Search results for: exploratory data analysis
41869 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 35141868 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data
Authors: K. Sathishkumar, V. Thiagarasu
Abstract:
Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.Keywords: microarray technology, gene expression data, clustering, gene Selection
Procedia PDF Downloads 32941867 Application of Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) Database in Nursing Health Problems with Prostate Cancer-a Pilot Study
Authors: Hung Lin-Zin, Lai Mei-Yen
Abstract:
Prostate cancer is the most commonly diagnosed male cancer in the U.S. The prevalence is around 1 in 8. The etiology of prostate cancer is still unknown, but some predisposing factors, such as age, black race, family history, and obesity, may increase the risk of the disease. In 2020, a total of 7,178 Taiwanese people were nearly diagnosed with prostate cancer, accounting for 5.88% of all cancer cases, and the incidence rate ranked fifth among men. In that year, the total number of deaths from prostate cancer was 1,730, accounting for 3.45% of all cancer deaths, and the death rate ranked 6th among men, accounting for 94.34% of the cases of male reproductive organs. Looking for domestic and foreign literature on the use of OMOP (Observational Medical Outcomes Partnership, hereinafter referred to as OMOP) database analysis, there are currently nearly a hundred literature published related to nursing-related health problems and nursing measures built in the OMOP general data model database of medical institutions are extremely rare. The OMOP common data model construction analysis platform is a system developed by the FDA in 2007, using a common data model (common data model, CDM) to analyze and monitor healthcare data. It is important to build up relevant nursing information from the OMOP- CDM database to assist our daily practice. Therefore, we choose prostate cancer patients who are our popular care objects and use the OMOP- CDM database to explore the common associated health problems. With the assistance of OMOP-CDM database analysis, we can expect early diagnosis and prevention of prostate cancer patients' comorbidities to improve patient care.Keywords: OMOP, nursing diagnosis, health problem, prostate cancer
Procedia PDF Downloads 7641866 Assessment of Routine Health Information System (RHIS) Quality Assurance Practices in Tarkwa Sub-Municipal Health Directorate, Ghana
Authors: Richard Okyere Boadu, Judith Obiri-Yeboah, Kwame Adu Okyere Boadu, Nathan Kumasenu Mensah, Grace Amoh-Agyei
Abstract:
Routine health information system (RHIS) quality assurance has become an important issue, not only because of its significance in promoting a high standard of patient care but also because of its impact on government budgets for the maintenance of health services. A routine health information system comprises healthcare data collection, compilation, storage, analysis, report generation, and dissemination on a routine basis in various healthcare settings. The data from RHIS give a representation of health status, health services, and health resources. The sources of RHIS data are normally individual health records, records of services delivered, and records of health resources. Using reliable information from routine health information systems is fundamental in the healthcare delivery system. Quality assurance practices are measures that are put in place to ensure the health data that are collected meet required quality standards. Routine health information system quality assurance practices ensure that data that are generated from the system are fit for use. This study considered quality assurance practices in the RHIS processes. Methods: A cross-sectional study was conducted in eight health facilities in Tarkwa Sub-Municipal Health Service in the western region of Ghana. The study involved routine quality assurance practices among the 90 health staff and management selected from facilities in Tarkwa Sub-Municipal who collected or used data routinely from 24th December 2019 to 20th January 2020. Results: Generally, Tarkwa Sub-Municipal health service appears to practice quality assurance during data collection, compilation, storage, analysis and dissemination. The results show some achievement in quality control performance in report dissemination (77.6%), data analysis (68.0%), data compilation (67.4%), report compilation (66.3%), data storage (66.3%) and collection (61.1%). Conclusions: Even though the Tarkwa Sub-Municipal Health Directorate engages in some control measures to ensure data quality, there is a need to strengthen the process to achieve the targeted percentage of performance (90.0%). There was a significant shortfall in quality assurance practices performance, especially during data collection, with respect to the expected performance.Keywords: quality assurance practices, assessment of routine health information system quality, routine health information system, data quality
Procedia PDF Downloads 8641865 Analysis of the 2023 Karnataka State Elections Using Online Sentiment
Authors: Pranav Gunhal
Abstract:
This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections
Procedia PDF Downloads 8741864 Performance Study of PV Power plants in Algeria
Authors: Razika Ihaddadene, Nabila Ihaddadene
Abstract:
This paper aims to highlight the importance of the application of the IEC 61724 standard in the study of the performance analysis of photovoltaic power plants on a monthly and annual scale. Likewise, the comparison of two photovoltaic power plants with two different climates was carried out in order to determine the effect of climatic parameters on the analysis of photovoltaic performances. All data from the Ain Skhouna and Adrar photovoltaic power plants for 2018 and the data from the Saida1 field for one month in 2019 were used. The results of the performance analysis according to the indicated standard show that the Saida PV power plant performs better than the Adrar PV power plant, which is due to the effect of increasing the ambient temperature. Increasing ambient temperature increases losses decreases system efficiency and performance ratio. It presents a key element in the proper functioning of PV plants.Keywords: pv power plants, IEC 61724 norm, grid connected pv, algeria
Procedia PDF Downloads 8141863 Factor Structure of the University of California, Los Angeles (UCLA) Loneliness Scale: Gender, Age, and Marital Status Differences
Authors: Hamzeh Dodeen
Abstract:
This study aims at examining the effects of item wording effects on the factor structure of the University of California, Los Angeles (UCLA) Loneliness Scale: gender, age, and marital status differences. A total of 2374 persons from the UAE participated, representing six different populations (teenagers/elderly, males/females, and married/unmarried). The results of the exploratory factor analysis using principal axis factoring with (oblique) rotation revealed that two factors were extracted from the 20 items of the scale. The nine positively worded items were highly loaded on the first factor, while 10 out of the 11 negatively worded items were highly loaded on the second factor. The two-factor solution was confirmed on the six different populations based on age, gender, and marital status. It has been concluded that the rating of the UCLA scale is affected by a response style related to the item wording.Keywords: UCLA Loneliness Scale, loneliness, positively worded items, factor structure, negatively worded items
Procedia PDF Downloads 35641862 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis
Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone
Abstract:
Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning
Procedia PDF Downloads 2241861 Bayesian Analysis of Topp-Leone Generalized Exponential Distribution
Authors: Najrullah Khan, Athar Ali Khan
Abstract:
The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation.Keywords: Bayesian Inference, JAGS, Laplace Approximation, LaplacesDemon, posterior, R Software, simulation
Procedia PDF Downloads 53841860 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum
Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi
Abstract:
Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites
Procedia PDF Downloads 9741859 The Effects of Green Logistics Management Practices on Sustainability Performance in Nigeria
Authors: Ozoemelam Ikechukwu Lazarus, Nizamuddin B. Zainuddi, Abdul Kafi
Abstract:
Numerous studies have been carried out on Green Logistics Management Practices (GLMPs) across the globe. The study on the practices and performance of green chain practices in Africa in particular has not gained enough scholarly attention. Again, the majority of supply chain sustainability research being conducted focus on environmental sustainability. Logistics has been a major cause of supply chain resource waste and environmental damage. Many sectors of the economy that engage in logistical operations significantly rely on vehicles, which emit pollutants into the environment. Due to urbanization and industrialization, the logistical operations of manufacturing companies represent a serious hazard to the society and human life, making the sector one of the fastest expanding in the world today. Logistics companies are faced with numerous difficulties when attempting to implement logistics practices along their supply chains. In Nigeria, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences. However, implementing this is impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. This study integrates most of the green logistics management practices (GLMPs) into the Nigerian firms to improve generalizability, and credibility. It examines the effect of Green Logistics Management Practices on environmental performance, social performance, market performance, and financial performance in the logistics industries. It seeks to identify the critical success factors in order to develop a model that incorporates different factors from the perspectives of the technology, organization, human and environment to inform the adoption and use of technologies for logistics supply chain social sustainability in Nigeria. It uses exploratory research approach to collect and analyse the data.Keywords: logistics, management, sustainability, environment, operations
Procedia PDF Downloads 8841858 An Investigation into the Views of Distant Science Education Students Regarding Teaching Laboratory Work Online
Authors: Abraham Motlhabane
Abstract:
This research analysed the written views of science education students regarding the teaching of laboratory work using the online mode. The research adopted the qualitative methodology. The qualitative research was aimed at investigating small and distinct groups normally regarded as a single-site study. Qualitative research was used to describe and analyze the phenomena from the student’s perspective. This means the research began with assumptions of the world view that use theoretical lenses of research problems inquiring into the meaning of individual students. The research was conducted with three groups of students studying for Postgraduate Certificate in Education, Bachelor of Education and honors Bachelor of Education respectively. In each of the study programmes, the science education module is compulsory. Five science education students from each study programme were purposively selected to participate in this research. Therefore, 15 students participated in the research. In order to analysis the data, the data were first printed and hard copies were used in the analysis. The data was read several times and key concepts and ideas were highlighted. Themes and patterns were identified to describe the data. Coding as a process of organising and sorting data was used. The findings of the study are very diverse; some students are in favour of online laboratory whereas other students argue that science can only be learnt through hands-on experimentation.Keywords: online learning, laboratory work, views, perceptions
Procedia PDF Downloads 15141857 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model
Procedia PDF Downloads 39441856 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 27241855 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis
Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim
Abstract:
The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection
Procedia PDF Downloads 41041854 A Social Cognitive Investigation in the Context of Vocational Training Performance of People with Disabilities
Authors: Majid A. AlSayari
Abstract:
The study reported here investigated social cognitive theory (SCT) in the context of Vocational Rehab (VR) for people with disabilities. The prime purpose was to increase knowledge of VR phenomena and make recommendations for improving VR services. The sample consisted of 242 persons with Spinal Cord Injuries (SCI) who completed questionnaires. A further 32 participants were Trainers. Analysis of questionnaire data was carried out using factor analysis, multiple regression analysis, and thematic analysis. The analysis suggested that, in motivational terms, and consistent with research carried out in other academic contexts, self-efficacy was the best predictor of VR performance. The author concludes that that VR self-efficacy predicted VR training performance.Keywords: people with physical disabilities, social cognitive theory, self-efficacy, vocational training
Procedia PDF Downloads 31841853 Genodata: The Human Genome Variation Using BigData
Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta
Abstract:
Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop
Procedia PDF Downloads 25941852 The Hierarchical Model of Fitness Services Quality Perception in Serbia
Authors: Mirjana Ilic, Dragan Zivotic, Aleksandra Perovic, Predrag Gavrilovic
Abstract:
The service quality perception depends on many factors, such as the area in which the services are provided, socioeconomic status, educational status, experience, age and gender of consumers, as well as many others. For this reason, it is not possible to apply instrument for establishing the service quality perception that is developed in other areas and in other populations. The aim of the research was to form an instrument for assessing the quality perception in the field of fitness in Serbia. After analyzing the available literature and conducting a pilot research, there were 15 isolated areas in which it was possible to observe the service quality perception. The areas included: material and technical basis, secondary facilities, coaches, programs, reliability, credibility, security, rapid response, compassion, communication, prices, satisfaction, loyalty, quality outcomes and motives. These areas were covered by a questionnaire consisted of 100 items where the number of items varied from area to area from 3 up to 11. The questionnaire was administered to 350 subjects of both genders (174 men and 176 women) aged from 18 to 68 years, being beneficiaries of fitness services for at least 1 year. In each of the areas was conducted a factor analysis in its exploratory form by principal components method. The number of significant factors has been determined in accordance with the Kaiser Guttman criterion. The initial factor solutions were simplified using the Varimax rotation. Analyses per areas have produced from 1 to 4 factors. Afterward, the factor analysis of factor scores on the first principal component of each of the respondents in each of the analyzed area was performed, and the factor structure was obtained with four latent dimensions interpreted as offer, the relationship with the coaches, the experience of quality and the initial impression. This factor structure was analysed by hierarchical analysis of Oblique factors, which in the second order space produced single factor interpreted as a general factor of the service quality perception. The resulting questionnaire represents an instrument which can serve managers in the field of fitness to optimize the centers development, raising the quality of services in line with consumers needs and expectations.Keywords: fitness, hierarchical model, quality perception, factor analysis
Procedia PDF Downloads 31241851 Impact of Hashtags in Tweets Regarding COVID-19 on the Psyche of Pakistanis: A Critical Discourse Analytical Study
Authors: Muhammad Hamza
Abstract:
This study attempts to analyze the social media reports regarding Covid-19 that impacted the psyche of Pakistanis. This Study is delimited to hashtags from Tweets on a social media platform. During Covid-19, it has been observed that it affected the psychological conditions of Pakistanis. With the application of the three-dimensional model presented by Fairclough, together with a data analytic software “FireAnt” i.e., social media and data analysis toolkit, which is used to filter, identify, report and export data from social media accurately. A detailed and explicit exploration of the various hashtags by users from different fields was conducted. This study conducted a quantitative as well as qualitative methods of analysis. The study examined the perspectives of the Pakistanis behind the use of various hashtags with the lenses of Critical Discourse Analysis (CDA). While conducting this research, CDA was helpful to reveal the connection between the psyche of the people and the Covid-19 pandemic. It was found that how different Pakistanis used social media and how Covid-19 impacted their psyche. After collecting and analyzing the hashtags from twitter it was concluded that majority of people received negative impact from social media reports, while, some people used their hashtags positively and were found positive during Covid-19, and some people were found neutral.Keywords: Covid, Covid-19, psyche, Covid Pakistan
Procedia PDF Downloads 6441850 Human Resource Practices and Organization Knowledge Capability: An Exploratory Study Applied to Private Organization
Authors: Mamoona Rasheed, Salman Iqbal, Muhammad Abdullah
Abstract:
Organizational capability, in terms of employees’ knowledge is valuable, and difficult to reproduce; and help to build sustainable competitive advantages. Knowledge capability is linked with human resource (HR) practices of an organization. This paper investigates the relationship between HR practices, knowledge management and organization capability. In an organization, employees play key role for the effective organizational performance by sharing their knowledge with management and co-workers that contributes towards organization capability. Pakistan being a developing country has different HR practices and culture. The business opportunities give rise to the discussion about the effect of HR practices on knowledge management and organization capability as innovation performance. An empirical study is conducted through questionnaires form the employees in private banks of Lahore, Pakistan. The data is collected via structured questionnaire with a sample of 120 cases. Data is analyzed using Structure Equation Modeling (SEM), and results are depicted using AMOS software. Results of this study are tabulated, interpreted and crosschecked with other studies. Findings suggest that there is a positive relationship of training & development along with incentives on knowledge management. On the other hand, employee’s participation has insignificant association with knowledge management. In addition, knowledge management has also positive association with organization capability. In line with the previous research, it is suggested that knowledge management is important for improving the organizational capability such as innovation performance and knowledge capacity of firm. Organization capability may improve significantly once specific HR practices are properly established and implemented by HR managers. This Study has key implications for knowledge management and innovation fields theoretically and practically.Keywords: employee participation, incentives, knowledge management, organization capability, training and development
Procedia PDF Downloads 16541849 Analysis of School Burnout and Academic Motivation through Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the relationship between school burnout and academic motivation in high school students. The working group of the study consists of 455 students from the high schools in Erzurum city center, selected with appropriate sampling method. School Burnout Scale and Academic Motivation Scale were used in the study to collect data. Correlation analysis and structural equation modeling were used in the analysis of the data collected through the study. As a result of the study, it was determined that there are significant and negative relations between school burnout and academic motivation, and the school burnout has direct and indirect significant effects on the getting over himself, using knowledge and exploration dimension through the latent variable of academic motivation. Lastly, it was determined that school burnout is a significant predictor of academic motivation.Keywords: school burnout, motivation, structural equation modeling, university
Procedia PDF Downloads 32841848 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices
Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli
Abstract:
Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis
Procedia PDF Downloads 47141847 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40641846 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function
Authors: Pan Hongxia, Wang Zhenhua
Abstract:
In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.Keywords: gearbox, fault diagnosis, ar model, end effect
Procedia PDF Downloads 37141845 The Impacts of Green Logistics Management Practices on Sustainability Performance in Nigeria
Authors: Ozoemelam Ikechukwu Lazarus, Nizamuddin B. Zainuddin, Abdul Kafi
Abstract:
Numerous studies have been carried out on Green Logistics Management Practices (GLMPs) across the globe. The study on the practices and performance of green chain practices in Africa in particular has not gained enough scholarly attention. Again, the majority of supply chain sustainability research being conducted focus on environmental sustainability. Logistics has been a major cause of supply chain resource waste and environmental damage. Many sectors of the economy that engage in logistical operations significantly rely on vehicles, which emit pollutants into the environment. Due to urbanization and industrialization, the logistical operations of manufacturing companies represent a serious hazard to the society and human life, making the sector one of the fastest expanding in the world today. Logistics companies are faced with numerous difficulties when attempting to implement logistics practices along their supply chains. In Nigeria, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences. However, implementing this is impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. This study integrates most of the green logistics management practices (GLMPs) into the Nigerian firms to improve generalizability, and credibility. It examines the effect of Green Logistics Management Practices on environmental performance, social performance, market performance, and financial performance in the logistics industries. It seeks to identify the critical success factors in order to develop a model that incorporates different factors from the perspectives of the technology, organization, human and environment to inform the adoption and use of technologies for logistics supply chain social sustainability in Nigeria. It uses exploratory research approach to collect and analyse the data.Keywords: logistics, managemernt, suatainability, environment, operations
Procedia PDF Downloads 6941844 An Exploratory Study for the Discrimination of Two Types of Pain Based on Chebyshev’s Coefficients of EEG Signal
Authors: C. M. Segning, H. Ezzaidi, S. Nogomo, M. Otis
Abstract:
Our proposal aims for developing an objective pain discrimination system, i.e., to discriminate between two neuronal conditions affecting the same neurophysiological signal. In this study, we present an approach to identify, in the first instance, two types of pain based on the analysis of the EEG signal decomposition coefficients. Each EEG segment of one second duration is analyzed using the Chebyshev and linear prediction transform to extract a set of non-linear features, namely the Chebyshev and linear prediction coefficients. These features are used as the input vector of the Gaussian mixture model (GMM) for classification to differentiate two types of pain. To evaluate the performance of the proposed approach, we used an EEG dataset recorded in the left temporal (T7) and left fronto-central (FC5) regions. The experimental results demonstrate the effectiveness of Chebyshev coefficients for accurate differentiation of chronic fibromyalgia-like pain and experimental pain in the resting gamma band, with an accuracy of 93.9%. These results suggest a potential for discrimination of clinical pain according to its mechanism.Keywords: chronic fibromyalgia pain, Chebyshev coefficients, healthy with induced pain, electroencephalogram, Gaussian mixture model
Procedia PDF Downloads 741843 Comparative Analysis of Medical Tourism Industry among Key Nations in Southeast Asia
Authors: Nur A. Azmi, Suseela D. Chandran, Fadilah Puteh, Azizan Zainuddin
Abstract:
Medical tourism has been associated as a global phenomenon in developed and developing countries in the 21st century. Medical tourism is defined as an activity in which individuals who travel from one country to another country to seek or receive medical healthcare. Based on the global trend, the number of medical tourists is increasing annually, especially in the Southeast Asia (SEA) region. Since the establishment of Association of Southeast Asian Nations (ASEAN) in 1967, the SEA nations have worked towards regional integration in medical tourism. The medical tourism in the SEA has become the third-largest sector that contributes towards economic development. Previous research has demonstrated several factors that affect the development of medical tourism. However, despite the already published literature on SEA's medical tourism in the last ten years there continues to be a scarcity of research on niche areas each of the SEA countries. Hence, this paper is significant in enriching the literature in the field of medical tourism particularly in showcasing the niche market of medical tourism among the SEA best players namely Singapore, Thailand, Malaysia and Indonesia. This paper also contributes in offering a comparative analysis between the said nations whether they are complementing or competing with each other in the medical tourism sector. This then, will increase the availability of information in SEA region on medical tourism. The data was collected through an in-depth interview with various stakeholders and private hospitals. The data was then analyzed using two approaches namely thematic analysis (interview data) and document analysis (secondary data). The paper concludes by arguing that the ASEAN countries have specific niche market to promote their medical tourism industry. This paper also concludes that these key nations complement each other in the industry. In addition, the medical tourism sector in SEA region offers greater prospects for market development and expansion that witnessed the emerging of new key players from other nations.Keywords: healthcare services, medical tourism, medical tourists, SEA region, comparative analysis
Procedia PDF Downloads 14441842 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction
Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun
Abstract:
The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.Keywords: usability, qualitative data, text-processing algorithm, natural language processing
Procedia PDF Downloads 28641841 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies
Authors: Praniil Nagaraj
Abstract:
This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis
Procedia PDF Downloads 5441840 Information Pollution: Exploratory Analysis of Subs-Saharan African Media’s Capabilities to Combat Misinformation and Disinformation
Authors: Muhammed Jamiu Mustapha, Jamiu Folarin, Stephen Obiri Agyei, Rasheed Ademola Adebiyi, Mutiu Iyanda Lasisi
Abstract:
The role of information in societal development and growth cannot be over-emphasized. It has remained an age-long strategy to adopt the information flow to make an egalitarian society. The same has become a tool for throwing society into chaos and anarchy. It has been adopted as a weapon of war and a veritable instrument of psychological warfare with a variety of uses. That is why some scholars posit that information could be deployed as a weapon to wreak “Mass Destruction" or promote “Mass Development". When used as a tool for destruction, the effect on society is like an atomic bomb which when it is released, pollutes the air and suffocates the people. Technological advancement has further exposed the latent power of information and many societies seem to be overwhelmed by its negative effect. While information remains one of the bedrock of democracy, the information ecosystem across the world is currently facing a more difficult battle than ever before due to information pluralism and technological advancement. The more the agents involved try to combat its menace, the difficult and complex it is proving to be curbed. In a region like Africa with dangling democracy enfolds with complexities of multi-religion, multi-cultures, inter-tribes, ongoing issues that are yet to be resolved, it is important to pay critical attention to the case of information disorder and find appropriate ways to curb or mitigate its effects. The media, being the middleman in the distribution of information, needs to build capacities and capabilities to separate the whiff of misinformation and disinformation from the grains of truthful data. From quasi-statistical senses, it has been observed that the efforts aimed at fighting information pollution have not considered the built resilience of media organisations against this disorder. Apparently, the efforts, resources and technologies adopted for the conception, production and spread of information pollution are much more sophisticated than approaches to suppress and even reduce its effects on society. Thus, this study seeks to interrogate the phenomenon of information pollution and the capabilities of select media organisations in Sub-Saharan Africa. In doing this, the following questions are probed; what are the media actions to curb the menace of information pollution? Which of these actions are working and how effective are they? And which of the actions are not working and why they are not working? Adopting quantitative and qualitative approaches and anchored on the Dynamic Capability Theory, the study aims at digging up insights to further understand the complexities of information pollution, media capabilities and strategic resources for managing misinformation and disinformation in the region. The quantitative approach involves surveys and the use of questionnaires to get data from journalists on their understanding of misinformation/disinformation and their capabilities to gate-keep. Case Analysis of select media and content analysis of their strategic resources to manage misinformation and disinformation is adopted in the study while the qualitative approach will involve an In-depth Interview to have a more robust analysis is also considered. The study is critical in the fight against information pollution for a number of reasons. One, it is a novel attempt to document the level of media capabilities to fight the phenomenon of information disorder. Two, the study will enable the region to have a clear understanding of the capabilities of existing media organizations to combat misinformation and disinformation in the countries that make up the region. Recommendations emanating from the study could be used to initiate, intensify or review existing approaches to combat the menace of information pollution in the region.Keywords: disinformation, information pollution, misinformation, media capabilities, sub-Saharan Africa
Procedia PDF Downloads 167