Search results for: tree canopy cover
1342 Landslide Hazard Zonation Using Satellite Remote Sensing and GIS Technology
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
Landslide is the major geo-environmental problem of Himalaya because of high ridges, steep slopes, deep valleys, and complex system of streams. They are mainly triggered by rainfall and earthquake and causing severe damage to life and property. In Uttarakhand, the Tehri reservoir rim area, which is situated in the lesser Himalaya of Garhwal hills, was selected for landslide hazard zonation (LHZ). The study utilized different types of data, including geological maps, topographic maps from the survey of India, Landsat 8, and Cartosat DEM data. This paper presents the use of a weighted overlay method in LHZ using fourteen causative factors. The various data layers generated and co-registered were slope, aspect, relative relief, soil cover, intensity of rainfall, seismic ground shaking, seismic amplification at surface level, lithology, land use/land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), stream power index (SPI), drainage buffer and reservoir buffer. Seismic analysis is performed using peak horizontal acceleration (PHA) intensity and amplification factors in the evaluation of the landslide hazard index (LHI). Several digital image processing techniques such as topographic correction, NDVI, and supervised classification were widely used in the process of terrain factor extraction. Lithological features, LULC, drainage pattern, lineaments, and structural features are extracted using digital image processing techniques. Colour, tones, topography, and stream drainage pattern from the imageries are used to analyse geological features. Slope map, aspect map, relative relief are created by using Cartosat DEM data. DEM data is also used for the detailed drainage analysis, which includes TWI, SPI, drainage buffer, and reservoir buffer. In the weighted overlay method, the comparative importance of several causative factors obtained from experience. In this method, after multiplying the influence factor with the corresponding rating of a particular class, it is reclassified, and the LHZ map is prepared. Further, based on the land-use map developed from remote sensing images, a landslide vulnerability study for the study area is carried out and presented in this paper.Keywords: weighted overlay method, GIS, landslide hazard zonation, remote sensing
Procedia PDF Downloads 1351341 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 6711340 Modeling Sediment Yield of Jido River in the Rift Vally
Authors: Dawit Hailekrios Hailu
Abstract:
The main objective of this study is to predict the sediment yield of the Jido River Watershed. Jido River is the largest tributary and covers around 50% of the total catchment area of Lake Shala. This research is undertaken to analyze the sediment yield of the catchments, transport capacity of the streams and sediment deposition rates of Jido River, which is located in the Sub-basin of Shala Lake, Rift Valley Basin of Ethiopia. The input data were Meteorological, Hydrological, land use/land cover maps and soil maps collected from concerned government offices. The sediment yield of Jido River and sediment change of the streams discharging into the Shala Lake were modeled.Keywords: sediment yield, watershed, simulation, calibration
Procedia PDF Downloads 781339 Desert Houses of the Past: Green Buildings of Today
Authors: Baharak Shakeri, Seyed Hashem Hosseini
Abstract:
The weather in deserts is hot and dry in summers, and cold and dry in winters, and difference of temperature of nights and days sometimes reaches to 28°C. People of deserts have reached some solutions to cope with this climatic condition and to decrease its annoying features. Among these solutions are: constructing houses adjacent to each other, making tall walls, using mud brick and thatch cover, constructing domical arches, cellar, and wind catcher, which are together the devices to control the adversity of hot weather in summers and cold weather in winters. Using these solutions, the people of deserts have succeeded to make the best use with the least energy consumption, and to minimize the damage on the nature and environment, and in short, they are friends of the nature, which is a step toward the objectives of green buildings.Keywords: desert house, green building, Iran, nature
Procedia PDF Downloads 3391338 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 1281337 Exploring the Impacts of Ogoni/African Indigenous Knowledge in Addressing Environmental Issues in Ogoniland, Nigeria
Authors: Lele Dominic Dummene
Abstract:
Environmental issues are predominant in rural areas where indigenous people reside. These environmental issues cover environmental, health, social, economic, and political issues that emanate from poor environmental management and unfair distribution of environmental resources. These issues have greatly affected the lives of the indigenous people and their daily activities. As these environmental issues grow in communities, environmental experts, scientists, and theorists have proposed and developed methods, policies, and strategies to address these environmental-related issues in indigenous communities. Thus, this paper explores how the Ogoni indigenous knowledge and cultural practices could be used to address environmental issues such as oil pollution and other environmental-related issues that have destroyed the Ogoni environment.Keywords: Ogoniland, indigenous knowledge, environment, environmental education
Procedia PDF Downloads 1241336 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2141335 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil
Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani
Abstract:
Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.Keywords: reinforcement, silt, soil improvement, triaxial test, waste bottle chips
Procedia PDF Downloads 2851334 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines
Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang
Abstract:
The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy
Procedia PDF Downloads 4821333 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 2011332 Performance of Exclosure in Restoring Arid Degraded Steppes of Algeria
Authors: Kadi-Hanifi Halima, Amghar Fateh
Abstract:
Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil properties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas.Keywords: desertification, arid, pastoral management, plant community soil fertility, gestation of environment, Algeria
Procedia PDF Downloads 3291331 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 1121330 Determination of Unknown Radionuclides Using High Purity Germanium Detectors
Authors: O. G. Onuk, L. S. Taura, C. M. Eze, S. M. Ngaram
Abstract:
The decay chain of radioactive elements in the laboratory and the verification of natural radioactivity of the human body was investigated using the High Purity Germanium (HPGe) detector. Properties of the HPGe detectors were also investigated. The efficiency and energy resolution of HPGe detector used in the laboratory was found to be excellent. The detector was calibrated three times so as to cover a wider energy range. Also the Centroid C of the detector was found to have a linear relationship with the energies of the known gamma-rays. Using the three calibrations of the detector, the energy of an unknown radionuclide was found to follow the decay chain of thorium-232 (232Th) and it was also found that an average adult has about 2.5g Potasium-40 (40K) in the body.Keywords: detector, efficiency, energy, radionuclides, resolution
Procedia PDF Downloads 2531329 A Performance Analysis of Different Scheduling Schemes in WiMAX
Authors: A. Youseef
Abstract:
One of the most aims of IEEE 802.16 (WiMAX) is to present high-speed wireless access to cover wide range coverage. The base station (BS) and the subscriber station (SS) are the main parts of WiMAX. WiMAX uses either Point-to-Multipoint (PMP) or mesh topologies. In the PMP mode, the SSs connect to the BS to gain access to the network. However, in the mesh mode, the SSs connect to each other to gain access to the BS. The main components of QoS management in the 802.16 standard are the admission control, buffer management, and packet scheduling. There are several researches proposed to create an efficient packet scheduling schemes. Therefore, we use QualNet 5.0.2 to study the performance of different scheduling schemes, such as WFQ, SCFQ, RR, and SP when the numbers of SSs increase. We find that when the number of SSs increases, the average jitter and average end-to-end delay is increased and the throughput is reduced.Keywords: WiMAX, scheduling scheme, QoS, QualNet
Procedia PDF Downloads 4561328 Unicellular to Multicellular: Some Empirically Parsimoniously Plausible Hypotheses
Authors: Catherine K. Derow
Abstract:
Possibly a slime mold somehow mutated or already was mutated at progeniture and so stayed as a metazoan when it developed into the fruiting stage and so the slime mold(s) we are evolved and similar to are genetically differ from the slime molds in existence now. This may be why there are genetic links between humans and other metazoa now alive and slime molds now alive but we are now divergent branches of the evolutionary tree compared to the original slime mold, or perhaps slime mold-like organisms, that gave rise to metazoan animalia and perhaps algae and plantae as slime molds were undifferentiated enough in many ways that could allow their descendants to evolve into these three separate phylogenetic categories. Or it may be a slime mold was born or somehow progenated as multicellular, as the particular organism was mutated enough to have say divided in a a 'pseudo-embryonic' stage, and this could have happened for algae, plantae as well as animalia or all the branches may be from the same line but the missing link might be covered in 'phylogenetic sequence comparison noise'.Keywords: metazoan evolution, unicellular bridge to metazoans, evolution, slime mold
Procedia PDF Downloads 2271327 Changing the Landscape of Fungal Genomics: New Trends
Authors: Igor V. Grigoriev
Abstract:
Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics
Procedia PDF Downloads 2101326 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species
Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa
Abstract:
Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.Keywords: interspecies transmission, rotavirus, goat, human
Procedia PDF Downloads 2921325 Preservation Model to Process 'La Bomba Del Chota' as a Living Cultural Heritage
Authors: Lucia Carrion Gordon, Maria Gabriela Lopez Yanez
Abstract:
This project focuses on heritage concepts and their importance in every evolving and changing Digital Era where system solutions have to be sustainable, efficient and suitable to the basic needs. The prototype has to cover the principal requirements for the case studies. How to preserve the sociological ideas of dances in Ecuador like ‘La Bomba’ is the best example and challenge to preserve the intangible data. The same idea is applicable with books and music. The History and how to keep it, is the principal mission of Heritage Preservation. The dance of La Bomba is rooted on a specific movement system whose main part is the sideward hip movement. La Bomba´s movement system is the surface manifestation of a whole system of knowledge whose principal characteristics are the historical relation of Chote˜nos with their land and their families.Keywords: digital preservation, heritage, IT management, data, metadata, ontology, serendipity
Procedia PDF Downloads 3901324 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 431323 Distribution of Putative Dopaminergic Neurons and Identification of D2 Receptors in the Brain of Fish
Authors: Shweta Dhindhwal
Abstract:
Dopamine is an essential neurotransmitter in the central nervous system of all vertebrates and plays an important role in many processes such as motor function, learning and behavior, and sensory activity. One of the important functions of dopamine is release of pituitary hormones. It is synthesized from the amino acid tyrosine. Two types of dopamine receptors, D1-like and D2-like, have been reported in fish. The dopamine containing neurons are located in the olfactory bulbs, the ventral regions of the pre-optic area and tuberal hypothalamus. Distribution of the dopaminergic system has not been studied in the murrel, Channa punctatus. The present study deals with identification of D2 receptors in the brain of murrel. A phylogenetic tree has been constructed using partial sequence of D2 receptor. Distribution of putative dopaminergic neurons in the brain has been investigated. Also, formalin induced hypertrophy of neurosecretory cells in murrel has been studied.Keywords: dopamine, fish, pre-optic area, murrel
Procedia PDF Downloads 4221322 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France
Authors: Aiman Mazhar Qureshi, Ahmed Rachid
Abstract:
Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation
Procedia PDF Downloads 1511321 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 1301320 Ontology-Based Representation of Islamic Rules to Perform Salah
Authors: Hamza Zafar, Quratulain Rajput
Abstract:
Salah (نماز ) is one of five pillars of Islam and obligatory for every Muslims. However, due to the lack of Islamic knowledge it might be very difficult for a layperson to perform it correctly. This paper presents an ontology based representation of Islamic rules to perform Salah. The Salah ontology has been built under the guidance of domain expert in light of Quran and Hadith. The ontology consists of basic concepts as well as relationship among concepts and constraints on them. The basic concepts include cleanness, body cover, Salah timing and steps to perform Salah. The SWRL rule language has been used to represent rule to determine whether the Salah performed correctly or it should be repeated. Finally, we evaluate the use of the Salat ontology through user’s example queries using SPARQL queries.Keywords: prayer, salah, ontology, SPARQL queries, reasoning
Procedia PDF Downloads 4201319 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms
Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary
Abstract:
Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.Keywords: ADHD, autism, epilepsy, EEG, SVM
Procedia PDF Downloads 1931318 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 5001317 Artificial Intelligence Approach to Manage Human Resources Information System Process in the Construction Industry
Authors: Ahmed Emad Ahmed
Abstract:
This paper aims to address the concept of human resources information systems (HRIS) and how to link it to new technologies such as artificial intelligence (AI) to be implemented in two human resources processes. A literature view has been collected to cover the main points related to HRIS, AI, and BC. A study case has been presented by generating a random HRIS to apply some AI operations to it. Then, an algorithm was applied to the database to complete some human resources processes, including training and performance appraisal, using a pre-trained AI model. After that, outputs and results have been presented and discussed briefly. Finally, a conclusion has been introduced to show the ability of new technologies such as AI and ML to be applied to the human resources management processes.Keywords: human resources new technologies, HR artificial intelligence, HRIS AI models, construction AI HRIS
Procedia PDF Downloads 1741316 Your Second Step to Understanding Research Ethics: Psycho-Methodological Approach
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Objective: The study is a summary of a book on research ethics in the scientific field. It aims at investigating ethics that researchers should follow before, during and after doing research. Method: It is an analytic research design wherein the researchers attempted to cover the phenomenon at hand from all specialists’ viewpoints by giving their answers to the most frequent asked questions. Results Questions on the research draft can only be answered when doing the research. This determines understanding the usage of research, questions on the on-line research, specializations and research-related concepts. Questions on the university’s library determines understanding where the library sections do exist, the periodicals, forums, and all about journals, theses and dissertations along with references.Keywords: research ethics, most frequent questions, scientific answers, journals, library
Procedia PDF Downloads 601315 Fodder Production and Livestock Rearing in Relation to Climate Change and Possible Adaptation Measures in Manaslu Conservation Area, Nepal
Authors: Bhojan Dhakal, Naba Raj Devkota, Chet Raj Upreti, Maheshwar Sapkota
Abstract:
A study was conducted to find out the production potential, nutrient composition, and the variability of the most commonly available fodder trees along with the varying altitude to help optimize the dry matter requirement during winter lean period. The study was carried out from March to June, 2012 in Lho and Prok Village Development Committee of Manaslu Conservation Area (MCA), located in Gorkha district of Nepal. The other objective of the research was to learn the impact of climate change on livestock production linking it with feed availability. The study was conducted in two parts: social and biological. Accordingly, a households (HHs) survey was conducted to collect primary data from 70 HHs, focusing on the perception of respondents on impacts of climatic variability on the feeding management. The next part consisted of understanding yield potential and nutrient composition of the four most commonly available fodder trees (M. azedirach, M. alba, F. roxburghii, F. nemoralis), within two altitudes range: (1500-2000 masl and 2000-2500 masl) by using a RCB design in 2*4 factorial combination of treatments, each replicated four times. Results revealed that majority of the farmers perceived the change in climatic phenomenon more severely within the past five years. Farmers were using different adaptation technologies such as collection of forage from jungle, reducing unproductive animals, fodder trees utilization, and crop by product feeding at feed scarcity period. Ranking of the different fodder trees on the basis of indigenous knowledge and experiences revealed that F. roxburghii was the best-preferred fodder tree species (index value 0.72) in terms overall preferability whereas M. azedirach had highest growth and productivity (index value 0.77), F. roxburghii had highest adoptability (index value 0.69) and palatability (index value 0.69) as well. Similarly, fresh yield and dry matter yield of the each fodder trees was significant (P < 0.01) between the altitude and within species. Fodder trees yield analysis revealed that the highest dry matter (DM) yield (28 kg/tree) was obtained for F. roxburghii but that remained statistically similar (P > 0.05) to the other treatment. On the other hand, most of the parameters: ether extract (EE), acid detergent lignin (ADL), acid detergent fibre (ADF), cell wall digestibility (CWD), relative digestibility (RD), digestible nutrient (TDN), and Calcium (Ca) among the treatments were highly significant (P < 0.01). This indicates the scope of introducing productive and nutritive fodder trees species even at the high altitude to help reduce fodder scarcity problem during winter. The finding also revealed the scope of promoting all available local fodder trees species as crude protein content of these species were similar.Keywords: fodder trees, yield potential, climate change, nutrient composition
Procedia PDF Downloads 3141314 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 4811313 Phylogenetic Study of L1 Protein Human Papillomavirus Type 16 From Cervical Cancer Patients in Bandung
Authors: Fitri Rahmi Fadhilah, Edhyana Sahiratmadja, Ani Melani Maskoen, Ratu Safitri, Supartini Syarif, Herman Susanto
Abstract:
Cervical cancer is the second most common cancer in women after breast cancer. In Indonesia, the incidence of cervical cancer cases is estimated at 25-40 per 100,000 women per year. Human papillomavirus (HPV) infection is a major cause of cervical cancer, and HPV-16 is the most common genotype that infects the cervical tissue. The major late protein L1 may be associated with infectivity and pathogenicity and its variation can be used to classify HPV isolates. The aim of this study was to determine the phylogenetic tree of HPV 16 L1 gene from cervical cancer patient isolates in Bandung. After confirming HPV-16 by Linear Array Genotyping Test, L1 gene was amplified using specific primers and subject for sequencing. Phylogenetic analysis revealed that HPV 16 from Bandung was in the subgroup of Asia and East Asia, showing the close host-agent relationship among the Asian type.Keywords: L1 HPV 16, cervical cancer, bandung, phylogenetic
Procedia PDF Downloads 503