Search results for: doubling time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18185

Search results for: doubling time

17375 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 506
17374 Indoor Real-Time Positioning and Mapping Based on Manhattan Hypothesis Optimization

Authors: Linhang Zhu, Hongyu Zhu, Jiahe Liu

Abstract:

This paper investigated a method of indoor real-time positioning and mapping based on the Manhattan world assumption. In indoor environments, relying solely on feature matching techniques or other geometric algorithms for sensor pose estimation inevitably resulted in cumulative errors, posing a significant challenge to indoor positioning. To address this issue, we adopt the Manhattan world hypothesis to optimize the camera pose algorithm based on feature matching, which improves the accuracy of camera pose estimation. A special processing method was applied to image data frames that conformed to the Manhattan world assumption. When similar data frames appeared subsequently, this could be used to eliminate drift in sensor pose estimation, thereby reducing cumulative errors in estimation and optimizing mapping and positioning. Through experimental verification, it is found that our method achieves high-precision real-time positioning in indoor environments and successfully generates maps of indoor environments. This provides effective technical support for applications such as indoor navigation and robot control.

Keywords: Manhattan world hypothesis, real-time positioning and mapping, feature matching, loopback detection

Procedia PDF Downloads 61
17373 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 23
17372 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History

Authors: Rama Debbarma, Debanjan Das

Abstract:

The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.

Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, Time history.

Procedia PDF Downloads 269
17371 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

Authors: Kunya Bowornchockchai

Abstract:

The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0)  without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt  is the time series data at time t, respectively.

Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate

Procedia PDF Downloads 254
17370 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 125
17369 Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems

Authors: Hong Kai, Zhong Jun Jie, Chen Lin Qi, Wang Chen Guang

Abstract:

There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio.

Keywords: load-aware, scheduling algorithm, perceptual queue, heterogeneous multi-core

Procedia PDF Downloads 145
17368 Safety and Maternal Anxiety in Mother's and Baby's Sleep: Cross-sectional Study

Authors: Rayanne Branco Dos Santos Lima, Lorena Pinheiro Barbosa, Kamila Ferreira Lima, Victor Manuel Tegoma Ruiz, Monyka Brito Lima Dos Santos, Maria Wendiane Gueiros Gaspar, Luzia Camila Coelho Ferreira, Leandro Cardozo Dos Santos Brito, Deyse Maria Alves Rocha

Abstract:

Introduction: The lack of regulation of the baby's sleep-wake pattern in the first years of life affects the health of thousands of women. Maternal sleep deprivation can trigger or aggravate psychosomatic problems such as depression, anxiety and stress that can directly influence maternal safety, with consequences for the baby's and mother's sleep. Such conditions can affect the family's quality of life and child development. Objective: To correlate maternal security with maternal state anxiety scores and the mother's and baby's total sleep time. Method: Cross-sectional study carried out with 96 mothers of babies aged 10 to 24 months, accompanied by nursing professionals linked to a Federal University in Northeast Brazil. Study variables were maternal security, maternal state anxiety scores, infant latency and sleep time, and total nocturnal sleep time of mother and infant. Maternal safety was calculated using a four-point Likert scale (1=not at all safe, 2=somewhat safe, 3=very safe, 4=completely safe). Maternal anxiety was measured by State-Trait Anxiety Inventory, state-anxiety subscale whose scores vary from 20 to 80 points, and the higher the score, the higher the anxiety levels. Scores below 33 are considered mild; from 33 to 49, moderate and above 49, high. As for the total nocturnal sleep time, values between 7-9 hours of sleep were considered adequate for mothers, and values between 9-12 hours for the baby, according to the guidelines of the National Sleep Foundation. For the sleep latency time, a time equal to or less than 20 min was considered adequate. It is noteworthy that the latency time and the time of night sleep of the mother and the baby were obtained by the mother's subjective report. To correlate the data, Spearman's correlation was used in the statistical package R version 3.6.3. Results: 96 women and babies participated, aged 22 to 38 years (mean 30.8) and 10 to 24 months (mean 14.7), respectively. The average of maternal security was 2.89 (unsafe); Mean maternal state anxiety scores were 43.75 (moderate anxiety). The babies' average sleep latency time was 39.6 min (>20 min). The mean sleep times of the mother and baby were, respectively, 6h and 42min and 8h and 19min, both less than the recommended nocturnal sleep time. Maternal security was positively correlated with maternal state anxiety scores (rh=266, p=0.009) and negatively correlated with infant sleep latency (rh= -0.30. P=0.003). Baby sleep time was positively correlated with maternal sleep time. (rh 0.46, p<0.001). Conclusion: The more secure the mothers considered themselves, the higher the anxiety scores and the shorter the baby's sleep latency. Also, the longer the baby sleeps, the longer the mother sleeps. Thus, interventions are needed to promote the quality and efficiency of sleep for both mother and baby.

Keywords: sleep, anxiety, infant, mother-child relations

Procedia PDF Downloads 102
17367 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 162
17366 Biodegradation Behavior of Cellulose Acetate with DS 2.5 in Simulated Soil

Authors: Roberta Ranielle M. de Freitas, Vagner R. Botaro

Abstract:

The relationship between biodegradation and mechanical behavior is fundamental for studies of the application of cellulose acetate films as a possible material for biodegradable packaging. In this work, the biodegradation of cellulose acetate (CA) with DS 2.5 was analyzed in simulated soil. CA films were prepared by casting and buried in the simulated soil. Samples were taken monthly and analyzed, the total time of biodegradation was 6 months. To characterize the biodegradable CA, the DMA technique was employed. The main result showed that the time of exposure to the simulated soil affects the mechanical properties of the films and the values of crystallinity. By DMA analysis, it was possible to conclude that as the CA is biodegraded, its mechanical properties were altered, for example, storage modulus has increased with biodegradation and the modulus of loss has decreased. Analyzes of DSC, XRD, and FTIR were also carried out to characterize the biodegradation of CA, which corroborated with the results of DMA. The observation of the carbonyl band by FTIR and crystalline indices obtained by XRD were important to evaluate the degradation of CA during the exposure time.

Keywords: biodegradation, cellulose acetate, DMA, simulated soil

Procedia PDF Downloads 218
17365 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation

Authors: Ayan Chakraborty, BV. Rathish Kumar

Abstract:

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional

Procedia PDF Downloads 192
17364 RFID Based Student Attendance System

Authors: Aniket Tiwari, Ameya London

Abstract:

Web-based student attendance management system is required to assist the faculty and the lecturer for the time-consuming process. For this purpose, GSM/GPRS (Global System for Mobile Communication/General Packet Radio Service) based student’s attendance management system using RFID (Radio Frequency Identification) is a much convenient method to take the attendance. Student is provided with the RFID tags. When student comes near to the reader, it will sense the respective student and update attendance. The whole process is controlled using the microcontroller. The main advantage of this system is that it reduced the complexity comparison to student attendance system using RF technology. This system requires only one microcontroller for the operation, it is real time process. This paper reviews some of these monitoring systems and proposes a GPRS based student attendance system. The system can be easily accessed by the lecturers via the web and most importantly, the reports can be generated in real-time processing, thus, provides valuable information about the students’ commitments in attending the classes.

Keywords: RFID reader, RFID tags, student, attendance

Procedia PDF Downloads 507
17363 Combining Mobile Intelligence with Formation Mechanism for Group Commerce

Authors: Lien Fa Lin, Yung Ming Li, Hsin Chen Hsieh

Abstract:

The rise of smartphones brings new concept So-Lo-Mo (social-local-mobile) in mobile commerce area in recent years. However, current So-Lo-Mo services only focus on individual users but not a group of users, and the development of group commerce is not enough to satisfy the demand of real-time group buying and less to think about the social relationship between customers. In this research, we integrate mobile intelligence with group commerce and consider customers' preference, real-time context, and social influence as components in the mechanism. With the support of this mechanism, customers are able to gather near customers with the same potential purchase willingness through mobile devices when he/she wants to purchase products or services to have a real-time group-buying. By matching the demand and supply of mobile group-buying market, this research improves the business value of mobile commerce and group commerce further.

Keywords: group formation, group commerce, mobile commerce, So-Lo-Mo, social influence

Procedia PDF Downloads 414
17362 Competitive Advantage: Sustainable or Transient

Authors: Pallavi Thacker, H. P. Mathur

Abstract:

This paper tries to find out from the available literature the status of Competitive Advantage. It has been stated a number of times that firms must strive to attain sustainable competitive advantage; but is the concept of sustainability of advantage still valid in this new diversified and too-rapidly changing world? The paper reaches a conclusion that the answer is “no”. Gone is the time when once attained position could easily be retained forever or at-least for a substantial amount of time. We live in a time which is very much globalised. We are used to a high level of competition from all directions. Technological advances, developed human capital, flexibility and end number of factors make the sustenance of competitive advantage difficult. This paper analyses competitive advantage from the view points of Michael Porter (who talks about sustainability) and Rita Gunther McGrath (who says competitive advantage can no more be sustained). It uses many examples and evidences from papers, journals and news. A research in this area is very much required (especially in a developing country like India) so that industries, firms and people can find out the suitable strategies that match with the changing times.

Keywords: competitive advantage, sustainable, transient, globalisation

Procedia PDF Downloads 313
17361 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: non-minimum phase system, optimal linear quadratic tracker, proportional plus integral observer, state and disturbance estimator

Procedia PDF Downloads 502
17360 Possibility of Prediction of Death in SARS-Cov-2 Patients Using Coagulogram Analysis

Authors: Omonov Jahongir Mahmatkulovic

Abstract:

Purpose: To study the significance of D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen coagulation parameters (Fg) in predicting the course, severity and prognosis of COVID-19. Source and method of research: From September 15, 2021, to November 5, 2021, 93 patients aged 25 to 60 with suspected COVID-19, who are under inpatient treatment at the multidisciplinary clinic of the Tashkent Medical Academy, were retrospectively examined. DD, PT, APTT, and Fg were studied in dynamics and studied changes. Results: Coagulation disorders occurred in the early stages of COVID-19 infection with an increase in DD in 54 (58%) patients and an increase in Fg in 93 (100%) patients. DD and Fg levels are associated with the clinical classification. Of the 33 patients who died, 21 had an increase in DD in the first laboratory study, 27 had an increase in DD in the second and third laboratory studies, and 15 had an increase in PT in the third test. The results of the ROC analysis of mortality showed that the AUC DD was three times 0.721, 0.801, and 0.844, respectively; PT was 0.703, 0.845, and 0.972. (P<0:01). Conclusion”: Coagulation dysfunction is more common in patients with severe and critical conditions. DD and PT can be used as important predictors of mortality from COVID-19.

Keywords: Covid19, DD, PT, Coagulogram analysis, APTT

Procedia PDF Downloads 107
17359 Task Scheduling and Resource Allocation in Cloud-based on AHP Method

Authors: Zahra Ahmadi, Fazlollah Adibnia

Abstract:

Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).

Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow

Procedia PDF Downloads 145
17358 A New Intelligent, Dynamic and Real Time Management System of Sewerage

Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Keywords: automation, optimization, paradigm, RTC

Procedia PDF Downloads 299
17357 Monitoring Public Transportation in Developing Countries Using Automatic Vehicle Location System: A Case Study

Authors: Ahmed Osama, Hassan A. Mahdy, Khalid A. Kandil, Mohamed Elhabiby

Abstract:

Automatic Vehicle Location systems (AVL) have been used worldwide for more than twenty years and have showed great success in public transportation management and monitoring. Cairo public bus service suffers from several problems such as unscheduled stops, unscheduled route deviations, and inaccurate schedules, which have negative impacts on service reliability. This research aims to study those problems for a selected bus route in Cairo using a prototype AVL system. Experimental trips were run on the selected route; and the locations of unscheduled stops, regions of unscheduled deviations, along with other trip time and speed data were collected. Data was analyzed to demonstrate the reliability of passengers on the unscheduled stops compared to the scheduled ones. Trip time was also modeled to assess the unscheduled stops’ impact on trip time, and to check the accuracy of the applied scheduled trip time. Moreover, frequency and length of the unscheduled route deviations, as well as their impact on the bus stops, were illustrated. Solutions were proposed for the bus service deficiencies using the AVL system. Finally, recommendations were proposed for further research.

Keywords: automatic vehicle location, public transportation, unscheduled stops, unscheduled route deviations, inaccurate schedule

Procedia PDF Downloads 390
17356 Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines

Authors: Ghorbanali Mohammadi

Abstract:

New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology.

Keywords: scheduling, just-in-time, mixed-model assembly line, sequencing, simulated annealing

Procedia PDF Downloads 128
17355 A Quick Method for Seismic Vulnerability Evaluation of Offshore Structures by Static and Dynamic Nonlinear Analyses

Authors: Somayyeh Karimiyan

Abstract:

To evaluate the seismic vulnerability of vital offshore structures with the highest possible precision, Nonlinear Time History Analyses (NLTHA), is the most reliable method. However, since it is very time-consuming, a quick procedure is greatly desired. This paper presents a quick method by combining the Push Over Analysis (POA) and the NLTHA. The POA is preformed first to recognize the more critical members, and then the NLTHA is performed to evaluate more precisely the critical members’ vulnerability. The proposed method has been applied to jacket type structure. Results show that combining POA and NLTHA is a reliable seismic evaluation method, and also that none of the earthquake characteristics alone, can be a dominant factor in vulnerability evaluation.

Keywords: jacket structure, seismic evaluation, push-over and nonlinear time history analyses, critical members

Procedia PDF Downloads 280
17354 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 398
17353 Mechanism for Network Security via Routing Protocols Estimated with Network Simulator 2 (NS-2)

Authors: Rashid Mahmood, Muhammad Sufyan, Nasir Ahmed

Abstract:

The MANETs have lessened transportation and decentralized network. There are numerous basis of routing protocols. We derived the MANETs protocol into three major categories like Reactive, Proactive and hybrid. In these protocols, we discussed only some protocols like Distance Sequenced Distance Vector (DSDV), Ad hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). The AODV and DSR are both reactive type of protocols. On the other hand, DSDV is proactive type protocol here. We compare these routing protocols for network security estimated by network simulator (NS-2). In this dissertation some parameters discussed such as simulation time, packet size, number of node, packet delivery fraction, push time and speed etc. We will construct all these parameters on routing protocols under suitable conditions for network security measures.

Keywords: DSDV, AODV, DSR NS-2, PDF, push time

Procedia PDF Downloads 433
17352 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 358
17351 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology

Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa

Abstract:

A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.

Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC

Procedia PDF Downloads 408
17350 The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli

Authors: N. P. Tien, S. Songsermpong, T. H. Quan

Abstract:

Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli.

Keywords: mung bean vermicelli, drying, hot air, microwave continuous, microwave vacuum

Procedia PDF Downloads 79
17349 Achieving Sustainable Rapid Construction Using Lean Principles

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

There is the need to take the holistic approach in achieving sustainable construction for a contemporary practice. Sustainable construction is the practice that involved method of human preservation of the environment, whether economically or socially through responsibility, management of resources and maintenance utilizing support. This paper shows the correlation of achieving rapid construction with sustainable concepts using lean principles. Lean principles being used widely in the manufacturing industry, but this research will demonstrate the principles into building construction. Lean principle offers the benefits of stabilizing work flow and elimination of unnecessary work. Therefore, this principle contributes to time and waste reduction. The correlation shows that pulling factor provides the improvement of progress curve and stabilizing the time-quality relation. The finding shows the lean principles offer the elements of rapid construction synchronized with the elements of sustainability.

Keywords: sustainable construction, rapid construction, time reduction, lean construction

Procedia PDF Downloads 236
17348 Development of an in vitro Fermentation Chicken Ileum Microbiota Model

Authors: Bello Gonzalez, Setten Van M., Brouwer M.

Abstract:

The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.

Keywords: broilers, in vitro model, ileum microbiota, fermentation

Procedia PDF Downloads 57
17347 Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles

Authors: Mohamed Elbehery

Abstract:

Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit.

Keywords: nanoparticles, enzymes, immobilization, textiles

Procedia PDF Downloads 99
17346 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 341