Search results for: penalized logistic regression
2620 Family Management, Relations Risk and Protective Factors for Adolescent Substance Abuse in South Africa
Authors: Beatrice Wamuyu Muchiri, Monika M. L. Dos Santos
Abstract:
An increasingly recognised prevention approach for substance use entails reduction in risk factors and enhancement of promotive or protective factors in individuals and the environment surrounding them during their growth and development. However, in order to enhance the effectiveness of this approach, continuous study of risk aspects targeting different cultures, social groups and mixture of society has been recommended. This study evaluated the impact of potential risk and protective factors associated with family management and relations on adolescent substance abuse in South Africa. Exploratory analysis and cumulative odds ordinal logistic regression modelling was performed on the data while controlling for demographic and socio-economic characteristics on adolescent substance use. The most intensely used substances were tobacco, cannabis, cocaine, heroin and alcohol in decreasing order of use intensity. The specific protective or risk impact of family management or relations factors varied from substance to substance. Risk factors associated with demographic and socio-economic factors included being male, younger age, being in lower education grades, coloured ethnicity, adolescents from divorced parents and unemployed or fully employed mothers. Significant family relations risk and protective factors against substance use were classified as either family functioning and conflict or family bonding and support. Several family management factors, categorised as parental monitoring, discipline, behavioural control and rewards, demonstrated either risk or protective effect on adolescent substance use. Some factors had either interactive risk or protective impact on substance use or lost significance when analysed jointly with other factors such as controlled variables. Interaction amongst risk or protective factors as well as the type of substance should be considered when further considering interventions based on these risk or protective factors. Studies in other geographical regions, institutions and with better gender balance are recommended to improve upon the representativeness of the results. Several other considerations to be made when formulating interventions, the shortcomings of this study and possible improvements as well as future studies are also suggested.Keywords: risk factors, protective factors, substance use, adolescents
Procedia PDF Downloads 2042619 The Impact of Adopting Cross Breed Dairy Cows on Households’ Income and Food Security in the Case of Dejen Woreda, Amhara Region, Ethiopia
Authors: Misganaw Chere Siferih
Abstract:
This study assessed the impact of crossbreed dairy cows on household income and food security. The study area is found in Dejen Woreda, East Gojam Zone, and Amhara region of Ethiopia. Random sampling technique was used to obtain a sample of 80 crossbreed dairy cow owners and 176 indigenous dairy cow owners. The study employed food consumption score analytical framework to measure food security status of the household. No Statistical significant mean difference is found between crossbreed owners and indigenous owners. Logistic regression was employed to investigate crossbreed dairy cow adoption determinants , the result indicates that gender, education, labor number, land size cultivated, dairy cooperatives membership, net income and food security status of the household are statistically significant independent variables, which explained the binary dependent variable, crossbreed dairy cow adoption. Propensity score matching (PSM) was employed to analyze the impact of crossbreed dairy cow owners on farmers’ income and food security. The average net income of crossbreed dairy cow owners was found to be significantly higher than indigenous dairy cow owners. Estimates of average treatment effect of the treated (ATT) indicated that crossbreed dairy cow is able to impact households’ net income by 42%, 38.5%, 30.8% and 44.5% higher in kernel, radius, nearest neighborhood and stratification matching algorithms respectively as compared to indigenous dairy cow owners. However, estimates of average treatment of the treated (ATT) suggest that being an owner of crossbreed dairy cow is not able to affect food security significantly. Thus, crossbreed dairy cow enables farmers to increase income but not their food security in the study area. Finally, the study recommended establishing dairy cooperatives and advice farmers to become a member of them, attention to promoting the impact of crossbreed dairy cows and promotion of nutrition focus projects.Keywords: crossbreed dairy cow, net income, food security, propensity score matching
Procedia PDF Downloads 652618 Big Data Analysis with Rhipe
Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim
Abstract:
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe
Procedia PDF Downloads 4982617 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 2072616 New Challenges to the Conservation and Management of the Endangered Persian Follow Deer (Dama dama mesopotamica) in Ashk Island of Lake Uromiyeh National Park, Iran
Authors: Morteza Naderi
Abstract:
The Persian fallow deer was considered as a globally extinct species until 1956 when a small population was rediscovered from Dez Wildlife Refuge and Karkheh Wildlife Refuge in southwestern parts of Iran. After long species rehabilitation process, the species was transplanted to Dasht-e-Naz Wildlife Refuge in northern Iran, and from where, follow deer was introduced to the different selected habitats such as Ashk Island in Lake Uromiyeh National Park. During 12 years, (from 1978 to 1989) 58 individuals (25 males and 33 females) were transferred to Ask Island. The main threat to the established population was related to the freshwater shortage and existing just one single trough such as high mortality rate of adult males during rutting season, snake biting and dilutional hyponatremia. Desiccation of Lake Uromiyeh in recent years raised new challenges to the conservation process, as about 80 individuals, nearly one third of the population were died in 2011. Connection of Island to the mainland caused predators’ accessibility (such as wolf and Jackal) to the Ask Island and higher mortality because of follow deer attraction to the surrounding mainland farms. Conservation team faced such new challenges that may cause introduction plan to be probably failed. Investigations about habitat affinities and carrying capacity are the main basic researches in the management and conservation of the species. Logistic regression analysis showed that the presence of the different fresh water resources as well as Allium akaka and Pistacia atlantica are the main environmental variables affect Follow deer habitat selection. Habitat carrying capacity analysis both in summer and winter seasons indicated that Ashk Island can support 240±30 of Persian follow deer.Keywords: carrying capacity, follow deer, lake Uromiyeh, microhabitat affinities, population oscillation, predation, sex ratio
Procedia PDF Downloads 3262615 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 6032614 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 862613 The Relation between Proactive Coping and Well-Being: An Example of Middle-Aged and Older Learners from Taiwan
Authors: Ya-Hui Lee, Ching-Yi Lu, Hui-Chuan Wei
Abstract:
The purpose of this research was to explore the relation between proactive coping and well-being of middle-aged adults. We conducted survey research that with t-test, one way ANOVA, Pearson correlation and stepwise multiple regression to analyze. This research drew on a sample of 395 participants from the senior learning centers of Taiwan. The results provided the following findings: 1.The participants from different residence areas associated significant difference with proactive coping, but not with well-being. 2. The participants’ perceived of financial level associated significant difference with both proactive coping and well-being. 3. There was significant difference between participants’ income and well-being. 4. The proactive coping was positively correlated with well-being. 5. From stepwise multiple regression analysis showed that two dimensions of proactive coping had positive predictability. Finally, these results of this study can be provided as references for designing older adult educational programs in Taiwan.Keywords: middle-age and older adults, learners, proactive coping, well-being
Procedia PDF Downloads 4582612 Revealing the Risks of Obstructive Sleep Apnea
Authors: Oyuntsetseg Sandag, Lkhagvadorj Khosbayar, Naidansuren Tsendeekhuu, Densenbal Dansran, Bandi Solongo
Abstract:
Introduction: Obstructive sleep apnea (OSA) is a common disorder affecting at least 2% to 4% of the adult population. It is estimated that nearly 80% of men and 93% of women with moderate to severe sleep apnea are undiagnosed. A number of screening questionnaires and clinical screening models have been developed to help identify patients with OSA, also it’s indeed to clinical practice. Purpose of study: Determine dependence of obstructive sleep apnea between for severe risk and risk factor. Material and Methods: A cross-sectional study included 114 patients presenting from theCentral state 3th hospital and Central state 1th hospital. Patients who had obstructive sleep apnea (OSA)selected in this study. Standard StopBang questionnaire was obtained from all patients.According to the patients’ response to the StopBang questionnaire was divided into low risk, intermediate risk, and high risk.Descriptive statistics were presented mean ± standard deviation (SD). Each questionnaire was compared on the likelihood ratio for a positive result, the likelihood ratio for a negative test result of regression. Statistical analyses were performed utilizing SPSS 16. Results: 114 patients were obtained (mean age 48 ± 16, male 57)that divided to low risk 54 (47.4%), intermediate risk 33 (28.9%), high risk 27 (23.7%). Result of risk factor showed significantly increasing that mean age (38 ± 13vs. 54 ± 14 vs. 59 ± 10, p<0.05), blood pressure (115 ± 18vs. 133 ± 19vs. 142 ± 21, p<0.05), BMI(24 IQR 22; 26 vs. 24 IQR 22; 29 vs. 28 IQR 25; 34, p<0.001), neck circumference (35 ± 3.4 vs. 38 ± 4.7 vs. 41 ± 4.4, p<0.05)were increased. Results from multiple logistic regressions showed that age is significantly independently factor for OSA (odds ratio 1.07, 95% CI 1.02-1.23, p<0.01). Predictive value of age was significantly higher factor for OSA (AUC=0.833, 95% CI 0.758-0.909, p<0.001). Our study showing that risk of OSA is beginning 47 years old (sensitivity 78.3%, specifity74.1%). Conclusions: According to most of all patients’ response had intermediate risk and high risk. Also, age, blood pressure, neck circumference and BMI were increased such as risk factor was increased for OSA. Especially age is independently factor and highest significance for OSA. Patients’ age one year is increased likelihood risk factor 1.1 times is increased.Keywords: obstructive sleep apnea, Stop-Bang, BMI (Body Mass Index), blood pressure
Procedia PDF Downloads 3102611 Use of Information and Communication Technologies in Enhancing Health Care Delivery for Human Immunodeficiency Virus Patients in Bamenda Health District
Authors: Abanda Wilfred Chick
Abstract:
Background: According to World Health Organization (WHO), the role of Information and Communication Technologies (ICT) in health sectors of developing nations has been demonstrated to have had a great improvement of fifty percent reduction in mortality and or twenty-five-fifty percent increase in productivity. The objective of this study was to assess the use of information and communication technologies in enhancing health care delivery for Human Immunodeficiency Virus (HIV) patients in Bamenda Health District. Methods: This was a descriptive-analytical cross-sectional study in which 388 participants were consecutively selected amongst health personnel and HIV patients from public and private health institutions involved in Human Immunodeficiency Virus management. Data on socio-demographic variables, the use of information and communication technologies tools, and associated challenges were collected using structured questionnaires. Descriptive statistics with a ninety-five percent confidence interval were used to summarize findings, while Cramer’s V test, logistic regression, and Chi-square test were used to measure the association between variables, Epi info version7.2, MS Excel, and SPSS version 25.0 were utilized for data entry and statistical analysis respectively. Results: Of the participants, one-quarter were health personnel, and three-quarters were HIV patients. For both groups of participants, there was a significant relationship between the use of ICT and demographic information such as level of education, marital status, and age (p<0.05). For the impediments to using ICT tools, a greater proportion identified the high cost of airtime or internet bundles, followed by an average proportion that indicated inadequate training on ICT tools; for health personnel, the majority said inadequate training on ICT tools/applications and half said unavailability of electricity. Conclusion: Not up to half of the HIV patients effectively make use of ICT tools/applications to receive health care. Of health personnel, three quarters use ICTs, and only one quarter effectively use mobile phones and one-third of computers, respectively, to render care to HIV patients.Keywords: ICT tools, HIV patients, health personnel, health care delivery
Procedia PDF Downloads 852610 Dietary Diversity Practice and Associated Facrors Among Hypertension Patients at Tirunesh Beijing Hospital
Authors: Wudneh Asegedech Ayele
Abstract:
Background: Dietary diversity is strongly related with non-communicable disease (NCDs). Diet plays a key role as a risk factor for hypertension. Diets rich in fruits, vegetables, and low-fat dairy products that include whole grains, poultry, fish, and nuts, that contain only small amounts of red meat, sweets, and sugar-containing beverages, and that contain decreased amounts of total and saturated fat and cholesterol have been found to have a protective effect against hypertension. Methods: hospital based Cross-sectional study design was employed from June 1-June 25, 2021. Sampling technique was Systematic random sampling and data were collected using an interview method. Data were entered into Epi Data version 3.1 and exported to SPSS version 25 for processed and analysis respectively. Descriptive statistics were used to summarize data. Bivariate and multivariate logistic regression will employed to determine dietary diversity among hypertension patients. Results: Adequate dietary diversity score were 96 (24.68%). Most of them cereal, white roots and tubers, dark green leafy vegetables, Vitamin A rich fruits ,meat, egg and coffee or tea more intakes. Hypertensive patients who didn’t consume cereals four times less likely adequate dietary diversity than who consumed cereals [AOR= 4.083, 95%: CI (2.096 -7.352)]. Hypertensive patients who didn’t consume white roots and tubers 14 times less likely adequate dietary diversity than who consumed white roots and tubers [AOR= 13.733, 95% CI: (5.388-34.946)]. Conclusion and recommendation the study showed one of fourth part reported adequate dietary diversity score. Cereals, fruits, vegetables and milk and milk products were statistically associated with dietary diversity practice. Health education about dietary modifications and behavioral change to dietary diversityKeywords: dietary diversity practice and associated facrors among hypertension patients at tirunesh beijing hospital, hypertension, dietary, diversity and tirunesh beijing hospital, associated facrors among hypertension patient, at tirunesh beijing hospita
Procedia PDF Downloads 412609 Improving the Supply Chain of Vietnamese Coffee in Buon Me Thuot City, Daklak Province, Vietnam to Achieve Sustainability
Authors: Giang Ngo Tinh Nguyen
Abstract:
Agriculture plays an important role in the economy of Vietnam and coffee is one of most crucial agricultural commodities for exporting but the current farming methods and processing infrastructure could not keep up with the development of the sector. There are many catastrophic impacts on the environment such as deforestation; soil degradation that leads to a decrease in the quality of coffee beans. Therefore, improving supply chain to develop the cultivation of sustainable coffee is one of the most important strategies to boost the coffee industry and create a competitive advantage for Vietnamese coffee in the worldwide market. If all stakeholders in the supply chain network unite together; the sustainable production of coffee will be scaled up and the future of coffee industry will be firmly secured. Buon Ma Thuot city, Dak Lak province is the principal growing region for Vietnamese coffee which accounted for a third of total coffee area in Vietnam. It plays a strategically crucial role in the development of sustainable Vietnamese coffee. Thus, the research is to improve the supply chain of sustainable Vietnamese coffee production in Buon Ma Thuot city, Dak Lak province, Vietnam for the purpose of increasing the yields and export availability as well as helping coffee farmers to be more flexible in an ever-changing market situation. It will help to affirm Vietnamese coffee brand when entering international market; improve the livelihood of farmers and conserve the environment of this area. Besides, after analyzing the data, a logistic regression model is established to explain the relationship between the dependent variable and independent variables to help sustainable coffee organizations forecast the probability of farmer will be having a sustainable certificate with their current situation and help them choose promising candidates to develop sustainable programs. It investigates opinions of local farmers through quantitative surveys. Qualitative interviews are also used to interview local collectors and staff of Trung Nguyen manufacturing company to have an overview of the situation.Keywords: supply chain management, sustainable agricultural development, sustainable coffee, Vietnamese coffee
Procedia PDF Downloads 4522608 Hypertension and Obesity: A Cross-National Comparison of BMI and Waist-Height Ratio
Authors: Adam M. Yates, Julie E. Byles
Abstract:
Hypertension has been identified as a prominent co-morbidity of obesity. To improve clinical intervention of hypertension, it is critical to identify metrics that most accurately reflect risk for increased morbidity. Two of the most relevant and accurate measures for increased risk of hypertension due to excess adipose tissue are Body Mass Index (BMI) and Waist-Height Ratio (WHtR). Previous research has examined these measures in cross-national and cross-ethnic studies, but has most often relied on secondary means such as meta-analysis to identify and evaluate the efficacy of individual body mass measures. In this study, we instead use cross-sectional analysis to assess the cross-ethnic discriminative power of BMI and WHtR to predict risk of hypertension. Using the WHO SAGE survey, which collected anthropometric and biometric data from respondents in six middle-income countries (China, Ghana, India, Mexico, Russia, South Africa), we implement logistic regression to examine the discriminative power of measured BMI and WHtR with a known population of hypertensive and non-hypertensive respondents. We control for gender and age to identify whether optimum cut-off points that are adequately sensitive as tests for risk of hypertension may be different between groups. We report results for OR, RR, and ROC curves for each of the six SAGE countries. As seen in existing literature, results demonstrate that both WHtR and BMI are significant predictors of hypertension (p < .01). For these six countries, we find that cut-off points for WHtR may be dependent upon gender, age and ethnicity. While an optimum omnibus cut-point for WHtR may be 0.55, results also suggest that the gender and age relationship with WHtR may warrant the development of individual cut-offs to optimize health outcomes. Trends through multiple countries show that the optimum cut-point for WHtR increases with age while the area under the curve (AUROC) decreases for both men and women. Comparison between BMI and WHtR indicate that BMI may remain more robust than WHtR. Implications for public health policy are discussed.Keywords: hypertension, obesity, Waist-Height ratio, SAGE
Procedia PDF Downloads 4812607 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 892606 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 4052605 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Ethiopia
Authors: Haftay Abraha Tadesse, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader
Abstract:
Background: Salmonella species and Escherichia coli are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from January to September 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli, Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI: (4.69 27.10) were associated with an overall bacterial contamination.About 95.5% of the tested isolates were sensitive to chloramphenicol and norfloxacin while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor hand washing practice and not using glove during meat handling showed significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species and E. coli were 19 (51.4%) and 14 (31.8%), respectively.Keywords: antimicrobial susceptibility test, butchery houses, e. coli, salmonella species
Procedia PDF Downloads 542604 Leisure, Domestic or Professional Activities so as to Prevent Cognitive Decline: Results FreLE Longitudinal Study
Authors: Caroline Dupre, David Hupin, Christ Goumou, Francois Belan, Frederic Roche, Thomas Celarier, Bienvenu Bongue
Abstract:
Background: Previous cohorts have been notably criticized for not studying the different type of physical activity and not investigating household activities. The objective of this work was to analyse the relationship between physical activity and cognitive decline in older people living in the community. Impact of type of physical activity on the results has been realised. Methods: The study used data from the longitudinal and observational study , FrèLE (FRagility: Longitudinal Study of Expressions). The collected data included: socio-demographic variables, lifestyle, and health status (frailty, comorbidities, cognitive status, depression). Cognitive decline was assessed by using: Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Physical activity was assessed by the Physical Activity Scale for the Elderly (PASE). This tool is structured in three sections: the leisure activity, domestic activity, and professional activity. Logistic regressions and proportional hazards regression models (Cox) were used to estimate the risk of cognitive disorders. Results: At baseline, the prevalence of cognitive disorders was 6.9% according to MMSE. In total, 1167 participants without cognitive disorders were included in the analysis. The mean age was 77.4 years, and 52.1% of the participants were women. After a 2 years long follow-up, we found cognitive disorders on 53 participants (4.5%). Physical activity at baseline is lower in older adults for whom cognitive decline was observed after two years of follow-up. Subclass analyses showed that leisure and domestic activities were associated with cognitive decline, but not professional activities. Conclusions: Analysis showed a relationship between cognitive disorders and type of physical activity. The current study will be completed by the MoCA for mild cognitive impairment. These findings compared to other ongoing studies, will contribute to the debate on the beneficial effects of physical activity on cognition.Keywords: aging, cognitive function, physical activity, mixed models
Procedia PDF Downloads 1272603 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 1832602 Prevalence and Associated Factors of Overweight and Obesity in Children with Intellectual Disability: A Cross-Sectional Study among Chinese Children
Authors: Jing-Jing Wang, Yang Gao, Heather H. M. Kwok, Wendy Y. J. Huang
Abstract:
Objectives: Intellectual disability (ID) ranks among the top 20 most costly disorders. A child with ID creates a wide set of challenges to the individual, family, and society, and overweight and obesity aggravate those challenges. People with ID have the right to attain optimal health like the rest of the population. They should be given priority to eliminate existing health inequities. Childhood obesity epidemic and associated factors among children, in general, has been well documented, while knowledge about overweight and obesity in children with ID is scarce. Methods: A cross-sectional study was conducted among 524 Chinese children with ID (males: 68.9%, mean age: 12.2 years) in Hong Kong in 2015. Children’s height and weight were measured at school. Parents, in the presence of their children, completed a self-administered questionnaire at home about the children’s physical activity (PA), eating habits, and sleep duration in a typical week as well as parenting practices regarding children’s eating and PA, and their socio-demographic characteristics. Multivariate logistic regression estimated the potential risk factors for children being overweight. Results: The prevalence of overweight and obesity in children with ID was 31.3%, which was higher than their general counterparts (18.7%-19.9%). Multivariate analyses revealed that the risk factors of overweight and obese in children with ID included: comorbidity with autism, the maternal side being overweight or obese, parenting practices with less pressure to eat more, children having shorter sleep duration, longer periods of sedentary behavior, and higher intake frequencies of sweetened food, fried food, and meats, fish, and eggs. Children born in other places, having snacks more frequently, and having irregular meals were also more likely to be overweight or obese, with marginal significance. Conclusions: Children with ID are more vulnerable to being overweight or obese than their typically developing counterparts. Identified risk factors in this study highlight a multifaceted approach to the involvement of parents as well as the modification of some children’s questionable behaviors to help them achieve a healthy weight.Keywords: prevalence, risk factors, obesity, children with disability
Procedia PDF Downloads 1372601 Drivers of Liking: Probiotic Petit Suisse Cheese
Authors: Helena Bolini, Erick Esmerino, Adriano Cruz, Juliana Paixao
Abstract:
The currently concern for health has increased demand for low-calorie ingredients and functional foods as probiotics. Understand the reasons that infer on food choice, besides a challenging task, it is important step for development and/or reformulation of existing food products. The use of appropriate multivariate statistical techniques, such as External Preference Map (PrefMap), associated with regression by Partial Least Squares (PLS) can help in determining those factors. Thus, this study aimed to determine, through PLS regression analysis, the sensory attributes considered drivers of liking in probiotic petit suisse cheeses, strawberry flavor, sweetened with different sweeteners. Five samples in same equivalent sweetness: PROB1 (Sucralose 0.0243%), PROB2 (Stevia 0.1520%), PROB3 (Aspartame 0.0877%), PROB4 (Neotame 0.0025%) and PROB5 (Sucrose 15.2%) determined by just-about-right and magnitude estimation methods, and three commercial samples COM1, COM2 and COM3, were studied. Analysis was done over data coming from QDA, performed by 12 expert (highly trained assessors) on 20 descriptor terms, correlated with data from assessment of overall liking in acceptance test, carried out by 125 consumers, on all samples. Sequentially, results were submitted to PLS regression using XLSTAT software from Byossistemes. As shown in results, it was possible determine, that three sensory descriptor terms might be considered drivers of liking of probiotic petit suisse cheese samples added with sweeteners (p<0.05). The milk flavor was noticed as a sensory characteristic with positive impact on acceptance, while descriptors bitter taste and sweet aftertaste were perceived as descriptor terms with negative impact on acceptance of petit suisse probiotic cheeses. It was possible conclude that PLS regression analysis is a practical and useful tool in determining drivers of liking of probiotic petit suisse cheeses sweetened with artificial and natural sweeteners, allowing food industry to understand and improve their formulations maximizing the acceptability of their products.Keywords: acceptance, consumer, quantitative descriptive analysis, sweetener
Procedia PDF Downloads 4462600 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3762599 The Association between Antimicrobial Usage and Biosecurity Practices on Commercial Chicken Farms in Bangladesh
Authors: Tasneem Imam, Justine S. Gibson, Mohammad Foysal, Shetu B. Das, Rashed Mahmud, Suman D. Gupta, Ahasanul Hoque, Guillaume Fournie, Joerg Henning
Abstract:
Commercial chicken production is an import livestock industry in Bangladesh. Antimicrobials are commonly used to control and prevent infectious diseases. It was hypothesized that inadequate biosecurity practices might promote antimicrobial usage on commercial chicken farms. A cross-sectional study was carried out to evaluate antimicrobial usage and farm biosecurity practices implemented on 57 layer and 83 broiler farms in eight sub-districts of the Chattogram district in Bangladesh. A questionnaire was used to collect data on antimicrobial usage and biosecurity practices on these farms. A causal framework was used to guide the development of a multi-level mixed-effects logistic regression analysis to evaluate the total and direct effects of practiced biosecurity management on prophylactic and therapeutic administration of antimicrobials. A total of 24 antimicrobials were administered in the current production cycle at the time of the survey. The most administered antimicrobials on layer farms were ciprofloxacin (37.0% of farms), amoxicillin (33.3%), and tiamulin (31.5%); however, on broiler farms, colistin (56.6% of farms), doxycycline (50.6%), and neomycin (38.6%) were most used. Only 15.3% of commercial farmers used antimicrobials entirely for therapeutic purposes, whereas 84.7% administered antimicrobials prophylactically. Inadequate biosecurity practices were more common among commercial broiler farmers compared to layer farmers. For example, only 2.4% of broiler farmers used footbaths before entering sheds compared to 22.2% of the layer farmers (p < 0.001). Farms that used antimicrobials only for therapeutic purposes (vs prophylactic) implemented more frequently adequate disease control measures, such as separating sick birds from healthy birds. This research highlighted that the prophylactic application of antimicrobials is often conducted to substitute poor biosecurity practices on commercial chicken farms. Awareness programs for farmers are crucial to inform them about the risk associated with antimicrobial usage and to highlight the economic benefits of implementing cost-effective biosecurity measures to control infectious poultry diseases.Keywords: antimicrobial, biosecurity, broiler, layer
Procedia PDF Downloads 1682598 Microstructural Characterization and Mechanical Properties of Al-2Mn-5Fe Ternary Eutectic Alloy
Authors: Emin Çadirli, Izzettin Yilmazer, Uğur Büyük, Hasan Kaya
Abstract:
Al-2Mn-5Fe eutectic alloy (wt.%) was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upward at a constant temperature gradient in four different of growth rates by using a Bridgman method. The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependence of eutectic spacing on the growth rate was determined by using linear regression analysis. The microhardness and tensile strength of the studied alloy also were measured from directionally solidified samples. The dependency of the microhardness and tensile strength for directionally solidified Al-2Mn-5Fe eutectic alloy on the growth rate were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: eutectic alloy, microhardness, microstructure, tensile strength
Procedia PDF Downloads 4732597 The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain
Authors: Fariza Yunus, Jasmee Jaafar, Zamalia Mahmud, Nurul Nisa’ Khairul Azmi, Nursalleh K. Chang, Nursalleh K. Chang
Abstract:
Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia.Keywords: air temperature control, interpolation analysis, peninsular Malaysia, regression model, air temperature
Procedia PDF Downloads 3752596 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1762595 Regional Flood Frequency Analysis in Narmada Basin: A Case Study
Authors: Ankit Shah, R. K. Shrivastava
Abstract:
Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency
Procedia PDF Downloads 4202594 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 4362593 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3162592 Islamic Equity Markets Response to Volatility of Bitcoin
Authors: Zakaria S. G. Hegazy, Walid M. A. Ahmed
Abstract:
This paper examines the dependence structure of Islamic stock markets on Bitcoin’s realized volatility components in bear, normal, and bull market periods. A quantile regression approach is employed, after adjusting raw returns with respect to a broad set of relevant global factors and accounting for structural breaks in the data. The results reveal that upside volatility tends to exert negative influences on Islamic developed-market returns more in bear than in bull market conditions, while downside volatility positively affects returns during bear and bull conditions. For emerging markets, we find that the upside (downside) component exerts lagged negative (positive) effects on returns in bear (all) market regimes. By and large, the dependence structures turn out to be asymmetric. Our evidence provides essential implications for investors.Keywords: cryptocurrency markets, bitcoin, realized volatility measures, asymmetry, quantile regression
Procedia PDF Downloads 1882591 Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term
Authors: Fumiya Sugino, Naohiro Nakamura, Yuji Miyazu
Abstract:
In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree.Keywords: eigenfrequency, damping ratio, ARX model, earthquake observation records
Procedia PDF Downloads 217