Search results for: crushing energy
7642 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine
Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi
Abstract:
Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.Keywords: non linear controller, robust, sliding mode, kinetic energy
Procedia PDF Downloads 4997641 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 5727640 Quantifying and Prioritizing Agricultural Residue Biomass Energy Potential in Ethiopia
Authors: Angesom Gebrezgabiher Tesfay, Afafaw Hailesilasie Tesfay, Muyiwa Samuel Adaramola
Abstract:
The energy demand boost in Ethiopia urges sustainable fuel options while it is mainly supplemented by traditional biomass and imported conventional fuels. To satisfy the deficiency it has to be sourced from all renewables. Thus identifying resources and estimating potential is vital to the sector. This study aims at an in-depth assessment to quantify, prioritize, and analyze agricultural residue biomass energy and related characteristic forms. Biomass use management and modernization seeks successive information and a clue about the resource quantity and characteristic. Five years of crop yield data for thirteen crops were collected. Conversion factors for their 20 residues are surveyed from the literature. Then residues amount potentially available for energy and their energy is estimated regional, crop-wise, residue-wise, and shares compared. Their potential value for energy is analyzed from two perspectives and prioritized. The gross potential is estimated to be 495PJ, equivalent to 12/17 million tons of oil/coal. At 30% collection efficiency, it is the same as conventional fuel import in 2018. Maize and sorghum potential and spatial availability are preeminent. Cotton and maize presented the highest potential values for energy from application and resource perspectives. Oromia and Amhara regions' contributions are the highest. The resource collection and application trends are required for future management that implicates a prospective study.Keywords: crop residue, biomass potential, biomass resource, Ethiopian energy
Procedia PDF Downloads 1257639 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates
Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump
Procedia PDF Downloads 547638 Design of an Energy Efficient Electric Auto Rickshaw
Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar
Abstract:
Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment
Procedia PDF Downloads 2877637 Optimal Beam for Accelerator Driven Systems
Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov
Abstract:
The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).Keywords: accelerator driven system, ion beam, electrical power, energy gain
Procedia PDF Downloads 1407636 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach
Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna
Abstract:
This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS
Procedia PDF Downloads 2327635 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy
Procedia PDF Downloads 5177634 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 3417633 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics
Procedia PDF Downloads 5777632 Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System
Authors: Gianvito Colucci, Valeria Di Cosmo, Matteo Nicoli, Orsola Maria Robasto, Laura Savoldi
Abstract:
The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework.Keywords: energy security, energy system optimization models, hydrogen, natural gas, open-source modeling, scenario analysis, TEMOA
Procedia PDF Downloads 1167631 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka
Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor
Abstract:
The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.Keywords: microgrid, energy efficiency, sustainability, energy security
Procedia PDF Downloads 3757630 A Simulation for Behaviors of Preys to Avoid Pursuit of Predator
Authors: Jae Moon Lee
Abstract:
Generally the predator will continuously aim to attack the prey, while the prey will maintain a safe distance from the predator in order to avoid it . If the predator has enough energy to chase a certain amount of distance, it will begin to attack the prey. The prey needs to approach the predator for various reasons such as getting food. However, it will also try to keep a safe distance because of the threat of predators. The safe distance is dependent on the amount of the energy of predator, and the behaviors of prey is changed according to the size of the safe distance. This paper is to simulate the behaviors of preys to avoid the pursuit of predator based on the safe distance. The simulations will be executed experimentally under single predator and multiple preys. The results of the simulations show that the amount of energy of predator gives a great influence on the behavior of the prey.Keywords: predator, prey, energy, safe distance, simulation
Procedia PDF Downloads 2657629 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia
Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui
Abstract:
Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.Keywords: energy and water consumption, sustainability, urban development, urban metabolism
Procedia PDF Downloads 2737628 Implementation of ALD in Product Development: Study of ROPS to Improve Energy Absorption Performance Using Absorption Part
Authors: Zefry Darmawan, Shigeyuki Haruyama, Ken Kaminishi
Abstract:
Product development is a big issue in the industrial competition and takes a serious part in development of technology. Product development process could adapt high changes of market needs and transform into engineering concept in order to produce high-quality product. One of the latest methods in product development is Analysis-Led-Design (ALD). It utilizes digital engineering design tools with finite analysis to perform product robust analysis and valuable for product reliability assurance. Heavy machinery which operates under severe condition should maintain safety to the customer when faced with potential hazard. Cab frame should able to absorb the energy while collision. Through ALD, a series of improvement of cab frame to increase energy absorption was made and analyzed. Improvement was made by modifying shapes of frame and-or install absorption device in certain areas. Simulation result showed that install absorption device could increase absorption energy than modifying shape.Keywords: ALD, ROPS, energy absorption, cab frame
Procedia PDF Downloads 3717627 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.Keywords: daylight, window, orientation, energy consumption, design builder
Procedia PDF Downloads 2347626 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility
Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir
Abstract:
The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources
Procedia PDF Downloads 3957625 A Qualitative Study for Establishing Critical Success Factors for PPPs in Research Reactors
Authors: Khalid Almarri
Abstract:
The UAE is currently developing a peaceful nuclear energy program as part of its low Carbon energy strategy to meet future energy demands. Research of nuclear energy technologies is required to support nuclear energy generation projects and maximize their performance. Research of this type will require building an operating a research reactor (RR), a costly undertaking in most circumstances. Collaboration between government and private parties through public, private partnerships (PPP) can maximize the benefits expected from the adoption of an RR project. The aim of this research is to establish the critical success factors (CSF) for developing an RR project for newcomer countries, with the UAE taken as a case study, through the utilization of public, private partnerships (PPP). The results of this study were arrived at through the use of semi-structured interviews conducted with ten experts in the field of research reactors, using grounded theory method. Underutilization was identified as the main stumbling block that impairs the success of research reactors.Keywords: public private partnerships, research reactors, grounded theory, critical success factors
Procedia PDF Downloads 2817624 The Effectiveness of Environmental Policy Instruments for Promoting Renewable Energy Consumption: Command-and-Control Policies versus Market-Based Policies
Authors: Mahmoud Hassan
Abstract:
Understanding the impact of market- and non-market-based environmental policy instruments on renewable energy consumption (REC) is crucial for the design and choice of policy packages. This study aims to empirically investigate the effect of environmental policy stringency index (EPS) and its components on REC in 27 OECD countries over the period from 1990 to 2015, and then use the results to identify what the appropriate environmental policy mix should look like. By relying on the two-step system GMM estimator, we provide evidence that increasing environmental policy stringency as a whole promotes renewable energy consumption in these 27 developed economies. Moreover, policymakers are able, through the market- and non-market-based environmental policy instruments, to increase the use of renewable energy. However, not all of these instruments are effective for achieving this goal. The results indicate that R&D subsidies and trading schemes have a positive and significant impact on REC, while taxes, feed-in tariff and emission standards have not a significant effect. Furthermore, R&D subsidies are more effective than trading schemes for stimulating the use of clean energy. These findings proved to be robust across the three alternative panel techniques used.Keywords: environmental policy stringency, renewable energy consumption, two-step system-GMM estimation, linear dynamic panel data model
Procedia PDF Downloads 1817623 Designing Sustainable Building Based on Iranian's Windmills
Authors: Negar Sartipzadeh
Abstract:
Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.Keywords: renewable energy, sustainable building, windmill, Iranian architecture
Procedia PDF Downloads 4227622 Exploring the Energy Model of Cumulative Grief
Authors: Masica Jordan Alston, Angela N. Bullock, Angela S. Henderson, Stephanie Strianse, Sade Dunn, Joseph Hackett, Alaysia Black Hackett, Marcus Mason
Abstract:
The Energy Model of Cumulative Grief was created in 2018. The Energy Model of Cumulative Grief utilizes historic models of grief stage theories. The innovative model is additionally unique due to its focus on cultural responsiveness. The Energy Model of Cumulative Grief helps to train practitioners who work with clients dealing with grief and loss. This paper assists in introducing the world to this innovative model and exploring how this model positively impacted a convenience sample of 140 practitioners and individuals experiencing grief and loss. Respondents participated in Webinars provided by the National Grief and Loss Center of America (NGLCA). Participants in this cross-sectional research design study completed one of three Grief and Loss Surveys created by the Grief and Loss Centers of America. Data analysis for this study was conducted via SPSS and Survey Hero to examine survey results for respondents. Results indicate that the Energy Model of Cumulative Grief was an effective resource for participants in addressing grief and loss. The majority of participants found the Webinars to be helpful and a conduit to providing them with higher levels of hope. The findings suggest that using The Energy Model of Cumulative Grief is effective in providing culturally responsive grief and loss resources to practitioners and clients. There are far reaching implications with the use of technology to provide hope to those suffering from grief and loss worldwide through The Energy Model of Cumulative Grief.Keywords: grief, loss, grief energy, grieving brain
Procedia PDF Downloads 857621 Establishing Forecasts Pointing Towards the Hungarian Energy Change Based on the Results of Local Municipal Renewable Energy Production and Energy Export
Authors: Balazs Kulcsar
Abstract:
Professional energy organizations perform analyses mainly on the global and national levels about the expected development of the share of renewables in electric power generation, heating, and cooling, as well as the transport sectors. There are just a few publications, research institutions, non-profit organizations, and national initiatives with a focus on studies in the individual towns, settlements. Issues concerning the self-supply of energy on the settlement level have not become too wide-spread. The goal of our energy geographic studies is to determine the share of local renewable energy sources in the settlement-based electricity supply across Hungary. The Hungarian energy supply system defines four categories based on the installed capacities of electric power generating units. From these categories, the theoretical annual electricity production of small-sized household power plants (SSHPP) featuring installed capacities under 50 kW and small power plants with under 0.5 MW capacities have been taken into consideration. In the above-mentioned power plant categories, the Hungarian Electricity Act has allowed the establishment of power plants primarily for the utilization of renewable energy sources since 2008. Though with certain restrictions, these small power plants utilizing renewable energies have the closest links to individual settlements and can be regarded as the achievements of the host settlements in the shift of energy use. Based on the 2017 data, we have ranked settlements to reflect the level of self-sufficiency in electricity production from renewable energy sources. The results show that the supply of all the energy demanded by settlements from local renewables is within reach now in small settlements, e.g., in the form of the small power plant categories discussed in the study, and is not at all impossible even in small towns and cities. In Hungary, 30 settlements produce more renewable electricity than their own annual electricity consumption. If these overproductive settlements export their excess electricity towards neighboring settlements, then full electricity supply can be realized on further 29 settlements from renewable sources by local small power plants. These results provide an opportunity for governmental planning of the realization of energy shift (legislative background, support system, environmental education), as well as framing developmental forecasts and scenarios until 2030.Keywords: energy geography, Hungary, local small power plants, renewable energy sources, self-sufficiency settlements
Procedia PDF Downloads 1477620 A Method of Effective Planning and Control of Industrial Facility Energy Consumption
Authors: Aleksandra Aleksandrovna Filimonova, Lev Sergeevich Kazarinov, Tatyana Aleksandrovna Barbasova
Abstract:
A method of effective planning and control of industrial facility energy consumption is offered. The method allows to optimally arrange the management and full control of complex production facilities in accordance with the criteria of minimal technical and economic losses at the forecasting control. The method is based on the optimal construction of the power efficiency characteristics with the prescribed accuracy. The problem of optimal designing of the forecasting model is solved on the basis of three criteria: maximizing the weighted sum of the points of forecasting with the prescribed accuracy; the solving of the problem by the standard principles at the incomplete statistic data on the basis of minimization of the regularized function; minimizing the technical and economic losses due to the forecasting errors.Keywords: energy consumption, energy efficiency, energy management system, forecasting model, power efficiency characteristics
Procedia PDF Downloads 3937619 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC
Authors: Yu-Zhou Zheng, Wen-Wei Wang
Abstract:
In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening
Procedia PDF Downloads 3477618 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.Keywords: biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell
Procedia PDF Downloads 4457617 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1257616 A Feasibility Study of Producing Biofuels from Textile Sludge by Torrefaction Technology
Authors: Hua-Shan Tai, Yu-Ting Zeng
Abstract:
In modern and industrial society, enormous amounts of sludge from various of industries are constantly produced; currently, most of the sludge are treated by landfill and incineration. However, both treatments are not ideal because of the limited land for landfill and the secondary pollution caused by incineration. Consequently, treating industrial sludge appropriately has become an urgent issue of environmental protection. In order to solve the problem of the massive sludge, this study uses textile sludge which is the major source of waste sludge in Taiwan as raw material for torrefaction treatments. To investigate the feasibility of producing biofuels from textile sludge by torrefaction, the experiments were conducted with temperatures at 150, 200, 250, 300, and 350°C, with heating rates of 15, 20, 25 and 30°C/min, and with residence time of 30 and 60 minutes. The results revealed that the mass yields after torrefaction were approximately in the range of 54.9 to 93.4%. The energy densification ratios were approximately in the range of 0.84 to 1.10, and the energy yields were approximately in the range of 45.9 to 98.3%. The volumetric densities were approximately in the range of 0.78 to 1.14, and the volumetric energy densities were approximately in the range of 0.65 to 1.18. To sum up, the optimum energy yield (98.3%) can be reached with terminal temperature at 150 °C, heating rate of 20°C/min, and residence time of 30 minutes, and the mass yield, energy densification ratio as well as volumetric energy density were 92.2%, 1.07, and 1.15, respectively. These results indicated that the solid products after torrefaction are easy to preserve, which not only enhance the quality of the product, but also achieve the purpose of developing the material into fuel.Keywords: biofuel, biomass energy, textile sludge, torrefaction
Procedia PDF Downloads 3217615 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 1087614 Surface Flattening Assisted with 3D Mannequin Based on Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.Keywords: surface flattening, strain energy, minimum energy, approximate implicit method, fashion design
Procedia PDF Downloads 3347613 Economic and Technical Study for Hybrid (PV/Wind) Power System in the North East of Algeria
Authors: Nabila Louai, Fouad Khaldi, Houria Benharchache
Abstract:
In this paper, the case of meeting a household’s electrical energy demand with hybrid systems has been examined. The objective is to study technological feasibility and economic viability of the electrification project by a hybrid system (PV/ wind) of a residential home located in Batna-Algeria and to reduce the emissions from traditional power by using renewable energy. An autonomous hybrid wind/photovoltaic (PV)/battery power system and a PV/Wind grid connected system, has been carried out using Hybrid Optimization Model for Electric Renewable (HOMER) simulation software. As a result, it has been found that electricity from the grid can be supplied at a lower price than electricity from renewable energy at this moment.Keywords: batna, household, hybrid system, renewable energy, techno-economy
Procedia PDF Downloads 601