F = 2.4 GHz: The minimum and maximum output voltages generated using an input voltage amplitude of 2 V are 490.9 mV and 1.997 V, maximum VCE = 99.85 % and maximum PCE = 46.86 %. The Performance Summary of Differential drive CMOS rectifier with external bootstrapping circuit rectifier at F = 2.4 GHz: The minimum and maximum output voltages generated using an input voltage amplitude of 2V are 265.5 mV (0.265V) and 1.467 V respectively, maximum VCE = 93.9 % and maximum PCE= 15.8 %.Keywords: energy harvesting, embedded system, IoT telemedicine system, threshold voltage minimization, differential drive cmos rectifier, full-wave fully gate cross-coupled rectifiers CMOS rectifier
Procedia PDF Downloads 1672337 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings
Authors: Adinew Gebremeskel Tizazu
Abstract:
The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies
Procedia PDF Downloads 402336 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis
Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour
Abstract:
This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies
Procedia PDF Downloads 5782335 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application
Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela
Abstract:
Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application
Procedia PDF Downloads 1252334 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys
Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune
Abstract:
In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis
Procedia PDF Downloads 3322333 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence
Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay
Abstract:
Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality
Procedia PDF Downloads 2662332 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast
Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho
Abstract:
UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast
Procedia PDF Downloads 2392331 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still
Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama
Abstract:
A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.Keywords: distillation, solar energy, heat transfer, mass transfer, average height
Procedia PDF Downloads 1472330 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan
Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad
Abstract:
Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)
Procedia PDF Downloads 862329 Factors Associated to Down Syndrome Causes in Patients of Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran in 2014─2015
Authors: Bremmy Laksono, Nurul Qomarilla, Riksa Parikrama, Dyan K. Nugrahaeni, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani
Abstract:
Down syndrome is a chromosomal abnormality of chromosome 21 which can appear in man or woman. Maternal age and paternal age, history of radiation are the common risk factors. This study was conducted to observe risk factors which related as causes of Down syndrome. In this case control study using purposive sampling technique, 84 respondents were chosen from Cell Culture and Cytogenetics Laboratory patients in Faculty of Medicine, Universitas Padjadjaran, Indonesia. They were used as study samples and divided into 42 Down syndrome cases and 42 control respondents. This study used univariate and bivariate analysis (chi-square). Samples population were West Java residents, the biggest province in Indonesia in number of population. The results showed maternal age, paternal age, history of radiation exposure and family history were not significantly related to Down syndrome baby. Moreover, all of those factors also did not contribute to the risk of having a child with Down syndrome in patients at Cell Culture and Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran. Therefore, we should investigate other risk factors of Down syndrome in West Java population.Keywords: down syndrome, family history, maternal age, paternal age, risk factor
Procedia PDF Downloads 4082328 Characterization on Molecular Weight of Polyamic Acids Using GPC Coupled with Multiple Detectors
Authors: Mei Hong, Wei Liu, Xuemin Dai, Yanxiong Pan, Xiangling Ji
Abstract:
Polyamic acid (PAA) is the precursor of polyimide (PI) prepared by a two-step method, its molecular weight and molecular weight distribution not only play an important role during the preparation and processing, but also influence the final performance of PI. However, precise characterization on molecular weight of PAA is still a challenge because of the existence of very complicated interactions in the solution system, including the electrostatic interaction, hydrogen bond interaction, dipole-dipole interaction, etc. Thus, it is necessary to establisha suitable strategy which can completely suppress these complex effects and get reasonable data on molecular weight. Herein, the gel permeation chromatography (GPC) coupled with differential refractive index (RI) and multi-angle laser light scattering (MALLS) detectors were applied to measure the molecular weight of (6FDA-DMB) PAA using different mobile phases, LiBr/DMF, LiBr/H3PO4/THF/DMF, LiBr/HAc/THF/DMF, and LiBr/HAc/DMF, respectively. It was found that combination of LiBr with HAc can shield the above-mentioned complex interactions and is more conducive to the separation of PAA than only addition of LiBr in DMF. LiBr/HAc/DMF was employed for the first time as a mild mobile phase to effectively separate PAA and determine its molecular weight. After a series of conditional experiments, 0.02M LiBr/0.2M HAc/DMF was fixed as an optimized mobile phase to measure the relative and absolute molecular weights of (6FDA-DMB) PAA prepared, and the obtained Mw from GPC-MALLS and GPC-RI were 35,300 g/mol and 125,000 g/mol, respectively. Particularly, such a mobile phase is also applicable to other PAA samples with different structures, and the final results on molecular weight are also reproducible.Keywords: Polyamic acids, Polyelectrolyte effects, Gel permeation chromatography, Mobile phase, Molecular weight
Procedia PDF Downloads 59