Search results for: computer based instruction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30015

Search results for: computer based instruction

21375 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys

Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov

Abstract:

We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).

Keywords: dendrite, kinetics, model, solidification

Procedia PDF Downloads 125
21374 Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study

Authors: Adriana de Paula Lacerda Santos, Bruna Godke, Mauro Lacerda Santos Filho

Abstract:

Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams.

Keywords: concrete gravity dam, dams safety, instrumentation, simple linear correlation

Procedia PDF Downloads 295
21373 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 107
21372 Formulation Development and Evaluation Chlorpheniramine Maleate Containing Nanoparticles Loaded Thermo Sensitive in situ Gel for Treatment of Allergic Rhinitis

Authors: Vipin Saini, Manish Kumar, Shailendra Bhatt, A. Pandurangan

Abstract:

The aim of the present study was to fabricate a thermo sensitive gel containing Chlorpheniramine maleate (CPM) loaded nanoparticles following intranasal administration for effective treatment of allergic rhinitis. Chitosan based nanoparticles were prepared by precipitation method followed by the addition of developed NPs within the Poloxamer 407 and carbopol 934P based mucoadhesive thermo-reversible gel. Developed formulations were evaluated for Particle size, PDI, % entrapment efficiency and % cumulative drug permeation. NP3 formulation was found to be optimized on the basis of minimum particle size (143.9 nm), maximum entrapment efficiency (80.10±0.414 %) and highest drug permeation (90.92±0.531 %). The optimized formulation NP3 was then formulated into thermo reversible in situ gel. This intensifies the contact between nasal mucosa and the drug, increases and facilitates the drug absorption which results in increased bioavailability. G4 formulation was selected as the optimize on the basis of gelation ability and mucoadhesive strength. Histology was carried out to examine the damage caused by the optimized G4 formulation. Results revealed no visual signs of tissue damage thus indicated safe nasal delivery of nanoparticulate in situ gel formulation G4. Thus, intranasal CPM NP-loaded in situ gel was found to be a promising formulation for the treatment of allergic rhinitis.

Keywords: chitosan, nanoparticles, in situ gel, chlorpheniramine maleate, poloxamer 407

Procedia PDF Downloads 179
21371 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 370
21370 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios

Authors: S. Sakthivel

Abstract:

Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.

Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer

Procedia PDF Downloads 147
21369 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 280
21368 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems

Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos

Abstract:

As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.

Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model

Procedia PDF Downloads 161
21367 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends

Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez

Abstract:

This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.

Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis

Procedia PDF Downloads 90
21366 Numerical Simulation of Two-Dimensional Flow over a Stationary Circular Cylinder Using Feedback Forcing Scheme Based Immersed Boundary Finite Volume Method

Authors: Ranjith Maniyeri, Ahamed C. Saleel

Abstract:

Two-dimensional fluid flow over a stationary circular cylinder is one of the bench mark problem in the field of fluid-structure interaction in computational fluid dynamics (CFD). Motivated by this, in the present work, a two-dimensional computational model is developed using an improved version of immersed boundary method which combines the feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach. Lagrangian coordinates are used to represent the cylinder and Eulerian coordinates are used to describe the fluid flow. A two-dimensional Dirac delta function is used to transfer the quantities between the sold to fluid domain. Further, continuity and momentum equations governing the fluid flow are solved using fractional step based finite volume method on a staggered Cartesian grid system. The developed code is validated by comparing the values of drag coefficient obtained for different Reynolds numbers with that of other researcher’s results. Also, through numerical simulations for different Reynolds numbers flow behavior is well captured. The stability analysis of the improved version of immersed boundary method is tested for different values of feedback forcing coefficients.

Keywords: Feedback Forcing Scheme, Finite Volume Method, Immersed Boundary Method, Navier-Stokes Equations

Procedia PDF Downloads 309
21365 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 233
21364 A Comparative Study of Innovative Regions in the World Based on the Theory of Innovation Ecosystem: Cases of the Silicon Valley, Cambridge, Tsukuba and Zhongguancun

Authors: Xinlan Zhang, Dandong Ge, Bingying Liu, Haoyang Liang

Abstract:

With the rapid development of technology and urbanization, innovation has become an important driving force for urban development. Since the late 20th Century, a number of cities and regions have emerged in the world with innovation as the main driving force, and many of them are still the most important innovation centers in the world. Based on the perspective of innovation ecosystem theory, this paper compares Silicon Valley in the United States, Cambridge in the United Kingdom, Tsukuba in Japan and Zhongguancun in China to explore the reasons for the success of innovative regions and their respective characteristics, hoping to provide a reference for the development of other innovative cities. The main conclusions of this study are the following; firstly, different countries have different social backgrounds. The development model of innovative regions is closely related to the regional backgrounds. Secondly, the market force and the government power have important significance for the development of the innovation regions. The influence of the government power in the early stage of development is great, and in the latter stage, development is dominated by the market force. In addition, the self-organizing ability of the region has a great impact on the innovation ability of the region. Strong self-organizing ability is conducive to the development of innovation economy.

Keywords: contrastive study, development model, innovation ecosystem, innovative regions

Procedia PDF Downloads 162
21363 Sorting Maize Haploids from Hybrids Using Single-Kernel Near-Infrared Spectroscopy

Authors: Paul R Armstrong

Abstract:

Doubled haploids (DHs) have become an important breeding tool for creating maize inbred lines, although several bottlenecks in the DH production process limit wider development, application, and adoption of the technique. DH kernels are typically sorted manually and represent about 10% of the seeds in a much larger pool where the remaining 90% are hybrid siblings. This introduces time constraints on DH production and manual sorting is often not accurate. Automated sorting based on the chemical composition of the kernel can be effective, but devices, namely NMR, have not achieved the sorting speed to be a cost-effective replacement to manual sorting. This study evaluated a single kernel near-infrared reflectance spectroscopy (skNIR) platform to accurately identify DH kernels based on oil content. The skNIR platform is a higher-throughput device, approximately 3 seeds/s, that uses spectra to predict oil content of each kernel from maize crosses intentionally developed to create larger than normal oil differences, 1.5%-2%, between DH and hybrid kernels. Spectra from the skNIR were used to construct a partial least squares regression (PLS) model for oil and for a categorical reference model of 1 (DH kernel) or 2 (hybrid kernel) and then used to sort several crosses to evaluate performance. Two approaches were used for sorting. The first used a general PLS model developed from all crosses to predict oil content and then used for sorting each induction cross, the second was the development of a specific model from a single induction cross where approximately fifty DH and one hundred hybrid kernels used. This second approach used a categorical reference value of 1 and 2, instead of oil content, for the PLS model and kernels selected for the calibration set were manually referenced based on traditional commercial methods using coloration of the tip cap and germ areas. The generalized PLS oil model statistics were R2 = 0.94 and RMSE = .93% for kernels spanning an oil content of 2.7% to 19.3%. Sorting by this model resulted in extracting 55% to 85% of haploid kernels from the four induction crosses. Using the second method of generating a model for each cross yielded model statistics ranging from R2s = 0.96 to 0.98 and RMSEs from 0.08 to 0.10. Sorting in this case resulted in 100% correct classification but required models that were cross. In summary, the first generalized model oil method could be used to sort a significant number of kernels from a kernel pool but was not close to the accuracy of developing a sorting model from a single cross. The penalty for the second method is that a PLS model would need to be developed for each individual cross. In conclusion both methods could find useful application in the sorting of DH from hybrid kernels.

Keywords: NIR, haploids, maize, sorting

Procedia PDF Downloads 307
21362 Antecedents of Sport Commitment: A Comparison Based on Demographic Factors

Authors: Navodita Mishra, T. J. Kamalanabhan

Abstract:

Purpose: The primary purpose of this study was to identify the antecedents of sports commitment among cricket players and to understand demographic variables that may impact these factors. Commitment towards one’s sports plays a crucial role in determining discipline and efforts of the player. Moreover, demographic variables would seem to play an important role in determining which factors or predictors have the greatest impact on commitment level. Design /methodology/approach: This study hypothesized the effect of demographic factors on sports commitment among cricket players. It attempts to examine the extent to which demographic factors can differentially motivate players to exhibit commitment towards their respective sport. Questionnaire survey method was adopted using purposive sampling technique. Using Multiple Regression, ANOVA, and t-test, the hypotheses were tested based on a sample of 350 players from Cricket Academy. Findings: Our main results from the multivariate analysis indicated that enjoyment and leadership of coach and peer affect the level of commitment to a greater extent whereas personal investment is a significant predictor of commitment among rural background players Moreover, level of sport commitment among players is positively related to household income, the rural background players participate in sports to a greater extent than the urban players, there is no evidence of regional differentials in commitment but age differences (i.e. U-19 vs. U-25) play an important role in the decision to continue the participation in sports.

Keywords: Individual Sports Commitment, demographic indicators, cricket, player motivation

Procedia PDF Downloads 485
21361 Impact of Tourism on Sustainability on Essaouira Destination in Morocco

Authors: Hadach Mohamed

Abstract:

Tourism becomes more and more a source of added value for developing countries. In Morocco, the sector contributes at 20% of national GDP, or the effects of this activity become increasingly harmful. The methodology we followed is qualitative, we analyzed the data according to a process-based approach in two longitudinal period from 2001 to 2009 and a period of real time from 2010 to 2014.Through a process-based longitudinal study we analyzed the effects of tourism on the three components of sustainability: economic, environmental and socio-cultural in Essaouira destination in the south west of Morocco. The objective of this paper is to identify among others, harmful effects of mass tourism on fragile destination in terms of load capacity, promotion of youth employment and respect for indigenous traditions. This study also aims to analyze the impact of tourism on the fragile destination, which depends heavily on this activity; it also seeks to test a series of indicators for sustainable development of sensitive areas. Within results, we found that tourism as an activity is very linked to the international situation, tested sustainable development indicators showed us that tourism is environmentally destructive, job creator and changer modes and lives of indigenous. Between the two periods analyzed, the situation becomes more and more vulnerable and the state intervention is becoming more indispensable. We also found that 70% of the population of the destination does not benefit from the income generated by the destination. This raises questions about the fate of the added value of this activity.

Keywords: economic, environmental and socio-cultural, fragile destination, tourism sustainability

Procedia PDF Downloads 255
21360 Technoscience in the Information Society

Authors: A. P. Moiseeva, Z. S. Zavyalova

Abstract:

This paper focuses on the Technoscience phenomenon and its role in modern society. It gives a review of the latest research on Technoscience. Based on the works of Paul Forman, Bernadette Bensaude-Vincent, Bruno Latour, Maria Caramez Carlotto and others, the authors consider the concept of Technoscience, its specific character and prospects of its development.

Keywords: technoscience, information society, transdisciplinarity, European Technology Platforms

Procedia PDF Downloads 668
21359 An Investigation of the Quantitative Correlation between Urban Spatial Morphology Indicators and Block Wind Environment

Authors: Di Wei, Xing Hu, Yangjun Chen, Baofeng Li, Hong Chen

Abstract:

To achieve the research purpose of guiding the spatial morphology design of blocks through the indicators to obtain a good wind environment, it is necessary to find the most suitable type and value range of each urban spatial morphology indicator. At present, most of the relevant researches is based on the numerical simulation of the ideal block shape and rarely proposes the results based on the complex actual block types. Therefore, this paper firstly attempted to make theoretical speculation on the main factors influencing indicators' effectiveness by analyzing the physical significance and formulating the principle of each indicator. Then it was verified by the field wind environment measurement and statistical analysis, indicating that Porosity(P₀) can be used as an important indicator to guide the design of block wind environment in the case of deep street canyons, while Frontal Area Density (λF) can be used as a supplement in the case of shallow street canyons with no height difference. Finally, computational fluid dynamics (CFD) was used to quantify the impact of block height difference and street canyons depth on λF and P₀, finding the suitable type and value range of λF and P₀. This paper would provide a feasible wind environment index system for urban designers.

Keywords: urban spatial morphology indicator, urban microclimate, computational fluid dynamics, block ventilation, correlation analysis

Procedia PDF Downloads 141
21358 Fabrication of Textile-Based Radio Frequency Metasurfaces

Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu

Abstract:

Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.

Keywords: electronic textiles, metasurface, printed electronics, flexible

Procedia PDF Downloads 198
21357 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study

Authors: Rui Sousa, Aurora Futuro, António Fiúza

Abstract:

The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.

Keywords: gold, leaching, pre-treatment, thiosulfate

Procedia PDF Downloads 314
21356 A Study on the Performance of 2-PC-D Classification Model

Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli

Abstract:

There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.

Keywords: classification model, discriminant function, principle component analysis, variable reduction

Procedia PDF Downloads 336
21355 Advanced Combinatorial Method for Solving Complex Fault Trees

Authors: José de Jesús Rivero Oliva, Jesús Salomón Llanes, Manuel Perdomo Ojeda, Antonio Torres Valle

Abstract:

Combinatorial explosion is a common problem to both predominant methods for solving fault trees: Minimal Cut Set (MCS) approach and Binary Decision Diagram (BDD). High memory consumption impedes the complete solution of very complex fault trees. Only approximated non-conservative solutions are possible in these cases using truncation or other simplification techniques. The paper proposes a method (CSolv+) for solving complex fault trees, without any possibility of combinatorial explosion. Each individual MCS is immediately discarded after its contribution to the basic events importance measures and the Top gate Upper Bound Probability (TUBP) has been accounted. An estimation of the Top gate Exact Probability (TEP) is also provided. Therefore, running in a computer cluster, CSolv+ will guarantee the complete solution of complex fault trees. It was successfully applied to 40 fault trees from the Aralia fault trees database, performing the evaluation of the top gate probability, the 1000 Significant MCSs (SMCS), and the Fussell-Vesely, RRW and RAW importance measures for all basic events. The high complexity fault tree nus9601 was solved with truncation probabilities from 10-²¹ to 10-²⁷ just to limit the execution time. The solution corresponding to 10-²⁷ evaluated 3.530.592.796 MCSs in 3 hours and 15 minutes.

Keywords: system reliability analysis, probabilistic risk assessment, fault tree analysis, basic events importance measures

Procedia PDF Downloads 52
21354 Understanding the Caliphate and Jihad to Prevent Radicalization That Lead to Terrorism: The Role of Social Community in Southeast Asia

Authors: Jordan Daud, Satriya Wibawa, Wahyu Wardhana

Abstract:

In the summer of 2014, the leaders of the Islamic State of Iraq and Syria proclaimed the founding of religious-political system known as the caliphate which titled Islamic State (IS). As Caliph, Abu Bakr Baghdadi advocated Jihad from the Ummah (the Muslim community) to defend the Islamic state from unbelievers. This call for Jihad by IS had encouraged some radical organization in Southeast Asia pledge allegiance to IS and established bases for IS operation in Southeast Asia. This development had increased security concern for possible terrorism action in Southeast Asia, which currently not very active due to counterterrorism efforts from ASEAN member states and its cooperation with the world. This paper firstly tries to draw understanding from Ulema (Muslim cleric) about the conception of caliphate and Jihad based on Quran and Hadith. Secondly, this paper will elaborate counterterrorism efforts from ASEAN countries to prevent radicalization and terrorism act in addressing the call for jihad to establish IS in Southeast Asia. The third, this paper will recommend the role of the social community, especially Ulema, in Southeast Asia to prevent the misunderstanding of Jihad which usually used by terrorist to justify their action. Hopefully, this social community role will decrease the radicalization of Muslim community in Southeast Asia alongside with the counterterrorism efforts to create secure and stable ASEAN community based on shared norm and values.

Keywords: caliphate, jihad, ASEAN, counterterrorism, social community

Procedia PDF Downloads 237
21353 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 146
21352 Determinants of Poverty: A Logit Regression Analysis of Zakat Applicants

Authors: Zunaidah Ab Hasan, Azhana Othman, Abd Halim Mohd Noor, Nor Shahrina Mohd Rafien

Abstract:

Zakat is a portion of wealth contributed from financially able Muslims to be distributed to predetermine recipients; main among them are the poor and the needy. Distribution of the zakat fund is given with the objective to lift the recipients from poverty. Due to the multidimensional and multifaceted nature of poverty, it is imperative that the causes of poverty are properly identified for assistance given by zakat authorities reached the intended target. Despite, various studies undertaken to identify the poor correctly, there are reports of the poor not receiving the adequate assistance required from zakat. Thus, this study examines the determinants of poverty among applicants for zakat assistance distributed by the State Islamic Religious Council in Malacca (SIRCM). Malacca is a state in Malaysia. The respondents were based on the list of names of new zakat applicants for the month of April and May 2014 provided by SIRCM. A binary logistic regression was estimated based on this data with either zakat applications is rejected or accepted as the dependent variable and set of demographic variables and health as the explanatory variables. Overall, the logistic model successfully predicted factors of acceptance of zakat applications. Three independent variables namely gender, age; size of households and health significantly explain the likelihood of a successful zakat application. Among others, the finding suggests the importance of focusing on providing education opportunity in helping the poor.

Keywords: logistic regression, zakat distribution, status of zakat applications, poverty, education

Procedia PDF Downloads 344
21351 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 376
21350 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities

Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav

Abstract:

The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.

Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks

Procedia PDF Downloads 28
21349 Effect of Different Commercial Diets and Temperature on the Growth Performance, Feed Intake and Feed Conversion Ratio of Sobaity Seabream Sparidentex hasta

Authors: Seemab Zehra, A. H. W. Mohammed, E. Pantanella, J. L. Q. Laranja, P. H. De Mello, R. Saleh, A. A. Siddik, A. Al Shaikhi, A. M. Al-Suwailem

Abstract:

Two separate feeding trials were conducted to determine the effects of using different commercial diets and water temperatures on the growth performance, feed intake, feed conversion ratio (FCR) and condition factor of sobaity seabream Sparidentex hasta. In experiment I, growth performance, feed intake, protein efficiency ratio (PER), feed conversion ratio (FCR) and survival (%) of sobaity seabream Sparidentex hasta (330.5±2.6 g; 26.9±1.0 cm) were evaluated by four different commercial diets (1, 2, 3 and 4) for 80 days. The daily weight gain was around 3.2 g day-1 with an SGR of 0.7% day-1. Both the FCR and PER in the fish were significantly better in diet 2 that contained 46.36% crude protein and 12.54% crude fat. In experiment II, (99±2.6 g; 17.1±1.0 cm). The fish were cultured in 1m3 tanks supplied with seawater from the Red Sea wherein three different rearing temperatures were set as treatments (24, 28 and 32°C). Fish were fed with a commercial diet based on the results of experiment I (46.4% protein; 20.1 MJ kg-1 energy) to satiation for 96 days. Total weight gain was significantly higher for the fish reared in the 32°C group (158.57 g) followed by the 28°C group (138.25 g), while the lowest weight gain was observed in the 24°C group (116.98 g). The FCR was significantly lower in the 32°C group (1.62) as compared to 28 (1.8) and 24°C (1.85) groups. Based on the results obtained from these preliminary studies (experiment I and II), sobaity seabream can attain better growth performance, FCR and PER at 32°C in the Red Sea by feeding commercial diet 2.

Keywords: Sparidentex hasta, nutrition, FCR, Red Sea, growth performance

Procedia PDF Downloads 82
21348 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.

Keywords: autism disease, neural network, CPU, GPU, transfer learning

Procedia PDF Downloads 124
21347 Microbiological Analysis of Biofuels in Order to Follow Stability on Room Temperature

Authors: Radovan Cobanovic, Milica Rankov Sicar

Abstract:

Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. It is derived by alcoholysis of triacylglycerols (triglycerides) from various lipid based materials that can be traditionally categorized into the following main groups: vegetable oils, animal fats, waste and algal oils. The goal of this study was to evaluate microbiological stability of biodiesel samples since it has been made from vegetable oil or animal fat which was stored on room temperature. For the purposes of this study, analyzes were conducted on six samples of biodiesel first at zero sample at the reception day than fifth, thirtieth, sixtieth, ninetieth and one hundred twentieth day from the day of reception. During this period, biodiesel samples were subjected to microbiological analyses (Salmonella spp., Listeria monocytogenes, Enterobacteriaceae and total plate count). All analyses were tested according to ISO methodology: Salmonella spp ISO 6579, Listeria monocytogenes ISO 11290-2, Enterobacteriaceae ISO 21528-1, total plate count ISO 4833-1. The results obtained after the analyses which were done according to the plan during the 120 days indicate that are no changes of products concerning microbiological analyses. Salmonella spp., Listeria monocytogenes, Enterobacteriaceae were not detected and results for total plate count showed values < 10 cfu/g for all six samples. On the basis of this monitoring under defined storage conditions at room temperatures, the results showed that biodiesel is very stable as far as microbiological analysis were concerned.

Keywords: biodiesel, microbiology, room temperature, stability

Procedia PDF Downloads 287
21346 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations

Authors: Gebreegziabher Hailu

Abstract:

This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.

Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods

Procedia PDF Downloads 30