Search results for: virtual service network
8189 Fiction and Reality in Animation: Taking Final Flight of the Osiris as an Example
Authors: Syong-Yang Chung, Xin-An Chen
Abstract:
This study aims to explore the less well-known animation “Final Flight of the Osiris”, consisting of an initial exploration of the film color, storyline, and the simulacrum meanings of the roles, which leads to a further exploration of the light-shadow contrast and the psychological images presented by the screen colors and the characters. The research is based on literature review, and all data was compiled for the analysis of the visual vocabulary evolution of the characters. In terms of the structure, the relational study of the animation and the historical background of that time came first, including The Wachowskis’ and Andy Jones’ impact towards the cinematographic version and the animation version of “The Matrix”. Through literature review, the film color, the meaning and the relevant points were clarified. It was found in this research that “Final Flight of the Osiris” separates the realistic and virtual spaces by the changing the color tones; the "self" of the audience gradually dissolves into the "virtual" in the simulacra world, and the "Animatrix" has become a virtual field for the audience to understand itself about "existence" and "self".Keywords: the matrix, the final flight of Osiris, Wachowski brothers, simulacres
Procedia PDF Downloads 2298188 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3418187 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 5028186 Low-Noise Amplifier Design for Improvement of Communication Range for Wake-Up Receiver Based Wireless Sensor Network Application
Authors: Ilef Ketata, Mohamed Khalil Baazaoui, Robert Fromm, Ahmad Fakhfakh, Faouzi Derbel
Abstract:
The integration of wireless communication, e. g. in real-or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. To minimize the latency without increasing energy consumption, wake-up receiver (WuRx) nodes have been introduced in recent works. Low-noise amplifiers (LNAs) are introduced to improve the WuRx sensitivity but increase the supply current severely. Different WuRx approaches exist with always-on, power-gated, or duty-cycled receiver designs. This paper presents a comparative study for improving communication range and decreasing the energy consumption of wireless sensor nodes.Keywords: wireless sensor network, wake-up receiver, duty-cycled, low-noise amplifier, envelope detector, range study
Procedia PDF Downloads 1138185 Comparative Outlook of Teacher Education in Nigeria and India
Authors: Muhammad Badamasi Abdullahi
Abstract:
Teacher education, both pre- and in-service programs, is offered in many countries of the world by different teacher education institutions as declared in the Policies on Education of the countries. However, differences exist from one country to another as a result of some factors peculiar to them. Notwithstanding, there also exist similarities among them in regard to teacher education. This paper is expected to dig into teacher education programs in Nigeria and India so that areas of similarities and differences would be highlighted as well as provide a venue for possible recommendation of both countries to learn from one another. All this is directed towards providing a no -border approach in enhancing effective teaching and learning.Keywords: teacher education, teaching and learning, pre-service, in-service
Procedia PDF Downloads 3868184 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 6398183 Broadcast Routing in Vehicular Ad hoc Networks (VANETs)
Authors: Muazzam A. Khan, Muhammad Wasim
Abstract:
Vehicular adhoc network (VANET) Cars for network (VANET) allowing vehicles to talk to each other, which is committed to building a strong network of mobile vehicles is technical. In VANETs vehicles are equipped with special devices that can get and share info with the atmosphere and other vehicles in the network. Depending on this data security and safety of the vehicles can be enhanced. Broadcast routing is dispersion of any audio or visual medium of mass communication scattered audience distribute audio and video content, but usually using electromagnetic radiation (waves). The lack of server or fixed infrastructure media messages in VANETs plays an important role for every individual application. Broadcast Message VANETs still open research challenge and requires some effort to come to good solutions. This paper starts with a brief introduction of VANET, its applications, and the law of the message-trends in this network starts. This work provides an important and comprehensive study of reliable broadcast routing in VANET scenario.Keywords: vehicular ad-hoc network , broadcasting, networking protocols, traffic pattern, low intensity conflict
Procedia PDF Downloads 5358182 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting
Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro
Abstract:
Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket
Procedia PDF Downloads 558181 Multisignature Schemes for Reinforcing Trust in Cloud Software-As-A-Service Services
Authors: Mustapha Hedabou, Ali Azougaghe, Ahmed Bentajer, Hicham Boukhris, Mourad Eddiwani, Zakaria Igarramen
Abstract:
Software-as-a-service (SaaS) is emerging as a dominant approach to delivering software. It encompasses a range of business, technical opportunities, issue, and challenges. Trustiness in the cloud services regarding the security and the privacy of the delivered data is the most critical issue with the SaaS model. In this paper, we survey the security concerns related to the SaaS model, and we propose the design of a trusted SaaS model that gives users more confidence into SaaS services by leveraging a trust in a neutral source code certifying authority. The proposed design is based on the use of the multisignature mechanism for signing the source code of the application service. In our model, the cloud provider acts as a root of trust by ensuring the integrity of the application service when it was running on its platform. The proposed design prevents insider attacks from tampering with application service before and after it was launched in a cloud provider platform.Keywords: cloud computing, SaaS Platform, TPM, trustiness, code source certification, multi-signature schemes
Procedia PDF Downloads 2768180 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid
Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong
Abstract:
Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function
Procedia PDF Downloads 1008179 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 1498178 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 758177 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 1648176 Business Feasibility of Online Marketing of Food and Beverages Products in India
Authors: Dimpy Shah
Abstract:
The global economy has substantially changed in last three decades. Now almost all markets are transparent and visible for global customers. The corporates are now no more reliant on local markets for trade. The information technology revolution has changed business dynamics and marketing practices of corporate. The markets are divided into two different formats: traditional and virtual. In very short span of time, many e-commerce portals have captured global market. This strategy is well supported by global delivery system of multinational logistic companies. Now the markets are dealing with global supply chain networks, which are more demand driven and customer oriented. The corporate have realized importance of supply chain integration and marketing in this competitive environment. The Indian markets are also significantly affected with all these changes. In terms of population, India is in second place after China. In terms of demography, almost half of the population is of youth. It has been observed that the Indian youth are more inclined towards e-commerce and prefer to buy goods from web portal. Initially, this trend was observed in Indian service sector, textile and electronic goods and now further extended in other product categories. The FMCG companies have also recognized this change and started integration of their supply chain with e-commerce platform. This paper attempts to understand contemporary marketing practices of corporate in e-commerce business in Indian food and beverages segment and also tries to identify innovative marketing practices for proper execution of their strategies. The findings are mainly focused on supply chain re-integration and brand building strategies with proper utilization of social media.Keywords: FMCG (Fast Moving Consumer Goods), ISCM (Integrated supply chain management), RFID (Radio Frequency Identification), traditional and virtual formats
Procedia PDF Downloads 2768175 Virtual Academy Next: Addressing Transition Challenges Through a Gamified Virtual Transition Program for Students with Disabilities
Authors: Jennifer Gallup, Joel Bocanegra, Greg Callan, Abigail Vaughn
Abstract:
Students with disabilities (SWD) engaged in a distance summer program delivered over multiple virtual mediums that used gaming principles to teach and practice self-regulated learning (SRL) through the process of exploring possible jobs. Gaming quests were developed to explore jobs and teach transition skills. Students completed specially designed quests that taught and reinforced SRL and problem-solving through individual, group, and teacher-led experiences. SRL skills learned were reinforced through guided job explorations over the context of MinecraftEDU, zoom with experts in the career, collaborations with a team over Marco Polo, and Zoom. The quests were developed and laid out on an accessible web page, with active learning opportunities and feedback conducted within multiple virtual mediums including MinecraftEDU. Gaming mediums actively engage players in role-playing, problem-solving, critical thinking, and collaboration. Gaming has been used as a medium for education since the inception of formal education. Games, and specifically board games, are pre-historic, meaning we had board games before we had written language. Today, games are widely used in education, often as a reinforcer for behavior or for rewards for work completion. Games are not often used as a direct method of instruction and assessment; however, the inclusion of games as an assessment tool and as a form of instruction increases student engagement and participation. Games naturally include collaboration, problem-solving, and communication. Therefore, our summer program was developed using gaming principles and MinecraftEDU. This manuscript describes a virtual learning summer program called Virtual Academy New and Exciting Transitions (VAN) that was redesigned from a face-to-face setting to a completely online setting with a focus on SWD aged 14-21. The focus of VAN was to address transition planning needs such as problem-solving skills, self-regulation, interviewing, job exploration, and communication for transition-aged youth diagnosed with various disabilities (e.g., learning disabilities, attention-deficit hyperactivity disorder, intellectual disability, down syndrome, autism spectrum disorder).Keywords: autism, disabilities, transition, summer program, gaming, simulations
Procedia PDF Downloads 758174 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 1788173 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition
Authors: Li Zhang, Yuehong Su
Abstract:
Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.Keywords: neural network, bended lightpipe, transmittance, Photopia
Procedia PDF Downloads 1538172 Platform Virtual for Joint Amplitude Measurement Based in MEMS
Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez
Abstract:
Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation
Procedia PDF Downloads 2608171 Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification
Authors: Malgorzata Schwab, Ashis Kumer Biswas
Abstract:
In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities.Keywords: trusted, neural, invertible, API
Procedia PDF Downloads 1498170 National Image in the Age of Mass Self-Communication: An Analysis of Internet Users' Perception of Portugal
Authors: L. Godinho, N. Teixeira
Abstract:
Nowadays, massification of Internet access represents one of the major challenges to the traditional powers of the State, among which the power to control its external image. The virtual world has also sparked the interest of social sciences which consider it a new field of study, an immense open text where sense is expressed. In this paper, that immense text has been accessed to so as to understand the perception Internet users from all over the world have of Portugal. Ours is a quantitative and qualitative approach, as we have resorted to buzz, thematic and category analysis. The results confirm the predominance of sea stereotype in others' vision of the Portuguese people, and evidence that national image has adapted to network communication through processes of individuation and paganization.Keywords: national image, internet, self-communication, perception
Procedia PDF Downloads 2568169 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1268168 Using Virtual Reality to Convey the Information of Food Supply Chain
Authors: Xinrong Li, Jiawei Dai
Abstract:
Food production, food safety, and the food supply chain are causing a great challenge to human health and the environment. Different kinds of food have different environmental costs. Therefore, a healthy diet can alleviate this problem to a certain extent. In this project, an online questionnaire was conducted to understand the purchase behaviour of consumers and their attitudes towards basic food information. However, the data shows that the public's current consumption habits and ideology do not meet the long-term development of sustainable social needs. In order to solve the environmental problems caused by the unbalanced diet of the public and the social problems of unequal food distribution, the purpose of this paper is to explore how to use the emerging media of VR to visualize food supply chain information so as to attract users' attention to the environmental cost of food. In this project, the food supply chain of imported and local cheese was compared side-by-side in the virtual reality environment, including the origin, transportation, sales, and other processes, which can effectively help users understand the difference between the two processes and environmental costs. Besides, the experimental data demonstrated that the participant would like to choose low environmental cost food after experiencing the whole process.Keywords: virtual reality, information design, food supply chain, environmental cost
Procedia PDF Downloads 988167 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network
Authors: Magdi. M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control
Procedia PDF Downloads 7048166 Construction Project Planning Using Fuzzy Critical Path Approach
Authors: Omar M. Aldenali
Abstract:
Planning is one of the most important phases of the management science and network planning, which represents the project activities relationship. Critical path is one of the project management techniques used to plan and control the execution of a project activities. The objective of this paper is to implement a fuzzy logic approach to arrange network planning on construction projects. This method is used to finding out critical path in the fuzzy construction project network. The trapezoidal fuzzy numbers are used to represent the activity construction project times. A numerical example that represents a house construction project is introduced. The critical path method is implemented on the fuzzy construction network activities, and the results showed that this method significantly affects the completion time of the construction projects.Keywords: construction project, critical path, fuzzy network project, planning
Procedia PDF Downloads 1448165 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks
Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad
Abstract:
In this paper, we proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach reducing the probability of network attacks.Keywords: network security, intrusion detection, honeypot, snort, nmap
Procedia PDF Downloads 5708164 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 418163 Virtual Team Management in Companies and Organizations
Authors: Asghar Zamani, Mostafa Falahmorad
Abstract:
Virtualization is established to combine and use the unique capabilities of employees to increase productivity and agility to provide services regardless of location. Adapting to fast and continuous change and getting maximum access to human resources are reasons why virtualization is happening. The distance problem is solved by information. Flexibility is the most important feature of virtualization, and information will be the main focus of virtualized companies. In this research, we used the Covid-19 opportunity window to assess the productivity of the companies that had been going through more virtualized management before the Covid-19 in comparison with those that just started planning on developing infrastructures on virtual management after the crises of pandemic occurred. The research process includes financial (profitability and customer satisfaction) and behavioral (organizational culture and reluctance to change) metrics assessment. In addition to financial and CRM KPIs, a questionnaire is devised to assess how manager and employees’ attitude has been changing towards the migration to virtualization. The sample companies and questions are selected by asking from experts in the IT industry of Iran. In this article, the conclusion is that companies open to virtualization based on accurate strategic planning or willing to pay to train their employees for virtualization before the pandemic are more agile in adapting to change and moving forward in recession. The prospective companies in this research, not only could compensate for the short period loss from the first shock of the Covid-19, but they could also foresee new needs of their customer sooner than other competitors, resulting in the need to employ new staff for executing the emerging demands. Findings were aligned with the literature review. Results can be a wake-up call for business owners especially in developing countries to be more resilient toward modern management styles instead of continuing with traditional ones.Keywords: virtual management, virtual organization, competitive advantage, KPI, profit
Procedia PDF Downloads 838162 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: dynamic algorithm, load imbalance, mapping, task scheduling
Procedia PDF Downloads 4518161 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System
Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka
Abstract:
The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting
Procedia PDF Downloads 1798160 Bi-Objective Optimization for Sustainable Supply Chain Network Design in Omnichannel
Authors: Veerpaul Maan, Gaurav Mishra
Abstract:
The evolution of omnichannel has revolutionized the supply chain of the organizations by enhancing customer shopping experience. For these organizations need to develop well-integrated multiple distribution channels to leverage the benefits of omnichannel. To adopt an omnichannel system in the supply chain has resulted in structuring and reconfiguring the practices of the traditional supply chain distribution network. In this paper a multiple distribution supply chain network (MDSCN) have been proposed which integrates online giants with a local retailers distribution network in uncertain environment followed by sustainability. To incorporate sustainability, an additional objective function is added to reduce the carbon content through minimizing the travel distance of the product. Through this proposed model, customers are free to access product and services as per their choice of channels which increases their convenience, reach and satisfaction. Further, a numerical illustration is being shown along with interpretation of results to validate the proposed model.Keywords: sustainable supply chain network, omnichannel, multiple distribution supply chain network, integrate multiple distribution channels
Procedia PDF Downloads 223