Search results for: liquid-phase reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4739

Search results for: liquid-phase reduction

3929 The Selective Reduction of a Morita-baylis-hillman Adduct-derived Ketones Using Various Ketoreductase Enzyme Preparations

Authors: Nompumelelo P. Mathebula, Roger A. Sheldon, Daniel P. Pienaar, Moira L. Bode

Abstract:

The preparation of enantiopure Morita-Baylis-Hillman (MBH) adducts remains a challenge in organic chemistry. MBH adducts are highly functionalised compounds which act as key intermediates in the preparation of compounds of medicinal importance. MBH adducts are prepared in racemic form by reacting various aldehydes and activated alkenes in the presence of DABCO. Enantiopure MBH adducts can be obtained by employing Enzymatic kinetic resolution (EKR). This technique has been successfully demonstrated in our group, amongst others, using lipases in either hydrolysis or transesterification reactions. As these methods only allow 50% of each enantiomer to be obtained, our interest grew in exploring other enzymatic methods for the synthesis of enantiopure MBH adducts where, theoretically, 100% of the desired enantiomer could be obtained.Dehydrogenase enzymes can be employed on prochiral substrates to obtain optically pure compounds by reducing carbon-carbon double bonds or carbonyl groups of ketones. Ketoreductases have been used historically to obtain enantiopure secondary alcohols on an industrial scale. Ketoreductases are NAD(P)H-dependent enzymes and thus require nicotinamide as a cofactor. This project focuses on employing ketoreductase enzymes to selectively reduce ketones derived from Morita-Baylis-Hillman (MBH) adducts in order to obtain these adducts in enantiopure form.Results obtained from this study will be reported. Good enantioselectivity was observed using a range of different ketoreductases, however, reactions were complicated by the formation of an unexpected by-product, which was characterised employing single crystal x-ray crystallography techniques. Methods to minimise by-product formation are currently being investigated.

Keywords: ketoreductase, morita-baylis-hillman, selective reduction, x-ray crystallography

Procedia PDF Downloads 46
3928 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting

Authors: Juang R. Matangaran, Qi Adlan

Abstract:

Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.

Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 383
3927 Vulnerability and Risk Assessment, and Preparedness to Natural Disasters of Schools in Southern Leyte, Philippines

Authors: Lorifel Hinay

Abstract:

Natural disasters have increased in frequency and severity in the Philippines over the years resulting to detrimental impacts in school properties and lives of learners. The topography of the Province of Southern Leyte is a hotspot for inevitable natural disaster-causing hazards that could affect schools, cripple the educational system and cause environmental, cultural and social detrimental impacts making Disaster Risk Reduction and Management (DRRM) an indispensable platform to keep learners safe, secure and resilient. This study determined the schools’ vulnerability and risk assessment to earthquake, landslide, flood, storm surge and tsunami hazards, and its relationship to status in disaster preparedness. Descriptive-correlational research design was used where the respondents were School DRRM Coordinators/School Administrators and Municipal DRRM Officers. It was found that schools’ vulnerability and risk were high in landslide, medium in earthquake, and low in flood, storm surge and tsunami. Though schools were moderately prepared in disasters across all hazards, they were less accomplished in group organization and property security. Less planning preparation and less implementation of DRRM measures were observed in schools highly at risk of earthquake and landslide. Also, schools vulnerable to landslide and flood have very high property security. Topography and location greatly contributed to schools’ vulnerability to hazards, thus, a school-based disaster preparedness plan is hoped to help ensure that hazard-exposed schools can build a culture of safety, disaster resiliency and education continuity.

Keywords: disaster risk reduction and management, earthquake, flood, landslide, storm surge, tsunami

Procedia PDF Downloads 102
3926 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 306
3925 Effectiveness of Shock Wave Therapy Versus Intermittent Mechanical Traction on Mechanical Low Back Pain and Disabilities

Authors: Ahmed Assem Abd El Rahim

Abstract:

Background: Mechanical low back pain is serious physical and social health problem. Purpose: To examine impact of shock wave therapy versus intermittent mechanical traction on mechanical LBP, and disabilities. Subjects: 60 mechanical LBP male studied cases years old 20-35 years were assigned randomly into 3 groups, Picked up from Sohag university orthopedic hospital outpatient clinic. Methods: (Study Group) A: 20 studied cases underwent shock wave therapy plus conventional physical therapy. (Study Group) B: twenty studied cases underwent intermittent mechanical traction plus conventional physical therapy. (Control Group) C: 20 patients underwent conventional physical therapy alone. Three sessions were applied weekly for four weeks. Pain was quantified using McGill Pain Questionnaire, Roland Morris Disability Questionnaire was used for measuring disability, and the ROM was evaluated by (BROM) device pre- & post-therapy. Results: Groups (A, B & C) found a reduction in pain & disability & rise in their in flexion and extension ROM after end of 4 weeks of program. Mean values of pain scale after therapy were 15.3, 9.47, and 23.07 in groups A, B, & C. mean values of Disability scale after therapy were 8.44, 4.87, 11.8in groups A, B & C. mean values of ROM of flexion were 25.53, 29.06, & 23.9 in groups A, B & C. mean values of ROM of extension were 11.73, 15.53 & 9.85 in groups A, B & C. studied cases who received intermittent mechanical traction & conventional physical therapy (group B), found reduction in pain & disability & improvement in ROM of flexion & extension value (P<0.001) after therapy program. Conclusion: Shock wave therapy and intermittent mechanical traction, as well as conventional physical treatment, can be beneficial in studied cases with mechanical LBP.

Keywords: mechanical low back pain, shock wave, mechanical, low back pain

Procedia PDF Downloads 42
3924 Carbon Blacks: A Broad Type of Carbon Materials with Different Electrocatalytic Activity to Produce H₂O₂

Authors: Alvaro Ramírez, Martín Muñoz-Morales, Ester López- Fernández, Javier Llanos, C. Ania

Abstract:

Carbon blacks are value-added materials typically produced through the incomplete combustion or thermal decomposition of hydrocarbons. Traditionally, they have been used as catalysts in many different applications, but in the last decade, their potential in green chemistry has gained significant attention. Among them, the electrochemical production of H₂O₂ has attracted interest because of their properties as high oxidant capacity or their industrial interest as a bleaching agent. Carbon blacks are commonly used in this application in a catalytic ink that is drop-casted on supporting electrodes and acts as catalysts for the electrochemical production of H₂O₂ through oxygen reduction reaction (ORR). However, the different structural and electrochemical behaviors of each type of carbon black influence their applications. In this line, the term ‘carbon black’, has to be considered as a generic name that does not guarantee any physicochemical properties if any further description is mentioned. In fact, different specific surface area (SSA), surface functional groups, porous structure, and electro catalysts effect seem very important for electrochemical applications, and considerable differences were found during the analysis of four types of carbon blacks. Thus, the aim of this work is to evaluate the influence of SSA, porous structure, oxygen functional groups, and structural defects to differentiate among these carbon blacks (e.g. Vulcan XC72, Superior Graphite Co, Printex XE2, and Prolabo) for H₂O₂ production via ORR, using carbon paper as electrode support with improved selectivity and efficiency. Results indicate that the number and size of pores, along with surface functional groups, are key parameters that significantly affect the overall process efficiency.

Keywords: carbon blacks, oxygen reduction reaction, hydrogen peroxide, porosity, surface functional groups

Procedia PDF Downloads 25
3923 Effective Energy Saving of a Large Building through Multiple Approaches

Authors: Choo Hong Ang

Abstract:

The most popular approach to save energy for large commercial buildings in Malaysia is to replace the existing chiller plant of high kW/ton to one of lower kW/ton. This approach, however, entails large capital outlay with a long payment period of up to 7 years. This paper shows that by using multiple approaches, other than replacing the existing chiller plant, an energy saving of up to 20 %, is possible. The main methodology adopted was to identify and then plugged all heat ingress paths into a building, including putting up glass structures to prevent mixing of internal air-conditioned air with the ambient environment, and replacing air curtains with glass doors. This methodology could save up to 10 % energy bill. Another methodology was to change fixed speed motors of air handling units (AHU) to variable speed drive (VSD) and changing escalators to motion-sensor type. Other methodologies included reducing heat load by blocking air supply to non-occupied parcels, rescheduling chiller plant operation, changing of fluorescent lights to LED lights, and conversion from tariff B to C1. A case example of Komtar, the tallest building in Penang, is given here. The total energy bill for Komtar was USD2,303,341 in 2016 but was reduced to USD 1,842,927.39 in 2018, a significant saving of USD460,413.86 or 20 %. In terms of kWh, there was a reduction from 18, 302,204.00 kWh in 2016 to 14,877,105.00 kWh in 2018, a reduction of 3,425,099.00 kWh or 18.71 %. These methodologies used were relatively low cost and the payback period was merely 24 months. With this achievement, the Komtar building was awarded champion of the Malaysian National Energy Award 2019 and second runner up of the Asean Energy Award. This experience shows that a strong commitment to energy saving is the key to effective energy saving.

Keywords: chiller plant, energy saving measures, heat ingress, large building

Procedia PDF Downloads 87
3922 Sublethal Effect of Tebufenozide, an Ecdysteroid Agonist, on the Reproduction of German Cockroach (Blattodea: Blattellidae)

Authors: Samira Kilani-Morakchi, Amina Badi, Nadia Aribi

Abstract:

German cockroach, Blattella germanica, is known to be an important pest due to its high reproductive potential and its ability to build up large infectious populations. The infestations were generally controlled by neurotoxic insecticides including organophosphates (OP), carbamate and pyrethroids. An alternative cockroach’s control approach is the use insect growth regulators (IGRs). The relative fewer effects of these chemicals on non-target insects and animals, and their favourable environmental fate, make them attractive insecticides for inclusion in integrated pest management programmes. The juvenoids and chitin synthesis inhibitors are two classes of IGRs that have received the most attention for useful chemicals to manage German cockroaches while ecdysone agonists were mostly used to control Lepidopteran species. In the present study, the sublethal effects of the non-sreroidal ecdysone agonist tebufenozide were evaluated topically on adults of the B. germanica. The effects on reproduction were observed in adults females of cockroaches that survived exposure to LD25 (146 µg/g of insect) of tebufenozide. Dissection of treated females showed a clear reduction in both the number of oocytes per paired ovaries and the size of basal oocytes, as compared to controls. In addition, tebufenozide significantly reduced the mating success of pairs and altered the fertility as shown through the reduction of ootheca development and total absence of viable nymph. Tebufenozide disrupted the German cockroach reproduction by interfering with homeostasis of the insect hormones. In conclusion, the overall results suggested that tebufenozide can be used as a biorational insecticide for controlling cockroaches.

Keywords: B. germanica, ecdysteroid agonist, tebufenozide, reproduction

Procedia PDF Downloads 278
3921 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment

Procedia PDF Downloads 262
3920 Quantitative Evaluation on Community Perceptions of Sanitation and Hygiene in Rural Guatemala

Authors: Akudo Ejelonu, Sarah Willig, J. Anthony Sauder, Heather Murphy, Frances Shofer

Abstract:

Background: The high prevalence of diarrheal diseases in the village of Tzununá, Guatemala is linked to lack of sanitation facilities and handwashing practices. Diarrheal diseases are preventable and improved access to latrines, hygiene education and clean water may improve sanitation by reducing the spread of disease. Objective: Between May 2015-January 2017, the University of Pennsylvania Chapter of Engineers Without Border (PennEWB) and local partners designed an intervention to reduce diarrheal disease by building pour flush latrines in 50 individual households and providing education on the importance of handwashing practice. Design/Methods: Through convenient sampling, we surveyed 45 households to evaluate the community’s knowledge of diarrheal disease, handwashing practices, and maintenance of the latrines. Results: 92% of the study participants experienced decrease of new cases of diarrheal disease after receiving a latrine. Only 11% washed their hands after defecating in the latrine. There was gap in understanding the health outcome of latrine sanitation and handwashing education. The respondents did not connect the reduction of diarrheal disease with latrine use and maintenance. Instead, they associated their motivation for latrine use with aesthetics, proximity to their home, ease and comfort, and reduction of shame. We recommend that PennEWB adopt UNICEF or WHO education on hand washing practice. Conclusion: Social interaction and social pressure drove the household use of latrines. The latrines are being valued and cleaned. The education that the residents received did not target norms and behaviors. Latrines could be used to create a new social norm that supports behavioral change.

Keywords: diarrheal disease, latrine, open defecation, water, sanitation and hygiene

Procedia PDF Downloads 138
3919 Microalgae as Promising Biostimulants of Plant Tolerance Against Heavy Metals

Authors: Soufiane Fal, Abderahim Aasfar, Ali Ouhssain, Hasnae Choukri, Abelaziz Smouni, Hicham El Arroussi

Abstract:

Heavy metals contamination is a major environmental concern around the world. It has a harmful impact on plant productivity and poses a serious risk to humans and animals health. In the present study, the effect of Microalgae Crude Extract (MCE) on tomato growth and nutrients uptake exposed to 2 mM Pb2+ and Cd2+ was investigated. In results, 2 mM Pb2+ and Cd2+ showed a significant reduction of tomatobiomass and perturbation in nutrients absorption. Moreover, MCE application in tomato plant exposed to Pb2+ and Cd2+ showed a significant enhancement of biomass compared to tomato plants under Pb2+ and Cd2+. On the other hand, MCE application favoured heavy metals accumulation in root and inhibited their translocation to shoot as phytostabilisation mechanism. Tomato plants showed biochemical responses to Pb2+ and Cd2+ stress with elevation of scavenging enzymes and molecules such as POD, CAT, SOD, Proline, and polyphenols, etc. In addition, the treatment by MCE showed a significant reduction level of the majority of these parameters. Furthermore, the metabolomic analysis revealed a significant change in important metabolites. Pb2+ and Cd2+ showed decrease in SFA and increase of UFA, VLFA, alkanes, alkenes, sterols, which known accumulated as tolerance and resistance mechanism to heavy metal (H.M) stress. However, MCE treatment showed the inverse of these response to return tomato plants to normal state and enhanced tolerance and resistance to heavy metal stress. In the present study, we emphasized that MCE can alleviate H.M stress, enhance tomato plant growth nutrients absorption and improve biochemical responses.

Keywords: microalgae crude extract, heavy metal stress, nutrient uptake, metabolomic analysis, solanum lycopersicum (Tomato), phytostabilisation

Procedia PDF Downloads 98
3918 A Disappearing Radiolucency of the Mandible Caused by Inadvertent Trauma Following IMF Screw Placement

Authors: Anna Ghosh, Dominic Shields, Ceri McIntosh, Stephen Crank

Abstract:

A 29-year-old male was a referral to the maxillofacial unit following a referral from his general dental practitioner via a routine pathway regarding a large periapical lesion on the LR4 with root resorption. The patient was asymptomatic, the LR4 vital and unrestored, and this was an incidental finding at a routine check-up. The patient's past medical history was unremarkable. Examination revealed no extra or intra-oral pathology and non-mobile teeth. No focal neurology was detected. An orthopantogram demonstrated a well-defined unilocular corticated radiolucency associated with the LR4. The root appeared shortened with the radiolucency between the root and a radio-opacity, possibly representing the displacement of the apical tip of the tooth. It was recommended that the referring general practitioner should proceed with orthograde root canal therapy, after which time exploration, enucleation, and retrograde root filling of the LR4 would be carried out by a maxillofacial unit. The patient was reviewed six months later where, due to the COVID-19 pandemic, the patient had been unable to access general dental services for the root canal treatment. He was still entirely asymptomatic. A one-year review was planned in the hope this would allow time for the orthograde root canal therapy to be completed. At this review, the orthograde root canal therapy had still not been completed. Interestingly, a repeat orthopantogram revealed a significant reduction in size with good bony infill and a significant reduction in the size of the lesion. Due to the ongoing delays with primary care dental therapy, the patient was subsequently internally referred to the restorative dentistry department for care. The patient was seen again by oral and maxillo-facial surgery in mid-2022 where he still reports this tooth as asymptomatic with no focal neurology. The patient's history was fully reviewed, and noted that 15 years previously, the patient underwent open reduction and internal fixation of a left angle of mandible fracture. Temporary IMF involving IMF screws and fixation wires were employed to maintain occlusion during plating and subsequently removed post-operatively. It is proposed that the radiolucency was, as a result of the IMF screw placement, penetrating the LR4 root resulting in resorption of the tooth root and development of a radiolucency. This case highlights the importance of careful screw size and physical site location, and placement of IMF screws, as there can be permeant damage to a patient’s dentition.

Keywords: facial trauma, inter-maxillary fixation, mandibular radiolucency, oral and maxillo-facial surgery

Procedia PDF Downloads 113
3917 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 58
3916 Development of an Online Raw-Vegan Eating Program to Reduce Sugar Intake

Authors: Sara D. Garduno-Diaz, Lorena Loriato

Abstract:

Food selection is one of the main modifiable risk factors for the avoidance of several detrimental health conditions. Excessive and regular sugar intake has been identified as highly unfavorable, yet a highly occurring practice. A proposed approach to modify this eating practice is the online program developed here. The program targets a modification of mindset and lifestyle habits around food, through a four week raw-vegan guided eating program. While the focus of the program is to set up sustainable changes in sugar intake reduction, it also aims to promote a plant-based eating style. Three pilot sessions have been run with participants from seven different countries. Participants are guided through the program via a combination of daily e-mails, a 24-hour support platform, and by-weekly remote live sessions. Meal preparation techniques, as well as cooking instructions, are provided, following set menus developed by a team of professional chefs and nutritionists. Goal setting, as well as alternatives to specific food-related challenges, is addressed. While the program is intended for both women and men, the majority of participants to date have been female. Feedback has been positive, with changes in eating habits have included an elimination of added sugars, an increase in home cooking and vegetable intake, and a reduction in foods of animal origin. Difficulties in following the program have been reported as unavailability of certain ingredients depending on the country of residence of the participants, social and cultural hurdles, and time restrictions. Nevertheless, the results obtained to date indicate this to be a highly interactive program with the potential to be scaled up and applied to various populations as a public health measure on the way to better health.

Keywords: eating habits, food addiction, nutrition education, plant-based, remote practice

Procedia PDF Downloads 95
3915 Effect of 8 Weeks of Intervention on Physical Fitness, Hepatokines, and Insulin Resistance in Obese Subjects

Authors: Adela Penesova, Zofia Radikova, Boris Bajer, Andrea Havranova, Miroslav Vlcek

Abstract:

Background: The aim of our study was to compare the effect of intensified lifestyle intervention on insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fibroblast growth factor (FGF) 21 after 8 weeks of lifestyle intervention. Methods: A group of 43 obese patients (13M/30F; 43.0±12.4 years; BMI (body mass index) 31.2±6.3 kg/m2 participated in a weight loss interventional program (NCT02325804) following an 8-week hypocaloric diet (-30% energy expenditure) and physical activity 150 minutes/week. Insulin sensitivity was evaluated according to the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity indices according to Matsuda and Cederholm were calculated (ISImat and ISIced). Plasma ALT, AST, Fetuin-A, FGF 21, and physical fitness were measured. Results: The average reduction of body weight was 6.8±4.9 kg (0-15 kg; p=0.0006), accompanied with a significant reduction of body fat amount of fat mass (p=0.03), and waist circumference (p=0.02). Insulin sensitivity has been improved (IR HOMA 2.71±3.90 vs 1.24±0.83; p=0.01; ISIMat 6.64±4.38 vs 8.93±5.36 p ≤ 0.001). Total, LDL cholesterol, and triglycerides decreased (p=0.05, p=0.04, p=0.04, respectively). Physical fitness significantly improved after intervention (as measure VO2 max (maximal oxygen uptake) (p ≤ 0.001). ALT decreased significantly (0.44±0.26 vs post 0.33±0.18 ukat/l, p=0.004); however, AST not (pre 0.40±0.15 vs 0.35±0.09 ukat/l, p=0.07). Hepatokine Fetuin-A significantly decreased after intervention (43.1±10.8 vs 32.6±8.6 ng/ml, p < 0.001); however, FGF 21 levels tended to decrease (146±152 vs 132±164 pg/ml, p=0.07). Conclusion: 8-weeks of diet and physical activity intervention program in obese otherwise healthy subjects led to an improvement of insulin resistance parameters and liver marker profiles, as well as increased physical fitness. This study was supported by grants APVV 15-0228; VEGA 2/0161/16.

Keywords: obesity, diet, exercice, insulin sensitivity

Procedia PDF Downloads 182
3914 Effect of Naphtha in Addition to a Cycle Steam Stimulation Process Reducing the Heavy Oil Viscosity Using a Two-Level Factorial Design

Authors: Nora A. Guerrero, Adan Leon, María I. Sandoval, Romel Perez, Samuel Munoz

Abstract:

The addition of solvents in cyclic steam stimulation is a technique that has shown an impact on the improved recovery of heavy oils. In this technique, it is possible to reduce the steam/oil ratio in the last stages of the process, at which time this ratio increases significantly. The mobility of improved crude oil increases due to the structural changes of its components, which at the same time reflected in the decrease in density and viscosity. In the present work, the effect of the variables such as temperature, time, and weight percentage of naphtha was evaluated, using a factorial design of experiments 23. From the results of analysis of variance (ANOVA) and Pareto diagram, it was possible to identify the effect on viscosity reduction. The experimental representation of the crude-vapor-naphtha interaction was carried out in a batch reactor on a Colombian heavy oil of 12.8° API and 3500 cP. The conditions of temperature, reaction time, and percentage of naphtha were 270-300 °C, 48-66 hours, and 3-9% by weight, respectively. The results showed a decrease in density with values in the range of 0.9542 to 0.9414 g/cm³, while the viscosity decrease was in the order of 55 to 70%. On the other hand, simulated distillation results, according to ASTM 7169, revealed significant conversions of the 315°C+ fraction. From the spectroscopic techniques of nuclear magnetic resonance NMR, infrared FTIR and UV-VIS visible ultraviolet, it was determined that the increase in the performance of the light fractions in the improved crude is due to the breakdown of alkyl chains. The methodology for cyclic steam injection with naphtha and laboratory-scale characterization can be considered as a practical tool in improved recovery processes.

Keywords: viscosity reduction, cyclic steam stimulation, factorial design, naphtha

Procedia PDF Downloads 154
3913 Surgical Management of Distal Femur Fracture Using Locking Compression Plate: Our Experience in a Rural Tertiary Care Centre in India

Authors: Pagadaplly Girish, P. V. Manohar

Abstract:

Introduction: Management of distal femur fractures is challenging. Recently, treatment has evolved towards indirect reduction and minimally invasive techniques. Objectives: To assess the fracture union and functional outcome following open reduction and internal fixation of distal femur fractures with locking compression plate and to achieve restoration of the anatomical alignment of fracture fragments and stable internal fixation. Methodology: Patients with distal femur fracture treated by locking compression during Oct 2011 to April 2013 were assessed prospectively. Patients below 18 years and those with neuro-vascular deficits were excluded. Age, sex of the patient, type of fracture, mechanism of injury, type of implant used, operative time and postoperative complications were analysed. The Neer’s scale was used to assess the outcome of the patients. Results: The total number of patients was 30; 28 males and 2 females; mean age was 41.53 years. Road traffic accidents were the major causes of injury followed by falls. The average duration of hospital stay was 21.3 days. The overall complication rate note was 23.33%. The mean range of movement around the knee joint after 6 months of follow-up was 114.330. The average time for the radiological union was 14 weeks. Excellent to good results were noted in 26 patients (86.6%) and average to poor results were observed in 4 (13.33%) patients. Conclusions: The locking compression plate gives a rigid fixation for the fracture. It also provides a good purchase in osteoporotic bones. LCP is simple and a reliable implant appropriate for fixation of femoral fractures with promising results.

Keywords: distal femur fractures, locking compression plate, Neer’s criteria, neuro-vascular deficits

Procedia PDF Downloads 229
3912 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Heavy Water Reactor, Burn up, Minor Actinides, Neutronic Calculation

Procedia PDF Downloads 232
3911 MFCA: An Environmental Management Accounting Technique for Optimal Resource Efficiency in Production Processes

Authors: Omolola A. Tajelawi, Hari L. Garbharran

Abstract:

Revenue leakages are one of the major challenges manufacturers face in production processes, as most of the input materials that should emanate as products from the lines are lost as waste. Rather than generating income from material input which is meant to end-up as products, losses are further incurred as costs in order to manage waste generated. In addition, due to the lack of a clear view of the flow of resources on the lines from input to output stage, acquiring information on the true cost of waste generated have become a challenge. This has therefore given birth to the conceptualization and implementation of waste minimization strategies by several manufacturing industries. This paper reviews the principles and applications of three environmental management accounting tools namely Activity-based Costing (ABC), Life-Cycle Assessment (LCA) and Material Flow Cost Accounting (MFCA) in the manufacturing industry and their effectiveness in curbing revenue leakages. The paper unveils the strengths and limitations of each of the tools; beaming a searchlight on the tool that could allow for optimal resource utilization, transparency in production process as well as improved cost efficiency. Findings from this review reveal that MFCA may offer superior advantages with regards to the provision of more detailed information (both in physical and monetary terms) on the flow of material inputs throughout the production process compared to the other environmental accounting tools. This paper therefore makes a case for the adoption of MFCA as a viable technique for the identification and reduction of waste in production processes, and also for effective decision making by production managers, financial advisors and other relevant stakeholders.

Keywords: MFCA, environmental management accounting, resource efficiency, waste reduction, revenue losses

Procedia PDF Downloads 321
3910 Integrating Efficient Anammox with Enhanced Biological Phosphorus Removal Process Through Flocs Management for Sustainable Ultra-deep Nutrients Removal from Municipal Wastewater

Authors: Qiongpeng Dan, Xiyao Li, Qiong Zhang, Yongzhen Peng

Abstract:

The nutrients removal from wastewater is of great significance for global wastewater recycling and sustainable reuse. Traditional nitrogen and phosphorus removal processes are very dependent on the input of aeration and carbon sources, which makes it difficult to meet the low-carbon goal of energy saving and emission reduction. This study reported a proof-of-concept demonstration of integrating anammox and enhanced biological phosphorus removal (EBPR) by flocs management in a single-stage hybrid bioreactor (biofilms and flocs) for simultaneous nitrogen and phosphorus removal (SNPR). Excellent removal efficiencies of nitrogen (97.7±1.3%) and phosphorus (97.4±0.7%) were obtained in low C/N ratio (3.0±0.5) municipal wastewater treatment. Interestingly, with the loss of flocs, anammox bacteria (Ca. Brocadia) was highly enriched in biofilms, with relative and absolute abundances reaching up to 12.5% and 8.3×1010 copies/g dry sludge, respectively. The anammox contribution to nitrogen removal also rose from 32.6±9.8% to 53.4±4.2%. Endogenous denitrification by flocs was proven to be the main contributor to both nitrite and nitrate reduction, and flocs loss significantly promoted nitrite flow towards anammox, facilitating AnAOB enrichment. Moreover, controlling the floc's solid retention time at around 8 days could maintain a low poly-phosphorus level of 0.02±0.001 mg P/mg VSS in the flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This study provides an update on developing a simple and feasible strategy for integrating anammox and EBPR for SNPR in mainstream municipal wastewater.

Keywords: anammox process, enhanced biological phosphorus removal, municipal wastewater, sustainable nutrients removal

Procedia PDF Downloads 28
3909 Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics

Authors: Jahangir Ahmad Rather, Emad A. Khudaish, Ahsanulhaq Qurashi, Palanisamy Kannan

Abstract:

Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11).

Keywords: diazonium salt reduction, ethylparaben (EP), endocrine disruptor, fullerene nanorods (C60NRs), gold–polyaniline nanocomposite (Au–PANI)

Procedia PDF Downloads 218
3908 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 202
3907 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 374
3906 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment

Authors: Kunihisa Kakumoto

Abstract:

Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.

Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation

Procedia PDF Downloads 85
3905 Trial of Faecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis

Authors: Caroline F. Moeser

Abstract:

The skin-gut axis defines the relationship between the intestinal microbiota and the development of pathological skin diseases. Low diversity within the gut can predispose to the development of allergic skin conditions, and a greater diversity of the gastrointestinal microflora has been associated with a reduction of skin flares in people with atopic dermatitis. Manipulation of the gut microflora has been used as a treatment option for several conditions in people, but there is limited data available on the use of faecal transplantation as a preventative measure in either people or dogs. Six, 4-month-old pups from a litter of ten were presented for diarrhea and/or signs of skin disease (chronic scratching, otitis externa). Of these pups, two were given probiotics with a resultant resolution of diarrhea. The other four pups were given faecal transplantation, either as a sole treatment or in combination with other treatments. Follow-up on the litter of ten pups was performed at 18 months of age. At this stage, the four pups that had received faecal transplantation had resolved all clinical signs and had no recurrence of either skin or gastrointestinal symptoms. Of the remaining six pups from the litter, all had developed at least one episode of Malassezia otitis externa within the period of 5 months to 18 months of age. Two pups had developed two Malassezia otitis infections, and one had developed three Malassezia otitis infections during this period. Favrot’s criteria for the diagnosis of canine atopic dermatitis include chronic or recurrent Malassezia infections by the age of three years. Early results from this litter predict a reduction in the development of canine atopic disease in dogs given faecal microbial transplantation. Follow-up studies at three years of age and within a larger population of dogs can enhance understanding of the impact of early faecal transplantation in the prevention of canine atopic dermatitis.

Keywords: canine atopic dermatitis, faecal microbial transplant, skin-gut axis, otitis

Procedia PDF Downloads 140
3904 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 242
3903 Review and Analysis of Sustainable-Based Risk Management in Humanitarian Supply Chains

Authors: Marinko Maslaric, Maja Jokic

Abstract:

When searching for fast and long term responses, sustainable logistics and supply chain applications have developed irrefutable theories and hypotheses towards market requirements. Nevertheless, there are certain misunderstandings on how the implementation of sustainability principles (social, economical, and environmental) and concepts should work in practice, more specifically, within a humanitarian supply chain management context. This paper will focus on the review and analysis of risk management concepts in humanitarian supply chain in order to identify their compliance with sustainable principles. In this direction, the study will look for strategies that suggest: minimization of environmental impacts throughout the reduction of resources consumption, depreciation of logistics costs, including supply chain ones, minimization of transportation and service costs, elaboration of quality performance of supply chain and logistics, and reduction of supply chain delivery time. On the side of meeting all defense, trades and humanitarian logistics needs, the research will be aligned to UN Sustainable Development Goals, standards, and performances. It will start with relevant strategies for identification of risk indicators and it will end with suggestion of valuable strategic approaches for their minimization or total prevention. Finally, a content analysis will propose a suitable methodological structure for the creation of most sustainable strategy in risk management of humanitarian supply chain. Content analysis will accompany thorough, consistent and methodical approach of literature review for potential disaster risk management plan. Thereupon, the propositions of this research will look for contemporary literature gaps, with respect to operate the literature analysis and to suggest the appropriate sustained risk low master plan. The indicated is here to secure the high quality of logistics practices in hazardous events.

Keywords: humanitarian logistics, sustainability, supply chain risk, risk management plan

Procedia PDF Downloads 214
3902 Selective Conversion of Biodiesel Derived Glycerol to 1,2-Propanediol over Highly Efficient γ-Al2O3 Supported Bimetallic Cu-Ni Catalyst

Authors: Smita Mondal, Dinesh Kumar Pandey, Prakash Biswas

Abstract:

During past two decades, considerable attention has been given to the value addition of biodiesel derived glycerol (~10wt.%) to make the biodiesel industry economically viable. Among the various glycerol value-addition methods, hydrogenolysis of glycerol to 1,2-propanediol is one of the attractive and promising routes. In this study, highly active and selective γ-Al₂O₃ supported bimetallic Cu-Ni catalyst was developed for selective hydrogenolysis of glycerol to 1,2-propanediol in the liquid phase. The catalytic performance was evaluated in a high-pressure autoclave reactor. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. Experimental results demonstrated that bimetallic copper-nickel catalyst was more active and selective to 1,2-PDO as compared to monometallic catalysts due to bifunctional behavior. To verify the effect of calcination temperature on the formation of Cu-Ni mixed oxide phase, the calcination temperature of 20wt.% Cu:Ni(1:1)/Al₂O₃ catalyst was varied from 300°C-550°C. The physicochemical properties of the catalysts were characterized by various techniques such as specific surface area (BET), X-ray diffraction study (XRD), temperature programmed reduction (TPR), and temperature programmed desorption (TPD). The BET surface area and pore volume of the catalysts were in the range of 71-78 m²g⁻¹, and 0.12-0.15 cm³g⁻¹, respectively. The peaks at the 2θ range of 43.3°-45.5° and 50.4°-52°, was corresponded to the copper-nickel mixed oxidephase [JCPDS: 78-1602]. The formation of mixed oxide indicated the strong interaction of Cu, Ni with the alumina support. The crystallite size decreased with increasing the calcination temperature up to 450°C. Further, the crystallite size was increased due to agglomeration. Smaller crystallite size of 16.5 nm was obtained for the catalyst calcined at 400°C. Total acidic sites of the catalysts were determined by NH₃-TPD, and the maximum total acidic of 0.609 mmol NH₃ gcat⁻¹ was obtained over the catalyst calcined at 400°C. TPR data suggested the maximum of 75% degree of reduction of catalyst calcined at 400°C among all others. Further, 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst calcined at 400°C exhibited highest catalytic activity ( > 70%) and 1,2-PDO selectivity ( > 85%) at mild reaction condition due to highest acidity, highest degree of reduction, smallest crystallite size. Further, the modified Power law kinetic model was developed to understand the true kinetic behaviour of hydrogenolysis of glycerol over 20wt.%Cu:Ni(1:1)/γ-Al₂O₃ catalyst. Rate equations obtained from the model was solved by ode23 using MATLAB coupled with Genetic Algorithm. Results demonstrated that the model predicted data were very well fitted with the experimental data. The activation energy of the formation of 1,2-PDO was found to be 45 kJ mol⁻¹.

Keywords: glycerol, 1, 2-PDO, calcination, kinetic

Procedia PDF Downloads 128
3901 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 539
3900 An Investigation on the Effect of Railway Track Elevation Project in Taichung Based on the Carbon Emissions

Authors: Kuo-Wei Hsu, Jen-Chih, Chao, Pei-Chen, Wu

Abstract:

With the rapid development of global economy, the increasing population, the highly industrialization, greenhouse gas emission and the ozone layer damage, the Global Warming happens. Facing the impact of global warming, the issue of “green transportation” began to be valued and promoted in each city. Taichung has been elected as the model of low-carbon city in Taiwan. To comply with international trends and the government policy, we tried to promote the energy saving and carbon reduction to create a “low-carbon Taichung with green life and eco-friendly economy”. To cooperate with the “green transportation” project, Taichung has promoted a number of public transports constructions and traffic policy in recent years like BRT, MRT, etc. The elevated railway is one of those important constructions. Cooperating with the green transport policy, elevated railway could help to achieve the carbon reduction for this low-carbon city. The current studies of the carbon emissions associated with railways and roads are focusing on the assessment on paving material, institutional policy and economic benefit. Except for changing the mode of transportation, elevated railways/roads also create space under the bridge. However, there is no research about the carbon emissions of the space underneath the elevated section up until now. This study investigated the effect of railway track elevation project in Taichung based on the carbon emissions and the factors that affect carbon emissions by research related theory and literature analysis. This study concluded that : railway track elevation increased the public transit, the bike lanes, the green areas and walking spaces. In the other hand it reduced the traffic congestions, the use of motorcycles as well as automobiles for carbon emissions.

Keywords: low-carbon city, green transportation, carbon emissions, Taichung, Taiwan

Procedia PDF Downloads 506