Search results for: healthcare networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4338

Search results for: healthcare networks

3528 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks

Authors: Siddhartha Chauhan, Nitin Kumar Kotania

Abstract:

Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.

Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks

Procedia PDF Downloads 391
3527 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 134
3526 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
3525 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 352
3524 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
3523 The Effect of Technology and Artifical Intelligence on Legal Securities and Privacy Issues

Authors: Kerolis Samoul Zaghloul Noaman

Abstract:

area law is the brand new access in the basket of worldwide law in the latter half of the 20 th Century. inside the last hundred and fifty years, courts and pupils advanced a consensus that, the custom is an vital supply of global law. Article 38(1) (b) of the statute of the international court of Justice identified global custom as a supply of global law. country practices and usages have a more role to play in formulating commonplace international regulation. This paper examines those country practices which may be certified to emerge as global standard law. due to the fact that, 1979 (after Moon Treaty) no hard law had been developed within the vicinity of space exploration. It attempts to link among country practices and custom in area exploration and development of standard global regulation in area activities. The paper makes use of doctrinal approach of felony research for inspecting the current questions of worldwide regulation. The paper explores exceptional worldwide prison files which include general meeting Resolutions, Treaty standards, working papers of UN, cases relating to commonplace global law and writing of jurists regarding area law and standard international law. it's far argued that, ideas such as common background of mankind, non-navy region, sovereign equality, nuclear weapon unfastened area and protection of outer area environment, etc. evolved nation practices a number of the worldwide community which can be certified to turn out to be international customary regulation.

Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures

Procedia PDF Downloads 20
3522 Increasing Cervical Screening Uptake during the Covid-19 Pandemic at Lakeside Healthcare, Corby, UK

Authors: Devyani Shete, Sudeep Rai

Abstract:

Background: The COVID-19 pandemic has caused one of the highest disruptions to the NHS (National Health Service), especially to the fundamental cervical cancer screening service. To prioritize screening response effectively, it is vital to understand the underlying disease risks amongst groups of women who are less likely to resume their screening/follow up at General Practices. The current government target is to have>=80% of women have an adequate test within the previous 3.5 years (ages 25-49) or 5.5 years (ages 50-64). Aims/Objectives: To increase the number of eligible people aged 25-49 attending cervical screening by 5% at Lakeside Healthcare (a General Practice in Corby). Methods: An online survey was posted on the Lakeside Healthcare website to find out what the barriers towards cervical screening were. It was apparent that patients needed more information catered to their responses. 6 informational videos and a “Cervical Screening Guide” were created for Lakeside patients about cervical screening, which were posted on the Healthcare website. Lakeside also started sending reminder texts to those eligible, with a link to a booking form. Results: On 18th January 2022, 69.7% of patients aged 25-49 years (7207) had an adequate cervical screening test in the last 3.5 years. There were 80 total responders to the online survey. In response to “which of the following are reasons why you have not attended screening”, 30% ticked “I kept putting it off/did not get around to it,” and 13% ticked “I was worried it would be painful or daunting.” In response to “which of the following would make you more likely to book an appointment”, 23% ticked “More detailed explanations of what the risks are if I don’t have screening,” and 20% ticked “I would like more information about the test and what the smear entails.” 10% of responders had previous trauma, whilst 28% of responders said the pandemic had impacted them getting a smear. Survey results were used to carry out interventions to increase smear uptake. On 23rdMarch 2022 (after a 2-month period), 75%of patients aged 25-49 (7119) attended the screening, which was a 5.3% increase from January. Discussion/Conclusion: The survey was vital in carrying out the exact interventions that were required for patients to increase screening uptake, as it is important to know what the populations’ needs are in order to create personalized invitations. This helps to optimise response during a pandemic. A HPV self-sample kit at home could be a popular method of dealing with further outbreaks.

Keywords: gynaecology, cervical screening, public health, COVID-19

Procedia PDF Downloads 149
3521 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe

Authors: Zeta Dooly, Aidan Duane

Abstract:

The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.

Keywords: research networks, competency building, network theory, case study

Procedia PDF Downloads 126
3520 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
3519 Ambivalence in Embracing Artificial Intelligence in the Units of a Public Hospital in South Africa

Authors: Sanele E. Nene L., Lia M. Hewitt

Abstract:

Background: Artificial intelligence (AI) has a high value in healthcare, various applications have been developed for the efficiency of clinical operations, such as appointment/surgery scheduling, diagnostic image analysis, prognosis, prediction and management of specific ailments. Purpose: The purpose of this study was to explore, describe, contrast, evaluate, and develop the various leadership strategies as a conceptual framework, applied by public health Operational Managers (OMs) to embrace AI benefits, with the aim to improve the healthcare system in a public hospital. Design and Method: A qualitative, exploratory, descriptive and contextual research design was followed and a descriptive phenomenological approach. Five phases were followed to conduct this study. Phenomenological individual interviews and focus groups were used to collect data and a phenomenological thematic data analysis method was used. Findings and conclusion: Three themes surfaced as the experiences of AI by the OMs; Positive experiences related to AI, Management and leadership processes in AI facilitation, and Challenges related to AI.

Keywords: ambivalence, embracing, Artificial intelligence, public hospital

Procedia PDF Downloads 79
3518 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 294
3517 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks

Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi

Abstract:

Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.

Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks

Procedia PDF Downloads 529
3516 Tool Development for Assessing Antineoplastic Drugs Surface Contamination in Healthcare Services and Other Workplaces

Authors: Benoit Atge, Alice Dhersin, Oscar Da Silva Cacao, Beatrice Martinez, Dominique Ducint, Catherine Verdun-Esquer, Isabelle Baldi, Mathieu Molimard, Antoine Villa, Mireille Canal-Raffin

Abstract:

Introduction: Healthcare workers' exposure to antineoplastic drugs (AD) is a burning issue for occupational medicine practitioners. Biological monitoring of occupational exposure (BMOE) is an essential tool for assessing AD contamination of healthcare workers. In addition to BMOE, surface sampling is a useful tool in order to understand how workers get contaminated, to identify sources of environmental contamination, to verify the effectiveness of surface decontamination way and to ensure monitoring of these surfaces. The objective of this work was to develop a complete tool including a kit for surface sampling and a quantification analytical method for AD traces detection. The development was realized with the three following criteria: the kit capacity to sample in every professional environment (healthcare services, veterinaries, etc.), the detection of very low AD traces with a validated analytical method and the easiness of the sampling kit use regardless of the person in charge of sampling. Material and method: AD mostly used in term of quantity and frequency have been identified by an analysis of the literature and consumptions of different hospitals, veterinary services, and home care settings. The kind of adsorbent device, surface moistening solution and mix of solvents for the extraction of AD from the adsorbent device have been tested for a maximal yield. The AD quantification was achieved by an ultra high-performance liquid chromatography method coupled with tandem mass spectrometry (UHPLC-MS/MS). Results: With their high frequencies of use and their good reflect of the diverse activities through healthcare, 15 AD (cyclophosphamide, ifosfamide, doxorubicin, daunorubicin, epirubicin, 5-FU, dacarbazin, etoposide, pemetrexed, vincristine, cytarabine, methothrexate, paclitaxel, gemcitabine, mitomycin C) were selected. The analytical method was optimized and adapted to obtain high sensitivity with very low limits of quantification (25 to 5000ng/mL), equivalent or lowest that those previously published (for 13/15 AD). The sampling kit is easy to use, provided with a didactic support (online video and protocol paper). It showed its effectiveness without inter-individual variation (n=5/person; n= 5 persons; p=0,85; ANOVA) regardless of the person in charge of sampling. Conclusion: This validated tool (sampling kit + analytical method) is very sensitive, easy to use and very didactic in order to control the chemical risk brought by AD. Moreover, BMOE permits a focal prevention. Used in routine, this tool is available for every intervention of occupational health.

Keywords: surface contamination, sampling kit, analytical method, sensitivity

Procedia PDF Downloads 132
3515 Decision Support System for the Management and Maintenance of Sewer Networks

Authors: A. Bouamrane, M. T. Bouziane, K. Boutebba, Y. Djebbar

Abstract:

This paper aims to develop a decision support tool to provide solutions to the problems of sewer networks management/maintenance in order to assist the manager to sort sections upon priority of intervention by taking account of the technical, economic, social and environmental standards as well as the managers’ strategy. This solution uses the Analytic Network Process (ANP) developed by Thomas Saaty, coupled with a set of tools for modelling and collecting integrated data from a geographic information system (GIS). It provides to the decision maker a tool adapted to the reality on the ground and effective in usage compared to the means and objectives of the manager.

Keywords: multi-criteria decision support, maintenance, Geographic Information System, modelling

Procedia PDF Downloads 638
3514 A Fuzzy Logic Based Health Assesment Platform

Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana

Abstract:

Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.

Keywords: healthcare, fuzzy logic, MEWS, RFID

Procedia PDF Downloads 348
3513 Association of Maternal Age, Ethnicity and BMI with Gestational Diabetes Prevalence in Multi-Racial Singapore

Authors: Nur Atiqah Adam, Mor Jack Ng, Bernard Chern, Kok Hian Tan

Abstract:

Introduction: Gestational diabetes (GDM) is a common pregnancy complication with short and long-term health consequences for both mother and fetus. Factors such as family history of diabetes mellitus, maternal obesity, maternal age, ethnicity and parity have been reported to influence the risk of GDM. In a multi-racial country like Singapore, it is worthwhile to study the GDM prevalences of different ethnicities. We aim to investigate the influence of ethnicity on the racial prevalences of GDM in Singapore. This is important as it may help us to improve guidelines on GDM healthcare services according to significant risk factors unique to Singapore. Materials and Methods: Obstetric cohort data of 926 singleton deliveries in KK Women’s and Children’s Hospital (KKH) from 2011 to 2013 was obtained. Only patients aged 18 and above and without complicated pregnancies or chronic illnesses were targeted. Factors such as ethnicity, maternal age, parity and maternal body mass index (BMI) at booking visit were studied. A multivariable logistic regression model, adjusted for confounders, was used to determine which of these factors are significantly associated with an increased risk of GDM. Results: The overall GDM prevalence rate based on WHO 1999 criteria & at risk screening (race alone not a risk factor) was 8.86%. GDM rates were higher among women above 35 years old (15.96%), obese (15.15%) and multiparous women (10.12%). Indians had a higher GDM rate (13.0 %) compared to the Chinese (9.57%) and Malays (5.20%). However, using multiple logistic regression model, variables that are significantly related to GDM rates were maternal age (p < 0.001) and maternal BMI at booking visit (p = 0.006). Conclusion: Maternal age (p < 0.001) and maternal booking BMI (p = 0.006) are the strongest risk factors for GDM. Ethnicity per se does not seem to have a significant influence on the prevalence of GDM in Singapore (p = 0.064). Hence we should tailor guidelines on GDM healthcare services according to maternal age and booking BMI rather than ethnicity.

Keywords: ethnicity, gestational diabetes, healthcare, pregnancy

Procedia PDF Downloads 226
3512 Factorial Design Analysis for Quality of Video on MANET

Authors: Hyoup-Sang Yoon

Abstract:

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2

Procedia PDF Downloads 413
3511 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 134
3510 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 445
3509 Infusion Pump Historical Development, Measurement and Parts of Infusion Pump

Authors: Samuel Asrat

Abstract:

Infusion pumps have become indispensable tools in modern healthcare, allowing for precise and controlled delivery of fluids, medications, and nutrients to patients. This paper provides an overview of the historical development, measurement, and parts of infusion pumps. The historical development of infusion pumps can be traced back to the early 1960s when the first rudimentary models were introduced. These early pumps were large, cumbersome, and often unreliable. However, advancements in technology and engineering over the years have led to the development of smaller, more accurate, and user-friendly infusion pumps. Measurement of infusion pumps involves assessing various parameters such as flow rate, volume delivered, and infusion duration. Flow rate, typically measured in milliliters per hour (mL/hr), is a critical parameter that determines the rate at which fluids or medications are delivered to the patient. Accurate measurement of flow rate is essential to ensure the proper administration of therapy and prevent adverse effects. Infusion pumps consist of several key parts, including the pump mechanism, fluid reservoir, tubing, and control interface. The pump mechanism is responsible for generating the necessary pressure to push fluids through the tubing and into the patient's bloodstream. The fluid reservoir holds the medication or solution to be infused, while the tubing serves as the conduit through which the fluid travels from the reservoir to the patient. The control interface allows healthcare providers to program and adjust the infusion parameters, such as flow rate and volume. In conclusion, infusion pumps have evolved significantly since their inception, offering healthcare providers unprecedented control and precision in delivering fluids and medications to patients. Understanding the historical development, measurement, and parts of infusion pumps is essential for ensuring their safe and effective use in clinical practice.

Keywords: dip, ip, sp, is

Procedia PDF Downloads 67
3508 Needs and Expectations of Digital Support among Parents of Children in Child Healthcare

Authors: Lotha Valan, Åsa Hörnsten, Ulf Isaksson

Abstract:

Introduction: Sweden has a national child health care program (CHCP) where all parents are offered support to raise their children and support them for lifelong health. A systematic review concludes that there is a request for guidance in using the internet effectively for the health purposes of their children. However, a study about internet use among young mothers means that the internet is not always easy to navigate for parents, and they may need support. To fill this gap and develop a digital channel to complement the child health care (CHC) for the support of parents of children within CHC, there is a demand to investigate parents' needs in relation to this purpose. Methods: The study had a qualitative approach using focus group interviews with parents. The interview data were analyzed using qualitative content analysis. Results: The main theme highlights that parents expected that a digital support channel would be something that might strengthen them toward independence concerning the care of their children in a positive way. However, they also felt that they needed personal support and that relationships with other parents and the child health care nurse were significant and meaningful. Another parental desire that emerged was that a future digital channel would facilitate and simplify access to care, and they suggested having both planned and urgent times available for parents to book. The digital channel was expected to make this possible and be a good complement to the physical contacts the traditional child healthcare currently offers. Discussion/conclusions: The parents in this study believed that digital solutions could increase their parental power in relation to the care of their children. Examples were given as nurse-led parent groups where parents with similar problems and experiences around their children could support each other and were expected to strengthen them over time. The parents stressed that a planned digital support channel also needs satisfactory solutions for both contact and response. It was suggested that there should be bookable times for both planned and urgent needs and also the possibility of rescheduling visits.

Keywords: child healthcare, parents, digital support, nursing

Procedia PDF Downloads 77
3507 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 406
3506 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 354
3505 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67
3504 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
3503 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 128
3502 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
3501 Accelerating Mobile Innovation, Adoption, and Translational Science within a Large Research Enterprise and Healthcare System

Authors: Stephen Wheat

Abstract:

Institutional mobile application governance and distribution processes are essential to mobile app innovation. The absence of effective processes poses a significant barrier to the development and adoption of mobile apps for use within a research enterprise and also impedes the translational science of applying research apps in clinical and engineering settings. To accelerate mobile app innovation and adoption, Emory University and Emory Healthcare implemented a three-pronged strategy including. I) Mobile app review and distribution policies and processes. II) Mobile app management infrastructure and mobile app foundation components. III) A strategic sourcing strategy based on preferred mobile app development firms. The results have been an increase from five to 56 mobile apps in the pipeline over three years; increased engagement from technology transfer, legal counsel, compliance, and information security; articulation of a coordinated mobile app strategy; and allocation of more institutional resources toward specific mobile technology and mobile application goals.

Keywords: mobile app management, governance, distribution, information security

Procedia PDF Downloads 299
3500 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
3499 Cyber-Social Networks in Preventing Terrorism: Topological Scope

Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito

Abstract:

It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.

Keywords: complex network platform, counterterrorism, information sharing topology, social bots

Procedia PDF Downloads 164