Search results for: substrate noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2229

Search results for: substrate noise

1419 Analyzing Competition in Public Construction Projects

Authors: Khaled Hesham Hyari, Amjad Almani

Abstract:

Construction projects in the public sector are commonly awarded through competitive bidding. In the last decade, the Construction projects environment in the Middle East went through many changes. These changes have been caused by different factors including the economic crisis, delays in monthly payments, international competition and reduced number of projects. These factors had a great impact on the bidding behaviors of contractors and their pricing strategies. This paper examines the competition characteristics in public construction projects through an analysis of bidding results of contractors in public construction projects over a period of 6 years (2006-2011) in Jordan. The analyzed projects include all categories of projects such as infrastructure, buildings, transportation and engineering services (design and supervision contracts). Data for the projects were obtained from the General Tender’s Directorate in Jordan and includes 462 projects. The analysis performed in this projects includes, studying the bid spread in all projects as it is an indication of the level of competition in the analyzed bids. The analysis studied the factors that affect bid spread such as number of bidders, Value of the project, Project category and years. It also studying the “Signal to Noise Ratio” in all projects as it is an indication of the accuracy of cost estimating performed by competing bidders and bidder´s evaluation of project risks. The analysis performed includes the relationship between signal to noise ratio and different parameters such as project category, number of bidders and changes over years. Moreover, the analysis includes determining the bidder´s aggressiveness in bidding as it is an indication of competition level in such projects. This was performed by determining the pack price which can be considered as the true value of the project and comparing it with the lowest bid submitted for each project to determine the level of aggressiveness in submitted bids. The analysis performed in this project should prove to be useful to owners in understanding bidding behaviors of contractors and pointing out areas that needs improvement in preparing bidding documents. Also the project should be useful to contractors in understanding the competitive bidding environment and should help them to improve their bidding strategies to maximize the success rate in obtaining contracts.

Keywords: construction projects, competitive bidding, public construction, competition

Procedia PDF Downloads 333
1418 Vertically Grown P–Type ZnO Nanorod on Ag Thin Film

Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung

Abstract:

A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using a ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.

Keywords: hydrothermal process, Ag–doped ZnO nanorods, p–type ZnO

Procedia PDF Downloads 464
1417 Boryl Radical-Promoted Dehydroxylative Alkylation of 3-Hydroxyoxindole Derivatives

Authors: Tesfaye Tebeka Simur, Tian-Yu Peng, Yi-Feng Wang, Xiu-Wei Wu, Feng-Lian Zhang

Abstract:

A boryl radical-promoted dehydroxylative alkylation of 3-hydroxy-oxindole derivatives is achieved. The reaction starts from addition of 4-dimethylaminopyridine (DMAP)-boryl radical to the amide carbonyl oxygen atom, which induces a spin-center shift process to promote the C−O bond cleavage. The elimination of a hydroxide anion from a free hydroxy group is also accomplished. Capture of the generated carbon radical with alkenes furnishes a variety of C-3 alkylated oxindoles. This method features a simple operation and broad substrate scope.

Keywords: boryl radical, C-O, C-F, C=C, C=N bond activation, spin center shift

Procedia PDF Downloads 102
1416 Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells

Authors: Thierry Pauporté

Abstract:

Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech.

Keywords: oxide, hybrid perovskite, solar cells, impedance

Procedia PDF Downloads 315
1415 The Corrosion Resistance of the 32CrMoV13 Steel Nitriding

Authors: Okba Belahssen, Lazhar Torchane, Said Benramache, Abdelouahed Chala

Abstract:

This paper presents corrosion behavior of the plasma-nitrided 32CrMoV13 steel. Different kinds of samples were tested: non-treated, plasma nitrided samples. The structure of layers was determined by X-ray diffraction, while the morphology was observed by scanning electron microscopy (SEM). The corrosion behavior was evaluated by electrochemical techniques (potentiodynamic curves and electrochemical impedance spectroscopy). The corrosion tests were carried out in acid chloride solution (HCl 1M). Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localized corrosion through open porosity. The better corrosion protection was observed for nitrided sample.

Keywords: plasma-nitrided, 32CrMoV13 steel, corrosion, EIS

Procedia PDF Downloads 588
1414 Design and Analysis of a New Dual-Band Microstrip Fractal Antenna

Authors: I. Zahraoui, J. Terhzaz, A. Errkik, El. H. Abdelmounim, A. Tajmouati, L. Abdellaoui, N. Ababssi, M. Latrach

Abstract:

This paper presents a novel design of a microstrip fractal antenna based on the use of Sierpinski triangle shape, it’s designed and simulated by using FR4 substrate in the operating frequency bands (GPS, WiMAX), the design is a fractal antenna with a modified ground structure. The proposed antenna is simulated and validated by using CST Microwave Studio Software, the simulated results presents good performances in term of radiation pattern and matching input impedance.

Keywords: dual-band antenna, fractal antenna, GPS band, modified ground structure, sierpinski triangle, WiMAX band

Procedia PDF Downloads 445
1413 Insulin Receptor Substrate-1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms Associated with Type 2 Diabetes Mellitus in Eritreans

Authors: Mengistu G. Woldu, Hani Y. Zaki, Areeg Faggad, Badreldin E. Abdalla

Abstract:

Background: Type 2 diabetes mellitus (T2DM) is a complex, degenerative, and multi-factorial disease, which is culpable for huge mortality and morbidity worldwide. Even though relatively significant numbers of studies are conducted on the genetics domain of this disease in the developed world, there is huge information gap in the sub-Saharan Africa region in general and in Eritrea in particular. Objective: The principal aim of this study was to investigate the association of common variants of the Insulin Receptor Substrate 1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) genes with T2DM in the Eritrean population. Method: In this cross-sectional case control study 200 T2DM patients and 112 non-diabetes subjects were participated and genotyping of the IRS1 (rs13431179, rs16822615, 16822644rs, rs1801123) and TCF7L2 (rs7092484) tag SNPs were carries out using PCR-RFLP method of analysis. Haplotype analyses were carried out using Plink version 1.07, and Haploview 4.2 software. Linkage disequilibrium (LD), and Hardy-Weinberg equilibrium (HWE) analyses were performed using the Plink software. All descriptive statistical data analyses were carried out using SPSS (Version-20) software. Throughout the analysis p-value ≤0.05 was considered statistically significant. Result: Significant association was found between rs13431179 SNP of the IRS1 gene and T2DM under the recessive model of inheritance (OR=9.00, 95%CI=1.17-69.07, p=0.035), and marginally significant association found in the genotypic model (OR=7.50, 95%CI=0.94-60.06, p=0.058). The rs7092484 SNP of the TCF7L2 gene also showed markedly significant association with T2DM in the recessive (OR=3.61, 95%CI=1.70-7.67, p=0.001); and allelic (OR=1.80, 95%CI=1.23-2.62, p=0.002) models. Moreover, eight haplotypes of the IRS1 gene found to have significant association withT2DM (p=0.013 to 0.049). Assessments made on the interactions of genotypes of the rs13431179 and rs7092484 SNPs with various parameters demonstrated that high density lipoprotein (HDL), low density lipoprotein (LDL), waist circumference (WC), and systolic blood pressure (SBP) are the best T2DM onset predicting models. Furthermore, genotypes of the rs7092484 SNP showed significant association with various atherogenic indexes (Atherogenic index of plasma, LDL/HDL, and CHLO/HDL); and Eritreans carrying the GG or GA genotypes were predicted to be more susceptible to cardiovascular diseases onset. Conclusions: Results of this study suggest that IRS1 (rs13431179) and TCF7L2 (rs7092484) gene polymorphisms are associated with increased risk of T2DM in Eritreans.

Keywords: IRS1, SNP, TCF7L2, type 2 diabetes

Procedia PDF Downloads 224
1412 Spectroscopic Study of the Anti-Inflammatory Action of Propofol and Its Oxidant Derivatives: Inhibition of the Myeloperoxidase Activity and of the Superoxide Anions Production by Neutrophils

Authors: Pauline Nyssen, Ange Mouithys-Mickalad, Maryse Hoebeke

Abstract:

Inflammation is a complex physiological phenomenon involving chemical and enzymatic mechanisms. Polymorphonuclear neutrophil leukocytes (PMNs) play an important role by producing reactive oxygen species (ROS) and releasing myeloperoxidase (MPO), a pro-oxidant enzyme. Released both in the phagolysosome and the extracellular medium, MPO produces during its peroxidase and halogenation cycles oxidant species, including hypochlorous acid, involved in the destruction of pathogen agents, like bacteria or viruses. Inflammatory pathologies, like rheumatoid arthritis, atherosclerosis induce an excessive stimulation of the PMNs and, therefore, an uncontrolled release of ROS and MPO in the extracellular medium, causing severe damages to the surrounding tissues and biomolecules such as proteins, lipids, and DNA. The treatment of chronic inflammatory pathologies remains a challenge. For many years, MPO has been used as a target for the development of effective treatments. Numerous studies have been focused on the design of new drugs presenting more efficient MPO inhibitory properties. However, some designed inhibitors can be toxic. An alternative consists of assessing the potential inhibitory action of clinically-known molecules, having antioxidant activity. Propofol, 2,6-diisopropyl phenol, which is used as an intravenous anesthetic agent, meets these requirements. Besides its anesthetic action employed to induce a sedative state during surgery or in intensive care units, propofol and its injectable form Diprivan indeed present antioxidant properties and act as ROS and free radical scavengers. A study has also evidenced the ability of propofol to inhibit the formation of the neutrophil extracellular traps fibers, which are important to trap pathogen microorganisms during the inflammation process. The aim of this study was to investigate the potential inhibitory action mechanism of propofol and Diprivan on MPO activity. To go into the anti-inflammatory action of propofol in-depth, two of its oxidative derivatives, 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3’,5’-tetra isopropyl-(4,4’)-diphenoquinone (PPFDQ), were studied regarding their inhibitory action. Specific immunological extraction followed by enzyme detection (SIEFED) and molecular modeling have evidenced the low anti-catalytic action of propofol. Stopped-flow absorption spectroscopy and direct MPO activity analysis have proved that propofol acts as a reversible MPO inhibitor by interacting as a reductive substrate in the peroxidase cycle and promoting the accumulation of redox compound II. Overall, Diprivan exhibited a weaker inhibitory action than the active molecule propofol. In contrast, PPFQ seemed to bind and obstruct the enzyme active site, preventing the trigger of the MPO oxidant cycles. PPFQ induced a better chlorination cycle inhibition at basic and neutral pH in comparison to propofol. PPFDQ did not show any MPO inhibition activity. The three interest molecules have also demonstrated their inhibition ability on an important step of the inflammation pathway, the PMNs superoxide anions production, thanks to EPR spectroscopy and chemiluminescence. In conclusion, propofol presents an interesting immunomodulatory activity by acting as a reductive substrate in the peroxidase cycle of MPO, slowing down its activity, whereas PPFQ acts more as an anti-catalytic substrate. Although PPFDQ has no impact on MPO, it can act on the inflammation process by inhibiting the superoxide anions production by PMNs.

Keywords: Diprivan, inhibitor, myeloperoxidase, propofol, spectroscopy

Procedia PDF Downloads 148
1411 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks

Authors: Heeba A. Gurku

Abstract:

Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.

Keywords: CT images, CBCT images, cycle GAN, AGGAN

Procedia PDF Downloads 83
1410 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 514
1409 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 181
1408 Doped TiO2 Thin Films Microstructural and Electrical Properties

Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis

Abstract:

In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.

Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide

Procedia PDF Downloads 295
1407 Efficiently Silicon Metasurfaces at Visible Light

Authors: Juntao Li

Abstract:

The metasurfaces for beam deflecting with gradient silicon posts in the square lattices were fabricated on the thin film crystal silicon with quartz substrate. By using the crystals silicon with high refractive index and high transmission to control the phase over 2π coverage, we demonstrated the polarization independent beam deflecting at wavelength of 532nm with 45% transmission in experiment and 70% in simulation into the desired angle. This simulation efficiency is almost close to the TiO2 metasurfaces but has higher refractive index and lower aspect ratio to reduce fabrication complexity. The result can extend the application of silicon metalsurfaces from 700 nm to 500 nm hence open a new way to use metasurfaces efficiently in visible light regime.

Keywords: metasurfaces, crystal silicon, light deflection, visible light

Procedia PDF Downloads 282
1406 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 453
1405 Studies on Effect of Nano Size and Surface Coating on Enhancement of Bioavailability and Toxicity of Berberine Chloride; A p-gp Substrate

Authors: Sanjay Singh, Parameswara Rao Vuddanda

Abstract:

The aim of the present study is study the factual benefit of nano size and surface coating of p-gp efflux inhibitor on enhancement of bioavailability of Berberine chloride (BBR); a p-gp substrate. In addition, 28 days sub acute oral toxicity study was also conducted to assess the toxicity of the formulation on chronic administration. BBR loaded polymeric nanoparticles (BBR-NP) were prepared by nanoprecipitation method. BBR NP were surface coated (BBR-SCNP) with the 1 % w/v of vitamin E TPGS. For bioavailability study, total five groups (n=6) of rat were treated as follows first; pure BBR, second; physical mixture of BBR, carrier and vitamin E TPGS, third; BBR-NP, fourth; BBR-SCNP and fifth; BBR and verapamil (widely used p-gp inhibitor). Blood was withdrawn at pre-set timing points in 24 hrs study and drug was quantified by HPLC method. In oral chronic toxicity study, total four groups (n=6) were treated as follows first (control); water, second; pure BBR, third; BBR surface coated nanoparticles and fourth; placebo BBR surface coated nanoparticles. Biochemical levels of liver (AST, ALP and ALT) and kidney (serum urea and creatinine) along with their histopathological studies were also examined (0-28 days). The AUC of BBR-SCNP was significantly 3.5 folds higher compared to all other groups. The AUC of BBR-NP was 3.23 and 1.52 folds higher compared to BBR solution and BBR with verapamil group, respectively. The physical mixture treated group showed slightly higher AUC than BBR solution treated group but significantly low compared to other groups. It indicates that encapsulation of BBR in nanosize form can circumvent P-gp efflux effect. BBR-NP showed pharmacokinetic parameters (Cmax and AUC) which are near to BBR-SCNP. However, the difference in values of T1/2 and clearance indicate that surface coating with vitamin E TPGS not only avoids the P-gp efflux at its absorption site (intestine) but also at organs which are responsible for metabolism and excretion (kidney and liver). It may be the reason for observed decrease in clearance of BBR-SCNP. No toxicity signs were observed either in biochemical or histopathological examination of liver and kidney during toxicity studies. The results indicate that administration of BBR in surface coated nanoformulation would be beneficial for enhancement of its bioavailability and longer retention in systemic circulation. Further, sub acute oral dose toxicity studies for 28 days such as evaluation of intestine, liver and kidney histopathology and biochemical estimations indicated that BBR-SCNP developed were safe for long use.

Keywords: bioavailability, berberine nanoparticles, p-gp efflux inhibitor, nanoprecipitation method

Procedia PDF Downloads 390
1404 Interruption Overload in an Office Environment: Hungarian Survey Focusing on the Factors that Affect Job Satisfaction and Work Efficiency

Authors: Fruzsina Pataki-Bittó, Edit Németh

Abstract:

On the one hand, new technologies and communication tools improve employee productivity and accelerate information and knowledge transfer, while on the other hand, information overload and continuous interruptions make it even harder to concentrate at work. It is a great challenge for companies to find the right balance, while there is also an ongoing demand to recruit and retain the talented employees who are able to adopt the modern work style and effectively use modern communication tools. For this reason, this research does not focus on the objective measures of office interruptions, but aims to find those disruption factors which influence the comfort and job satisfaction of employees, and the way how they feel generally at work. The focus of this research is on how employees feel about the different types of interruptions, which are those they themselves identify as hindering factors, and those they feel as stress factors. By identifying and then reducing these destructive factors, job satisfaction can reach a higher level and employee turnover can be reduced. During the research, we collected information from depth interviews and questionnaires asking about work environment, communication channels used in the workplace, individual communication preferences, factors considered as disruptions, and individual steps taken to avoid interruptions. The questionnaire was completed by 141 office workers from several types of workplaces based in Hungary. Even though 66 respondents are working at Hungarian offices of multinational companies, the research is about the characteristics of the Hungarian labor force. The most important result of the research shows that while more than one third of the respondents consider office noise as a disturbing factor, personal inquiries are welcome and considered useful, even if in such cases the work environment will not be convenient to solve tasks requiring concentration. Analyzing the sizes of the offices, in an open-space environment, the rate of those who consider office noise as a disturbing factor is surprisingly lower than in smaller office rooms. Opinions are more diverse regarding information communication technologies. In addition to the interruption factors affecting the employees' job satisfaction, the research also focuses on the role of the offices in the 21st century.

Keywords: information overload, interruption, job satisfaction, office environment, work efficiency

Procedia PDF Downloads 227
1403 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures

Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal

Abstract:

The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.

Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching

Procedia PDF Downloads 202
1402 Cartilage Mimicking Coatings to Increase the Life-Span of Bearing Surfaces in Joint Prosthesis

Authors: L. Sánchez-Abella, I. Loinaz, H-J. Grande, D. Dupin

Abstract:

Aseptic loosening remains as the principal cause of revision in total hip arthroplasty (THA). For long-term implantations, submicron particles are generated in vivo due to the inherent wear of the prosthesis. When this occurs, macrophages undergo phagocytosis and secretion of bone resorptive cytokines inducing osteolysis, hence loosening of the implanted prosthesis. Therefore, new technologies are required to reduce the wear of the bearing materials and hence increase the life-span of the prosthesis. Our strategy focuses on surface modification of the bearing materials with a hydrophilic coating based on cross-linked water-soluble (meth)acrylic monomers to improve their tribological behavior. These coatings are biocompatible, with high swelling capacity and antifouling properties, mimicking the properties of natural cartilage, i.e. wear resistance with a permanent hydrated layer that prevents prosthesis damage. Cartilage mimicking based coatings may be also used to protect medical device surfaces from damage and scratches that will compromise their integrity and hence their safety. However, there are only a few reports on the mechanical and tribological characteristics of this type of coatings. Clear beneficial advantages of this coating have been demonstrated in different conditions and different materials, such as Ultra-high molecular weight polyethylene (UHMWPE), Polyethylene (XLPE), Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK), cobalt-chromium (CoCr), Stainless steel, Zirconia Toughened Alumina (ZTA) and Alumina. Using routine tribological experiments, the wear for UHMWPE substrate was decreased by 75% against alumina, ZTA and stainless steel. For PEEK-CFR substrate coated, the amount of material lost against ZTA and CrCo was at least 40% lower. Experiments on hip simulator allowed coated ZTA femoral heads and coated UHMWPE cups to be validated with a decrease of 80% of loss material. Further experiments on hip simulator adding abrasive particles (1 micron sized alumina particles) during 3 million cycles, on a total of 6 million, demonstrated a decreased of around 55% of wear compared to uncoated UHMWPE and uncoated XLPE. In conclusion, CIDETEC‘s hydrogel coating technology is versatile and can be adapted to protect a large range of surfaces, even in abrasive conditions.

Keywords: cartilage, hydrogel, hydrophilic coating, joint

Procedia PDF Downloads 119
1401 Scar Removal Stretegy for Fingerprint Using Diffusion

Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong

Abstract:

Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.

Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion

Procedia PDF Downloads 515
1400 Effect on Bandwidth of Using Double Substrates Based Metamaterial Planar Antenna

Authors: Smrity Dwivedi

Abstract:

The present paper has revealed the effect of double substrates over a bandwidth performance for planar antennas. The used material has its own importance to get minimum return loss and improved directivity. The author has taken double substrates to enhance the efficiency in terms of gain of antenna. Metamaterial based antenna has its own specific structure which increased the performance of antenna. Improved return loss is -20 dB, and the voltage standing wave ratio (VSWR) is 1.2, which is better than single substrate having return loss of -15 dB and VSWR of 1.4. Complete results are obtained using commercial software CST microwave studio.

Keywords: CST microwave studio, metamaterial, return loss, VSWR

Procedia PDF Downloads 389
1399 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method

Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi

Abstract:

Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.

Keywords: hydrothermal growth, sol-gel, zinc dioxide, biosensors

Procedia PDF Downloads 300
1398 Properties of Nanostructured MgB₂ Films Deposited by Magnetron Sputtering

Authors: T. A. Prikhna, A. V. Shaternik, V. E. Moshchil, M. Eisterer, V. E. Shaternik

Abstract:

The paper presents the results of studying the structure, phase composition, relief, and superconducting characteristics of oxygen-containing thin films of magnesium diboride (MgB₂) deposited on a dielectric substrate by magnetron sputtering of diboride-magnesium targets. The possibility of forming films of varying degrees of crystalline perfection and phase composition in the process of precipitation and annealing is shown, depending on the conditions of deposition and annealing. In the films, it is possible to realize various combinations of the Abrikosov vortex pinning centers (in the places of fluctuations of the critical temperature of the superconducting transition (T

Keywords: critical current density, diboride, superconducting thin films, upper critical field

Procedia PDF Downloads 109
1397 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, nanocomposite, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 299
1396 Synchrotron X-Ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell

Authors: Sunil Dehipawala, Gayathrie Amarasuriya, N. Gadura, G. Tremberger Jr, D.Lieberman, Harry Gafney, Todd Holden, T. Cheung

Abstract:

The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS.

Keywords: EXAFS, fourier transform, Shewanella oneidensis, microbial fuel cell

Procedia PDF Downloads 401
1395 Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fibre Ion-Exchanged with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher, I. Musbah

Abstract:

Cs-type nanocomposite zeolite membrane was successfully synthesized on a alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm, cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate.

Keywords: MFI membrane, CO2, nanocomposite, ceramic hollow fibre, ion-exchange

Procedia PDF Downloads 483
1394 A Compact Wearable Slot Antenna for LTE and WLAN Applications

Authors: Haider K. Raad

Abstract:

In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.

Keywords: wearable electronics, slot Antenna, LTE, WLAN

Procedia PDF Downloads 234
1393 The Impact of Mycotoxins on the Anaerobic Digestion Process

Authors: Harald Lindorfer, Bettina Frauz, Dietmar Ramhold

Abstract:

Next to the well-known inhibitors in anaerobic digestion like ammonia, antibiotics or disinfectants, the number of process failures connected with mould growth in the feedstock increased significantly in the last years. It was assumed that mycotoxins are the cause of the negative effects. The financial damage to plants associated with these process failures is considerable. The aim of this study was to find a way of predicting the failures and furthermore strategies for a fast process recovery. In a first step, mould-contaminated feedstocks causing process failures in full-scale digesters were sampled and analysed on mycotoxin content. A selection of these samples was applied to biological inhibition tests. In this test, crystalline cellulose is applied in addition to the feedstock sample as standard substrate. Affected digesters were also sampled and analytical process data as well as operational data of the plants were recorded. Additionally, different mycotoxin substances, Deoxynivalenol, Zearalenon, Aflatoxin B1, Mycophenolic acid and Citrinin, were applied as pure substances to lab-scale digesters, individually and in various combinations, and effects were monitored. As expected, various mycotoxins were detected in all of the mould-contaminated samples. Nevertheless, inhibition effects were observed with only one of the collected samples, after applying it to an inhibition test. With this sample, the biogas yield of the standard substrate was reduced by approx. 20%. This result corresponds with observations made on full-scale plants. However, none of the tested mycotoxins applied as pure substance caused a negative effect on biogas production in lab scale digesters, neither after application as individual substance nor in combination. The recording of the process data in full-scale plants affected by process failures in most cases showed a severe accumulation of fatty acids alongside a decrease in biogas production and methane concentration. In the analytical data of the digester samples, a typical distribution of fatty acids with exceptionally high acetic acid concentrations could be identified. This typical fatty acid pattern can be used as a rapid identification parameter pointing to the cause of the process troubles and enable a fast implication of countermeasures. The results of the study show that more attention needs to be paid to feedstock storage and feedstock conservation before their application to anaerobic digesters. This is all the more important since first studies indicate that the occurrence of mycotoxins will likely increase in Europe due to the ongoing climate change.

Keywords: Anaerobic digestion, Biogas, Feedstock conservation, Fungal mycotoxins, Inhibition, process failure

Procedia PDF Downloads 130
1392 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir

Abstract:

Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.

Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid

Procedia PDF Downloads 587
1391 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang

Abstract:

To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.

Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel

Procedia PDF Downloads 354
1390 Construction of the Large Scale Biological Networks from Microarrays

Authors: Fadhl Alakwaa

Abstract:

One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.

Keywords: gene regulatory network, biclustering, denoising, system biology

Procedia PDF Downloads 239