Search results for: medical image analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31911

Search results for: medical image analysis

31101 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
31100 The Mediating Effects of Student Satisfaction on the Relationship Between Organisational Image, Service Quality and Students’ Loyalty in Higher Education Institutions in Kano State, Nigeria

Authors: Ado Ismail Sabo

Abstract:

Statement of the Problem: The global trend in tertiary education institutions today is changing and moving towards engagement, promotion and marketing. The reason is to upscale reputation and impact positioning. More prominently, existing rivalry today seeks to draw-in the best and brightest students. A university or college is no longer just an institution of higher learning, but one adapting additional business nomenclature. Therefore, huge financial resources are invested by educational institutions to polish their image and improve their global and national ranking. In Nigeria, which boasts of a vast population of over 180 million people, some of whose patronage can bolster its education sector; standard of education continues to decline. Today, some Nigerian tertiary education institutions are shadows of their pasts, in terms of academic excellence. Quality has been relinquished because of the unquenchable quest by government officials, some civil servants, school heads and educators to amass wealth. It is very difficult to gain student satisfaction and their loyalty. Some of the student’s loyalties factor towards public higher educational institutions might be confusing. It is difficult to understand the extent to which students are satisfy on many needs. Some students might feel satisfy with the academic lecturers only, whereas others may want everything, and others will never satisfy. Due to these problems, this research aims to uncover the crucial factors influencing student loyalty and to examine if students’ satisfaction might impact mediate the relationship between service quality, organisational image and students’ loyalty towards public higher education institutions in Kano State, Nigeria. The significance of the current study is underscored by the paucity of similar research in the subject area and public tertiary education in a developing country like Nigeria as shown in existing literature. Methodology: The current study was undertaken by quantitative research methodology. Sample of 600 valid responses were obtained within the study population comprising six selected public higher education institutions in Kano State, Nigeria. These include: North West University Kano, Bayero University Kano, School of Management Studies Kano, School of Technology Kano, Sa’adatu Rimi College Kano and Federal College of Education (FCE) Kano. Four main hypotheses were formulated and tested using structural equation modeling techniques with Analysis of Moment Structure (AMOS Version 22.0). Results: Analysis of the data provided support for the main issue of this study, and the following findings are established: “Student Satisfaction mediates the relationship between Service Quality and Student Loyalty”, “Student Satisfaction mediates the relationship between Organizational Image and Student Loyalty” respectively. The findings of this study contributed to the theoretical implication which proposed a structural model that examined the relationships among overall Organizational image, service quality, student satisfaction and student loyalty. Conclusion: In addition, the findings offered a better insight to the managerial (higher institution of learning service providers) by focusing on portraying the image of service quality with student satisfaction in improving the quality of student loyalty.

Keywords: student loyalty, service quality, student satisfaction, organizational image

Procedia PDF Downloads 70
31099 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 273
31098 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques

Authors: Misha Alexander, S. B. Waykar

Abstract:

Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.

Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping

Procedia PDF Downloads 405
31097 The Cognitive Perspective on Arabic Spatial Preposition ‘Ala

Authors: Zaqiatul Mardiah, Afdol Tharik Wastono, Abdul Muta'ali

Abstract:

In general, the Arabic preposition ‘ala encodes the sense of UP-DOWN schema. However, the use of the preposition ‘ala can has many extended schemas that still have relation to its primary sense. In this paper, we show how the framework of cognitive linguistics (CL) based on image schemas can be applied to analyze the spatial semantic of the use of preposition ‘ala in the horizontal and vertical axes. The preposition ‘ala is usually used in the locative sense in which one physical entity is UP-DOWN relation to another physical entity. In spite of that, the cognitive analysis of ‘ala justifies the use of this preposition in many situations to seemingly encode non-up down-related spatial relations, and non-physical relation. This uncovers some of the unsolved issues concerning prepositions in general and the Arabic prepositions in particular the use of ‘ala as a sample. Using the Arabic corpus data, we reveal that in many cases and situations, the use of ‘ala is extended to depict relations other than the ones where the Trajector (TR) is actually in up-down relation to the Landmark (LM). The instances analyzed in this paper show that ‘ala encodes not only the spatial relations in which the TR and the LM are horizontally or vertically related to each other, but also non-spatial relations.

Keywords: image schema, preposition, spatial semantic, up-down relation

Procedia PDF Downloads 148
31096 Numerical Implementation and Testing of Fractioning Estimator Method for the Box-Counting Dimension of Fractal Objects

Authors: Abraham Terán Salcedo, Didier Samayoa Ochoa

Abstract:

This work presents a numerical implementation of a method for estimating the box-counting dimension of self-avoiding curves on a planar space, fractal objects captured on digital images; this method is named fractioning estimator. Classical methods of digital image processing, such as noise filtering, contrast manipulation, and thresholding, among others, are used in order to obtain binary images that are suitable for performing the necessary computations of the fractioning estimator. A user interface is developed for performing the image processing operations and testing the fractioning estimator on different captured images of real-life fractal objects. To analyze the results, the estimations obtained through the fractioning estimator are compared to the results obtained through other methods that are already implemented on different available software for computing and estimating the box-counting dimension.

Keywords: box-counting, digital image processing, fractal dimension, numerical method

Procedia PDF Downloads 83
31095 Phenomenological Analysis on the Experience of Volunteer Activities in Pre-Medical School Students

Authors: S. J. Yune, K. H. Park

Abstract:

The purpose of this study was to understand the experiences of medical students in volunteer activities and to draw implications for medical education. For this purpose, the questionnaire and the reflection essay on the volunteer experience of 54 students in the first year and 57 students in the second year were analyzed and analyzed. As a result, the participation of the students in the volunteer activities was the highest in the first semester and once a month in the second grade. Activities were mostly through volunteer organizations. The essence of the volunteering activities experience revealed through reflection essays was 'I want to avoid with fear' and 'I feel far away' in the recognition before volunteering activities. In terms of knowledge after participating in volunteer activities, 'breaking eggs and getting to know the world' and 'intellectual growth through social experience' appeared. In terms of attitude, it revealed 'deep reflection on me and others', 'understanding of service life'. And in terms of behavior, 'Begin preparing for a life of service' appeared. The results of this study revealed that volunteering activities provide students with opportunities for growth and development. In order to obtain more meaningful results, consciousness education related to social service should be done in advance.

Keywords: volunteering activity, pre-medical school student, reflection essay, qualitative analysis

Procedia PDF Downloads 186
31094 Improved Processing Speed for Text Watermarking Algorithm in Color Images

Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari

Abstract:

Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.

Keywords: steganography, watermarking, time complexity measurements, private keys

Procedia PDF Downloads 143
31093 Impact of Green Marketing Mix Strategy and CSR on Organizational Performance: An Empirical Study of Manufacturing Sector of Pakistan

Authors: Syeda Shawana Mahasan, Muhammad Farooq Akhtar

Abstract:

The objective of this study is to analyze the influence of the green marketing mix strategy and corporate social responsibility (CSR) on the performance of an organization, taking into account the mediating effect of corporate image. The impact of frugal innovation and corporate activism is being examined. The data was gathered from executives at various levels of management, including top, middle, and lower-level managers, from a total of 550 manufacturing enterprises of different sizes, ranging from small to medium to large. The collected replies are processed and analyzed using SMART PLS version 4.0.0.0. The application of PLS-SEM demonstrates that the green marketing mix strategy and corporate social responsibility have a significant impact on organizational performance. Therefore, it is imperative for organizations to effectively adopt environmentally sustainable and socially conscious methods within their operations. The results indicate that the corporate image has a key role in mediating the relationship between the green marketing mix strategy, corporate social responsibility, and organizational performance. This demonstrates the imperative for organizations to actively enhance their favorable reputation among stakeholders. The combination of frugal innovation and corporate activism enhances the connection between corporate image and organizational performance. The current study assists managers in recognizing the significance of these particular constructs in maintaining the long-term performance of the organization.

Keywords: green marketing mix strategy, CSR, corporate image, organizational performance, frugal innovation, corporate activism

Procedia PDF Downloads 41
31092 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
31091 The Efficiency of the Use of Medical Bilingual Dictionary in English Language Teaching in Vocational College

Authors: Zorana Jurinjak, Christos Alexopoulos

Abstract:

The aim of this paper is to examine the effectiveness of using a medical bilingual dictionary in teaching English in a vocational college. More precisely, to what extent the use of bilingual medical dictionary in relation to the use of Standard English bilingual dictionaries influences the results on tests, and thus the acquisition of better competence of students mastering the subject terminology. Secondary interest in this paper would be to raise awareness among students and teachers about the advantages of dictionary use. The experiment was conducted at College of Applied Health Sciences in Ćuprija on a sample of 90 students. The respondents translated three medical texts with 42 target terms. Statistical analyses of the data obtained show that the differences in average time and correct answers favor the students who used medical dictionary.

Keywords: bilingual medical dictionary, standard english bilingual dictionary, medical terminology, EOS, ESP

Procedia PDF Downloads 110
31090 A Holistic Analysis of the Emergency Call: From in Situ Negotiation to Policy Frameworks and Back

Authors: Jo Angouri, Charlotte Kennedy, Shawnea Ting, David Rawlinson, Matthew Booker, Nigel Rees

Abstract:

Ambulance services need to balance the large volume of emergency (999 in the UK) calls they receive (e.g., West Midlands Ambulance Service reports per day about 4,000 999 calls; about 679,000 calls per year are received in Wales), with dispatching limited resource for on-site intervention to the most critical cases. The process by which Emergency Medical Dispatch (EMD) decisions are made is related to risk assessment and involves the caller and call-taker as well as clinical teams negotiating risk levels on a case-by-case basis. Medical Priority Dispatch System (MPDS – also referred to as Advanced Medical Priority Dispatch System AMPDS) are used in the UK by NHS Trusts (e.,g WAST) to process and prioritise 999 calls. MPDS / AMPDS provide structured protocols for call prioritisation and call management. Protocols/policy frameworks have not been examined before in the way we propose in our project. In more detail, the risk factors that play a role in the EMD negotiation between the caller and call-taker have been analysed in both medical and social science research. Research has focused on the structural, morphological and phonological aspects that could improve, and train, human-to-human interaction or automate risk detection, as well as the medical factors that need to be captured from the caller to inform the dispatch decision. There are two significant gaps in our knowledge that we address in our work: 1. the role of backstage clinical teams in translating the caller/call-taker interaction in their internal risk negotiation and, 2. the role of policy frameworks, protocols and regulations in the framing of institutional priorities and resource allocation. We take a multi method approach and combine the analysis of 999 calls with the analysis of policy documents. We draw on interaction analysis, corpus methodologies and thematic analysis. In this paper, we report on our preliminary findings and focus in particular on the risk factors we have identified and the relationship with the regulations that create the frame within which teams operate. We close the paper with implications of our study for providing evidence-based policy intervention and recommendations for further research.

Keywords: emergency (999) call, interaction analysis, discourse analysis, ambulance dispatch, medical discourse

Procedia PDF Downloads 103
31089 Morphometrics Study of Apis florea and Apis mellifera from Different Locations in Sudan

Authors: Mohammed M. Ibrahim, A. A. Yusuf, Manuel Du, Fiona Mumoki

Abstract:

The traditional honey bee species of Sudan is Apis mellifera, but in 1985, the dwarf bee Apis florea was introduced to the country, so now there are two species present. However, there are conflicting assessments regarding the subspecies of Apis mellifera colonies in Sudan. Likewise, it is unclear if, in the 40 years since its introduction, Apis florea has already developed regional differences or ecotypes. To shed light on these questions, we performed a morphology study on Sudanese honeybees. Samples of 10 to 20 honeybee workers per colony of the two species were collected from 16 locations, spanning different climatic zones in Sudan during 2021. Measurements were taken from 16 morphometric characteristics using a stereo-microscope equipped with an Image Analysis System (Moticam Image Plus 5.0 Digital Microscope Camera) to study their variability. The results indicate that in both species, the general means of various characters showed significant differences (p < 0.05) within a species between different locations, indicating that there might indeed be regional differences. However, more taxonomic investigation and, ideally also, molecular studies are needed in order to confirm the proper identification of subspecies and their ecotypes.

Keywords: Apis, subspecies, morphology, Sudan

Procedia PDF Downloads 102
31088 Design and Simulation of 3-Transistor Active Pixel Sensor Using MATLAB Simulink

Authors: H. Alheeh, M. Alameri, A. Al Tarabsheh

Abstract:

There has been a growing interest in CMOS-based sensors technology in cameras as they afford low-power, small-size, and cost-effective imaging systems. This article describes the CMOS image sensor pixel categories and presents the design and the simulation of the 3-Transistor (3T) Active Pixel Sensor (APS) in MATLAB/Simulink tool. The analysis investigates the conversion of the light into an electrical signal for a single pixel sensing circuit, which consists of a photodiode and three NMOS transistors. The paper also proposes three modes for the pixel operation; reset, integration, and readout modes. The simulations of the electrical signals for each of the studied modes of operation show how the output electrical signals are correlated to the input light intensities. The charging/discharging speed for the photodiodes is also investigated. The output voltage for different light intensities, including in dark case, is calculated and showed its inverse proportionality with the light intensity.

Keywords: APS, CMOS image sensor, light intensities photodiode, simulation

Procedia PDF Downloads 177
31087 Scar Removal Stretegy for Fingerprint Using Diffusion

Authors: Mohammad A. U. Khan, Tariq M. Khan, Yinan Kong

Abstract:

Fingerprint image enhancement is one of the most important step in an automatic fingerprint identification recognition (AFIS) system which directly affects the overall efficiency of AFIS. The conventional fingerprint enhancement like Gabor and Anisotropic filters do fill the gaps in ridge lines but they fail to tackle scar lines. To deal with this problem we are proposing a method for enhancing the ridges and valleys with scar so that true minutia points can be extracted with accuracy. Our results have shown an improved performance in terms of enhancement.

Keywords: fingerprint image enhancement, removing noise, coherence, enhanced diffusion

Procedia PDF Downloads 517
31086 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 126
31085 Design of a New Package for Saffron Using Kansei Engineering

Authors: Sotiris Papantonopoulos, Marianna Bortziou

Abstract:

This study aimed at developing a new package of saffron using emotional design and specifically the Kansei Engineering method. Kansei Engineering is a proactive product development methodology, which aims to improve the product development process and to translate consumers' feelings and image of a product into design elements. A survey was conducted with two major purposes: (1) to determine the target group of saffron use and to collect information about the adequacy of the product’s promotion and the importance of its packaging, (2) to collect the most important properties of a package according to consumers and to evaluate the existing saffron packages according to these properties (benchmarking). The interaction with the general public conducted by the distribution of online questionnaires and personal interviews as well as the statistical analysis of the results were performed using the SPSS software. The results of the survey were used in all stages of Kansei Engineering. Based on the results, a new saffron package was designed by using various designing and image processing software. This improved package is expected to achieve a better promotion and increased sales of the product.

Keywords: design, emotional design, Kansei Engineering, packaging, saffron

Procedia PDF Downloads 162
31084 Mapping Potential Soil Salinization Using Rule Based Object Oriented Image Analysis

Authors: Zermina Q., Wasif Y., Naeem S., Urooj S., Sajid R. A.

Abstract:

Land degradation, a leading environemtnal problem and a decrease in the quality of land has become a major global issue, caused by human activities. By land degradation, more than half of the world’s drylands are affected. The worldwide scope of main saline soils is approximately 955 M ha, whereas inferior salinization affected approximately 77 M ha. In irrigated areas, a total of 58% of these soils is found. As most of the vegetation types requires fertile soil for their growth and quality production, salinity causes serious problem to the production of these vegetation types and agriculture demands. This research aims to identify the salt affected areas in the selected part of Indus Delta, Sindh province, Pakistan. This particular mangroves dominating coastal belt is important to the local community for their crop growth. Object based image analysis approach has been adopted on Landsat TM imagery of year 2011 by incorporating different mathematical band ratios, thermal radiance and salinity index. Accuracy assessment of developed salinity landcover map was performed using Erdas Imagine Accuracy Assessment Utility. Rain factor was also considered before acquiring satellite imagery and conducting field survey, as wet soil can greatly affect the condition of saline soil of the area. Dry season considered best for the remote sensing based observation and monitoring of the saline soil. These areas were trained with the ground truth data w.r.t pH and electric condutivity of the soil samples. The results were obtained from the object based image analysis of Keti bunder and Kharo chan shows most of the region under low saline soil.Total salt affected soil was measured to be 46,581.7 ha in Keti Bunder, which represents 57.81 % of the total area of 80,566.49 ha. High Saline Area was about 7,944.68 ha (9.86%). Medium Saline Area was about 17,937.26 ha (22.26 %) and low Saline Area was about 20,699.77 ha (25.69%). Where as total salt affected soil was measured to be 52,821.87 ha in Kharo Chann, which represents 55.87 % of the total area of 94,543.54 ha. High Saline Area was about 5,486.55 ha (5.80 %). Medium Saline Area was about 13,354.72 ha (14.13 %) and low Saline Area was about 33980.61 ha (35.94 %). These results show that the area is low to medium saline in nature. Accuracy of the soil salinity map was found to be 83 % with the Kappa co-efficient of 0.77. From this research, it was evident that this area as a whole falls under the category of low to medium saline area and being close to coastal area, mangrove forest can flourish. As Mangroves are salt tolerant plant so this area is consider heaven for mangrove plantation. It would ultimately benefit both the local community and the environment. Increase in mangrove forest control the problem of soil salinity and prevent sea water to intrude more into coastal area. So deforestation of mangrove should be regularly monitored.

Keywords: indus delta, object based image analysis, soil salinity, thematic mapper

Procedia PDF Downloads 619
31083 Examining Factors Influencing Career Choice Among Young Muslim Arab Women in Nursing

Authors: Merav Ben Natan, Miriam Abo El Hadi, Fardus Zoubi

Abstract:

Aim: This study investigates the factors that motivate young Muslim Arab women to pursue nursing careers, focusing on the impact of nurse uniforms, the COVID-19 pandemic, and perceptions of nurses and the nursing profession. The aim is to draw insights that can inform policy strategies. Background: The global shortage of nursing professionals is a pressing concern, even in regions like Israel. Attracting and retaining young Muslim Arab women in nursing is essential for addressing this shortage. To better understand their career decisions, it is crucial to examine the influence of nurse uniforms, the pandemic, and perceptions related to nurses and the nursing profession. Methods: This cross-sectional study employed digital questionnaires, which were administered to 200 Muslim Arab women between the ages of 20 and 30 in Israel. Results: Only 29.2% of the participants indicated an interest in pursuing a nursing career. The study findings revealed a noteworthy positive correlation between the pandemic's impact and the intention to pursue nursing. Further analysis, using linear regression, elucidated the role of factors such as the white nurse uniform, perceptions of nurses, and the image of the nursing profession in influencing career choices in nursing. Discussion: This study underscores the significance of nurse uniforms, the image of nurses, and the perception of the nursing profession in shaping the career choices of young Muslim Arab women in nursing. Policy interventions should prioritize raising awareness about diverse nursing roles, expanding nurses' responsibilities, and highlighting their invaluable contributions to society.

Keywords: nursing image, uniform, nursing career, nurse profession

Procedia PDF Downloads 86
31082 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 97
31081 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 74
31080 Language Effects on the Prestige and Product Image of Advertised Smartphone in Consumer Purchases in Indonesia

Authors: Vidyarini Dwita, Rebecca Fanany

Abstract:

This study will discuss the growth of the market for smartphone technology in Indonesia. This country, with the world’s fourth largest population, has a reputation as the social media capital of the world, and this reputation is largely justified. The penetration of social media is high in Indonesia which has one of the largest global markets. Most Indonesian users of Facebook, Twitter and other social media platforms access the sites from their mobile phones. Indonesia is expected to continue to be a major market for digital mobile devices, such as smartphone and tablets that can access the internet. The aim of this study to describe the way responses of Indonesian consumers to smartphone advertising using English and Indonesian will impact on their perceptions of the prestige and product image of the advertised items and thus influence consumer intention to purchase the item. Advertising for smartphones and similar products is intense and dynamic and often draws on the social attitudes of Indonesians with respect to linguistic and cultural content and especially appeals to their desire to be part of global mainstream culture. The study uses a qualitative method based on in-depth interviews with 30 participants. Content analysis is employed to analyse the responses of Indonesian consumers to smartphone advertising that uses English and Indonesian text. Its findings indicate that consumers’ impressions of English and Indonesian slogans influence their attitudes toward smartphones, suggesting that linguistic context plays a role in influencing consumer purchases.

Keywords: consumer purchases, marketing communication, product image, smartphone advertising, sociolinguistic

Procedia PDF Downloads 224
31079 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 92
31078 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories

Authors: Nabilah Ibrahim, Khaliza Musa

Abstract:

The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.

Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index

Procedia PDF Downloads 444
31077 Dirty Martini vs Martini: The Contrasting Duality Between Big Bang and BTS Public Image and Their Latest MVs Analysis

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

Big Bang is like a dirty martini embroiled in a stew of personal individual scandals that have rocked the group’s image and perception, from G-Dragon’s and T.O.P. marijuana episodes in 2011 and 2016, respectively, to Daesung’s building illicit entertainment activities in 2018to the Burning Sun shebang that led to the Titanic sink of Big Bang’s youngest member Seungri in 2019 and the positive sentiment migration to the antithetical side. BTS, on the other hand, are like a martini, clear, clean, attracting as many crowds to their performances and online content as the Pope attracts believers to Sunday Mass in the Vatican, as exemplified by their latest MVs. Big Bang’s 2022 Still Life achieved 16.4 million views on Youtube in 24hours, whilst BTS Permission to Dance achieved 68.5 million in the same period of time. The difference is significant when added Big Bang’s and BTS overall award wins, a total of 117 in contrast to 460. Both groups are uniquely talented and exceptional performers that have been contributing greatly to the dissemination of Korean Pop Music on a global scale in their own inimitable ways. Both are exceptional in their own right and while the artists cannot, ought not, should not be compared for the grave injustice made in comparing one individual planet with one solar system, a contrast is merited and hence done. The reality, nonetheless, is about disengagement from a group that lives life humanly, learning and evolving with each challenge and mistake without a clean, perfect tag attached to it, demonstrating not only an inability to disassociate the person from the artist and the music but also an inability to understand the difference between a private and public life.

Keywords: K-Pop, big bang, BTS, music, public image, entertainment, korean entertainment

Procedia PDF Downloads 98
31076 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 195
31075 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 218
31074 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 402
31073 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 12
31072 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014

Authors: R. Mofeed, N. Elgendy

Abstract:

Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.

Keywords: cinema, informal urbanism, popular mind, representation

Procedia PDF Downloads 296