Search results for: slice thickness accuracy
4439 Screening Tools and Its Accuracy for Common Soccer Injuries: A Systematic Review
Authors: R. Christopher, C. Brandt, N. Damons
Abstract:
Background: The sequence of prevention model states that by constant assessment of injury, injury mechanisms and risk factors are identified, highlighting that collecting and recording of data is a core approach for preventing injuries. Several screening tools are available for use in the clinical setting. These screening techniques only recently received research attention, hence there is a dearth of inconsistent and controversial data regarding their applicability, validity, and reliability. Several systematic reviews related to common soccer injuries have been conducted; however, none of them addressed the screening tools for common soccer injuries. Objectives: The purpose of this study was to conduct a review of screening tools and their accuracy for common injuries in soccer. Methods: A systematic scoping review was performed based on the Joanna Briggs Institute procedure for conducting systematic reviews. Databases such as SPORT Discus, Cinahl, Medline, Science Direct, PubMed, and grey literature were used to access suitable studies. Some of the key search terms included: injury screening, screening, screening tool accuracy, injury prevalence, injury prediction, accuracy, validity, specificity, reliability, sensitivity. All types of English studies dating back to the year 2000 were included. Two blind independent reviewers selected and appraised articles on a 9-point scale for inclusion as well as for the risk of bias with the ACROBAT-NRSI tool. Data were extracted and summarized in tables. Plot data analysis was done, and sensitivity and specificity were analyzed with their respective 95% confidence intervals. I² statistic was used to determine the proportion of variation across studies. Results: The initial search yielded 95 studies, of which 21 were duplicates, and 54 excluded. A total of 10 observational studies were included for the analysis: 3 studies were analysed quantitatively while the remaining 7 were analysed qualitatively. Seven studies were graded low and three studies high risk of bias. Only high methodological studies (score > 9) were included for analysis. The pooled studies investigated tools such as the Functional Movement Screening (FMS™), the Landing Error Scoring System (LESS), the Tuck Jump Assessment, the Soccer Injury Movement Screening (SIMS), and the conventional hamstrings to quadriceps ratio. The accuracy of screening tools was of high reliability, sensitivity and specificity (calculated as ICC 0.68, 95% CI: 52-0.84; and 0.64, 95% CI: 0.61-0.66 respectively; I² = 13.2%, P=0.316). Conclusion: Based on the pooled results from the included studies, the FMS™ has a good inter-rater and intra-rater reliability. FMS™ is a screening tool capable of screening for common soccer injuries, and individual FMS™ scores are a better determinant of performance in comparison with the overall FMS™ score. Although meta-analysis could not be done for all the included screening tools, qualitative analysis also indicated good sensitivity and specificity of the individual tools. Higher levels of evidence are, however, needed for implication in evidence-based practice.Keywords: accuracy, screening tools, sensitivity, soccer injuries, specificity
Procedia PDF Downloads 1804438 Peer Corrective Feedback on Written Errors in Computer-Mediated Communication
Authors: S. H. J. Liu
Abstract:
This paper aims to explore the role of peer Corrective Feedback (CF) in improving written productions by English-as-a- foreign-language (EFL) learners who work together via Wikispaces. It attempted to determine the effect of peer CF on form accuracy in English, such as grammar and lexis. Thirty-four EFL learners at the tertiary level were randomly assigned into the experimental (with peer feedback) or the control (without peer feedback) group; each group was subdivided into small groups of two or three. This resulted in six and seven small groups in the experimental and control groups, respectively. In the experimental group, each learner played a role as an assessor (providing feedback to others), as well as an assessee (receiving feedback from others). Each participant was asked to compose his/her written work and revise it based on the feedback. In the control group, on the other hand, learners neither provided nor received feedback but composed and revised their written work on their own. Data collected from learners’ compositions and post-task interviews were analyzed and reported in this study. Following the completeness of three writing tasks, 10 participants were selected and interviewed individually regarding their perception of collaborative learning in the Computer-Mediated Communication (CMC) environment. Language aspects to be analyzed included lexis (e.g., appropriate use of words), verb tenses (e.g., present and past simple), prepositions (e.g., in, on, and between), nouns, and articles (e.g., a/an). Feedback types consisted of CF, affective, suggestive, and didactic. Frequencies of feedback types and the accuracy of the language aspects were calculated. The results first suggested that accurate items were found more in the experimental group than in the control group. Such results entail that those who worked collaboratively outperformed those who worked non-collaboratively on the accuracy of linguistic aspects. Furthermore, the first type of CF (e.g., corrections directly related to linguistic errors) was found to be the most frequently employed type, whereas affective and didactic were the least used by the experimental group. The results further indicated that most participants perceived that peer CF was helpful in improving the language accuracy, and they demonstrated a favorable attitude toward working with others in the CMC environment. Moreover, some participants stated that when they provided feedback to their peers, they tended to pay attention to linguistic errors in their peers’ work but overlook their own errors (e.g., past simple tense) when writing. Finally, L2 or FL teachers or practitioners are encouraged to employ CMC technologies to train their students to give each other feedback in writing to improve the accuracy of the language and to motivate them to attend to the language system.Keywords: peer corrective feedback, computer-mediated communication (CMC), second or foreign language (L2 or FL) learning, Wikispaces
Procedia PDF Downloads 2484437 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold
Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho
Abstract:
The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold
Procedia PDF Downloads 1464436 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program
Authors: Carla Van De Sande, Jana Vandenberg
Abstract:
Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice
Procedia PDF Downloads 2074435 Phonological Encoding and Working Memory in Kannada Speaking Adults Who Stutter
Authors: Nirmal Sugathan, Santosh Maruthy
Abstract:
Background: A considerable number of studies have evidenced that phonological encoding (PE) and working memory (WM) skills operate differently in adults who stutter (AWS). In order to tap these skills, several paradigms have been employed such as phonological priming, phoneme monitoring, and nonword repetition tasks. This study, however, utilizes a word jumble paradigm to assess both PE and WM using different modalities and this may give a better understanding of phonological processing deficits in AWS. Aim: The present study investigated PE and WM abilities in conjunction with lexical access in AWS using jumbled words. The study also aimed at investigating the effect of increase in cognitive load on phonological processing in AWS by comparing the speech reaction time (SRT) and accuracy scores across various syllable lengths. Method: Participants were 11 AWS (Age range=19-26) and 11 adults who do not stutter (AWNS) (Age range=19-26) matched for age, gender and handedness. Stimuli: Ninety 3-, 4-, and 5-syllable jumbled words (JWs) (n=30 per syllable length category) constructed from Kannada words served as stimuli for jumbled word paradigm. In order to generate jumbled words (JWs), the syllables in the real words were randomly transpositioned. Procedures: To assess PE, the JWs were presently visually using DMDX software and for WM task, JWs were presented through auditory mode through headphones. The participants were asked to silently manipulate the jumbled words to form a Kannada real word and verbally respond once. The responses for both tasks were audio recorded using record function in DMDX software and the recorded responses were analyzed using PRAAT software to calculate the SRT. Results: SRT: Mann-Whitney test results demonstrated that AWS performed significantly slower on both tasks (p < 0.001) as indicated by increased SRT. Also, AWS presented with increased SRT on both the tasks in all syllable length conditions (p < 0.001). Effect of syllable length: Wilcoxon signed rank test was carried out revealed that, on task assessing PE, the SRT of 4syllable JWs were significantly higher in both AWS (Z= -2.93, p=.003) and AWNS (Z= -2.41, p=.003) when compared to 3-syllable words. However, the findings for 4- and 5-syllable words were not significant. Task Accuracy: The accuracy scores were calculated for three syllable length conditions for both PE and PM tasks and were compared across the groups using Mann-Whitney test. The results indicated that the accuracy scores of AWS were significantly below that of AWNS in all the three syllable conditions for both the tasks (p < 0.001). Conclusion: The above findings suggest that PE and WM skills are compromised in AWS as indicated by increased SRT. Also, AWS were progressively less accurate in descrambling JWs of increasing syllable length and this may be interpreted as, rather than existing as a uniform deficiency, PE and WM deficits emerge when the cognitive load is increased. AWNS exhibited increased SRT and increased accuracy for JWs of longer syllable length whereas AWS was not benefited from increasing the reaction time, thus AWS had to compromise for both SRT and accuracy while solving JWs of longer syllable length.Keywords: adults who stutter, phonological ability, working memory, encoding, jumbled words
Procedia PDF Downloads 2434434 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame
Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt
Abstract:
Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.Keywords: dissimilar metal, EMI shielding, joint strength, soldering
Procedia PDF Downloads 1644433 Study of Harmonics Estimation on Analog kWh Meter Using Fast Fourier Transform Method
Authors: Amien Rahardjo, Faiz Husnayain, Iwa Garniwa
Abstract:
PLN used the kWh meter to determine the amount of energy consumed by the household customers. High precision of kWh meter is needed in order to give accuracy results as the accuracy can be decreased due to the presence of harmonic. In this study, an estimation of active power consumed was developed. Based on the first year study results, the largest deviation due to harmonics can reach up to 9.8% in 2200VA and 12.29% in 3500VA with kWh meter analog. In the second year of study, deviation of digital customer meter reaches 2.01% and analog meter up to 9.45% for 3500VA household customers. The aim of this research is to produce an estimation system to calculate the total energy consumed by household customer using analog meter so the losses due to irregularities PLN recording of energy consumption based on the measurement used Analog kWh-meter installed is avoided.Keywords: harmonics estimation, harmonic distortion, kWh meters analog and digital, THD, household customers
Procedia PDF Downloads 4844432 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia
Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang
Abstract:
Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography
Procedia PDF Downloads 1974431 Arabic Light Stemmer for Better Search Accuracy
Authors: Sahar Khedr, Dina Sayed, Ayman Hanafy
Abstract:
Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.Keywords: Arabic data mining, Arabic Information extraction, Arabic Light stemmer, Arabic stemmer
Procedia PDF Downloads 3114430 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot
Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier
Abstract:
The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.Keywords: control, identification, robot, co-manipulation, sensor-less
Procedia PDF Downloads 1624429 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application
Authors: Adeshina Fadeyibi
Abstract:
Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging
Procedia PDF Downloads 1214428 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 604427 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine
Authors: Mohamed K. Khalil, Mohamed S. Ragab
Abstract:
Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5
Procedia PDF Downloads 1684426 Light and Scanning Electron Microscopic Studies on Corneal Ontogeny in Buffalo
Authors: M. P. S. Tomar, Neelam Bansal
Abstract:
Histomorphological, histochemical and scanning electron microscopic observations were recorded in developing cornea of buffalo fetuses. The samples from fetal cornea were collected in appropriate fixative from slaughter house and Veterinary Clinics, GADVASU, Ludhiana. The microscopic slides were stained for detailed histomorphological and histochemical studies. The scanning electron microscopic studies were performed at Electron microscopy & Nanobiology Lab, PAU Ludhiana. In present study, it was observed that, in 36 days (d) fetus, the corneal epithelium was well marked single layered structure which was placed on stroma mesenchyme. Cornea appeared as the continuation of developing sclera. The thickness of cornea and its epithelium increased as well as the epithelium started becoming double layered in 47d fetus at corneo-scleral junction. The corneal thickness in this stage suddenly increased thus easily distinguished from developing sclera. The separation of corneal endothelium from stroma was evident as a single layered epithelium. The stroma possessed numerous fibroblasts in 49d stage eye. Descemet’s membrane was appeared at 52d stage. The limbus area was separated by a depression from the developing cornea in 61d stage. In 65d stage, the Bowman’s layer was more developed. Fibroblasts were arranged parallel to each other as well as parallel to the surface of developing cornea in superficial layers. These fibroblasts and fibers were arranged in wavy pattern in the center of stroma. Corneal epithelium started to be stratified as a double layered epithelium was present in this age of fetal eye. In group II (>120 Days), the corneal epithelium was stratified towards a well marked irido-corneal angle. The stromal fibroblasts followed a complete parallel arrangement in its entire thickness. In full term fetuses, a well developed cornea was observed. It was a fibrous layer which had five distinct layers. From outside to inwards were described as the outer most layer was the 7-8 layered corneal epithelial, subepithelial basement membrane (Bowman’s membrane), substantia propria or stroma, posterior limiting membrane (Descemet’s membrane) and the posterior epithelium (corneal endothelium). The corneal thickness and connective tissue elements were continued to be increased. It was 121.39 + 3.73µ at 36d stage which increased to 518.47 + 4.98 µ in group III fetuses. In fetal life, the basement membrane of corneal epithelium and endothelium depicted strong to intense periodic Acid Schiff’s (PAS) reaction. At the irido-corneal angle, the endothelium of blood vessels was also positive for PAS activity. However, cornea was found mild positive for alcian blue reaction. The developing cornea showed strong reaction for basic proteins in outer epithelium and the inner endothelium layers. Under low magnification scanning electron microscope, cornea showed two types of cells viz. light cells and dark cells. The light cells were smaller in size and had less number of microvilli in their surface than in the dark cells. Despite these surface differences between light and dark cells, the corneal surface showed the same general pattern of microvilli studding all exposed surfaces out to the cell margin. which were long (with variable height), slight tortuous slender and possessed a micro villus shaft with a very prominent knob.Keywords: buffalo, cornea, eye, fetus, ontogeny, scanning electron microscopy
Procedia PDF Downloads 1514425 Left Ventricular Adaptations of Elite Volleyball Players Based on the Playing Position
Authors: Shihab Aldin Al Riyami, Khosrow Ebrahim, Sajad Ahmadizad
Abstract:
Hemodynamic changes and ventricular loading during exercise lead to left ventricular (LV) hypertrophy. In athletes, volume load induces enlargement of the LV internal diameter and a proportional increase of wall thickness; while, pressure load would induce thickening of the ventricular wall. These adaptations are not similar in all athletes and are related to the types of sport. Volleyball players have different types of activity and roles based on their playing. Therefore, their physiological adaptations and requirements are different. The aim of the current study was to investigate the LV adaptationsinelite volleyball players based on their playing position. Sixty male elite volleyball players (age, 30.55±3.64 years)from Brazil, Serbia, Poland, Iran, Colombia, Cameroon, Japan, Egypt, Qatar, and Tunisia were investigated (from all five volleyball play positions). All participants had the experience of at least 3 years of participation at a professional level and international tournaments. LV characteristics were evaluated and measured using the echocardiography technique. Statistical analyses revealed significant differences (P<0.05)among the five groups of players forLV internal dimension (LVID), posterior wall thickness (PWT), and intact ventricular septum (IVS). Post-hoc analysis showed that opposite position players had significant higher value of LVID, PWT, and IVS when compared with other players, including outside hitter, middle blocker, setter, and libero (p<0.05). Additionally, in libero players, PWT was significantly lower when compared with other players (p<0.05). Based on the findings of the present study, it is concluded that LV adaptations in volleyball players are related to their playing position and that the opposite players had the highest LV adaptations when compared to other positions.Keywords: athletes, cardiac adaptations, echocardio graphy, heart, sport
Procedia PDF Downloads 2764424 Kinetic Study of Physical Quality Changes on Jumbo Squid (Dosidicus gigas) Slices during Application High-Pressure Impregnation
Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Fernanda Marin, Constanza Olivares
Abstract:
This study presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration of jumbo squid (Dosidicus gigas) slice. Diffusion coefficients for both components water and solids were improved by the process pressure, being influenced by pressure level. The working conditions were different pressures such as 100, 250, 400 MPa and pressure atmospheric (0.1 MPa) for time intervals from 30 to 300 seconds and a 15% NaCl concentration. The mathematical expressions used for mass transfer simulations both water and salt were those corresponding to Newton, Henderson and Pabis, Page and Weibull models, where the Weibull and Henderson-Pabis models presented the best fitted to the water and salt experimental data, respectively. The values for water diffusivity coefficients varied from 1.62 to 8.10x10⁻⁹ m²/s whereas that for salt varied among 14.18 to 36.07x10⁻⁹ m²/s for selected conditions. Finally, as to quality parameters studied under the range of experimental conditions studied, the treatment at 250 MPa yielded on the samples a minimum hardness, whereas springiness, cohesiveness and chewiness at 100, 250 and 400 MPa treatments presented statistical differences regarding to unpressurized samples. The colour parameters L* (lightness) increased, however, but b* (yellowish) and a* (reddish) parameters decreased when increasing pressure level. This way, samples presented a brighter aspect and a mildly cooked appearance. The results presented in this study can support the enormous potential of hydrostatic pressure application as a technique important for compounds impregnation under high pressure.Keywords: colour, diffusivity, high pressure, jumbo squid, modelling, texture
Procedia PDF Downloads 3474423 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 614422 Data Quality and Associated Factors on Regular Immunization Programme at Ararso District: Somali Region- Ethiopia
Authors: Eyob Seife, Molla Alemayaehu, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew
Abstract:
Globally, immunization averts between 2 and 3 million deaths yearly, but Vaccine-Preventable Diseases still account for more in Sub-Saharan African countries and takes the majority of under-five deaths yearly, which indicates the need for consistent and on-time information to have evidence-based decision so as to save lives of these vulnerable groups. However, ensuring data of sufficient quality and promoting an information-use culture at the point of collection remains critical and challenging, especially in remote areas where the Ararso district is selected based on a hypothesis of there is a difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Ararso district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers and reporting documents were reviewed at 4 health facilities (1 health center and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio, availability and timeliness of reports. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and at the district health office. A quality index (QI), availability and timeliness of reports were assessed. Accuracy ratios formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), TT2+ and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed poor timeliness at all levels and both over-reporting and under-reporting were observed at all levels when computing the accuracy ratio of registration to health post reports found at health centers for almost all antigens verified. A quality index (QI) of all facilities also showed poor results. Most of the verified immunization data accuracy ratios were found to be relatively better than that of quality index and timeliness of reports. So attention should be given to improving the capacity of staff, timeliness of reports and quality of monitoring system components, namely recording, reporting, archiving, data analysis and using information for decisions at all levels, especially in remote and areas.Keywords: accuracy ratio, ararso district, quality of monitoring system, regular immunization program, timeliness of reports, Somali region-Ethiopia
Procedia PDF Downloads 744421 Repositioning Sodium Valproate for Amelioration of Bleomycin-induced Scleroderma: The Role of Oxidative Stress, Transforming Growth Factor Beta-1, and the Mammalian Target of Rapamycin
Authors: Ahmed M. Kabel, Maaly A. Abd Elmaaboud
Abstract:
Scleroderma is one of the connective tissue disorders characterized by skin and systemic fibrosis. Its pathogenesis involves multiple interrelated processes of autoimmunity, vasculopathy, inflammation, and oxidative stress. This study was a trial to explore the possible ameliorative effects of sodium valproate on an experimental model of skin fibrosis induced by bleomycin. Forty male BALB/c mice were divided into four equal groups as follows: control group; bleomycin group; bleomycin + sodium valproate group, and sodium valproate group. Mice were assessed for their body weight every four days throughout the whole study. Skin tissues were used to evaluate the oxidative stress parameters, transforming growth factor beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), interleukin 15, and mammalian target of rapamycin (mTOR). Skin fibrosis was evaluated by measuring dermal thickness and staining the skin tissues with Masson trichrome stain. Also, the skin tissues were immunostained with alpha smooth muscle actin (α-SMA). Administration of sodium valproate to bleomycin-treated mice resulted in the restoration of the body weight with a significant decrease in the dermal thickness, amelioration of oxidative stress, suppression of TGF-β1 and mTOR expression, and significant reduction of the percentage of α-SMA immunostaining and the proinflammatory cytokine levels compared to mice treated with bleomycin alone. In conclusion, sodium valproate has an antifibrotic effect on skin fibrosis which may represent a beneficial therapeutic modality for the management of scleroderma.Keywords: scleroderma, bleomycin, sodium valproate, skin fibrosis
Procedia PDF Downloads 844420 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques
Authors: Om Viroje
Abstract:
Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience
Procedia PDF Downloads 254419 A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling
Authors: Aurore Cauquis, Philippe Heinrich, Mario Ricchiuto, Audrey Gailler
Abstract:
In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation.Keywords: numerical analysis, tsunami propagation, water wave, boussinesq equations
Procedia PDF Downloads 2434418 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1414417 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 1534416 Trading off Accuracy for Speed in Powerdrill
Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica
Abstract:
In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries
Procedia PDF Downloads 2604415 Uncertainty of the Brazilian Earth System Model for Solar Radiation
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.Keywords: climate changes, projections, solar radiation, uncertainty
Procedia PDF Downloads 2534414 Mobile Platform’s Attitude Determination Based on Smoothed GPS Code Data and Carrier-Phase Measurements
Authors: Mohamed Ramdani, Hassen Abdellaoui, Abdenour Boudrassen
Abstract:
Mobile platform’s attitude estimation approaches mainly based on combined positioning techniques and developed algorithms; which aim to reach a fast and accurate solution. In this work, we describe the design and the implementation of an attitude determination (AD) process, using only measurements from GPS sensors. The major issue is based on smoothed GPS code data using Hatch filter and raw carrier-phase measurements integrated into attitude algorithm based on vectors measurement using least squares (LSQ) estimation method. GPS dataset from a static experiment is used to investigate the effectiveness of the presented approach and consequently to check the accuracy of the attitude estimation algorithm. Attitude results from GPS multi-antenna over short baselines are introduced and analyzed. The 3D accuracy of estimated attitude parameters using smoothed measurements is over 0.27°.Keywords: attitude determination, GPS code data smoothing, hatch filter, carrier-phase measurements, least-squares attitude estimation
Procedia PDF Downloads 1564413 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 524412 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach
Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf
Abstract:
This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis
Procedia PDF Downloads 724411 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
Authors: Samina Khalid, Shamila Nasreen
Abstract:
Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA
Procedia PDF Downloads 4984410 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 298